An Abductive Paraconsistent Semantics – MH_P

Mário António Abrantes¹ and Luís Moniz Pereira²

¹Instituto Politécnico de Bragança, ²CENTRIA, Portugal INAP13' September, 2013

Outline

- 1 Introduction: MHp = MH + WFSXp
- 2 The MH Abductive Spirit
- 3 MH Models Computation
- WFSXp Semantics
- 5 MH_P Semantics

6 Conclusion

Introduction: MHp = MH + WFSXp The MH Abductive Spirit MH Models Computation WFSXp Semantics

> MH_P Semantics Conclusion

MHP: an instant description The necessity of Explicit Negation Total Models via Abductive Semantics

MHP: an instant description

 MH_P is a semantics for **extended normal logic programs** whose models are **total** and **paraconsistent**.

By **total** and **partial** Models we mean (normal logic programs case):

Р	Q
$b \leftarrow \textit{not} d$	$b \leftarrow \textit{not} d$
$a \leftarrow not a$	$c \leftarrow$

 $WFM(P) = \langle \{b\}^+, \{a\}^u, \{d\}^- \rangle : Partial Model$ $WFM(Q) = \langle \{b, c\}^+, \{\}^u, \{d\}^- \rangle : Total Model$

MHP: an instant description The necessity of Explicit Negation Total Models via Abductive Semantics

The necessity of Explicit Negation

This is a classic example (due to John McCarthy) .

We do not want to cross the railway on basis of **lack of a proof** the train is coming.

 $cross \leftarrow not train$

The adequate way, is to **make** the train is not coming: we need to be able to **assert falsity**!

 $cross \leftarrow \neg train$

Introduction: MHp = MH + WFSXp The MH Abductive Spirit MH Models Computation WFSXp Semantics

MHP: an instant description The necessity of Explicit Negation Total Models via Abductive Semantics

Total Models via Abductive Semantics (1/2)

MH_P Semantics

Sometimes **all the information** must be squeezed from a logic program.

For example, in an emergency situation,

danger \leftarrow not run run \leftarrow not safe safe \leftarrow not danger

indecision may not be acceptable. **Eliminate indecision** enforcing a 2-valued semantics.

MHP: an instant description The necessity of Explicit Negation Total Models via Abductive Semantics

Total Models via Abductive Semantics (2/2)

Eliminate undecision via a 2-valued semantics.

- Add to P a **minimal set of hypotheses**, H, such that $WFM^{u}(P \cup H) = \emptyset$.
- Assumable set of hypotheses: atoms that appear default negated: {run, danger, safe}.

• For example,
$$H = \{run\}$$
:

$$\mathsf{P} \cup \{\mathit{run}\}$$

danger \leftarrow not run safe \leftarrow not danger

 $\mathsf{run} \gets \mathit{not safe}$

 $\mathsf{run} \leftarrow$

 $WFM(P \cup \{run\}) = \{run, not \ danger, safe\}$

Mário António Abrantes¹ and Luís Moniz Pereira²

An Abductive Paraconsistent Semantics – MH_P

The *MH* Spirit: the Holiday Problem (1/2)

Four friends are planning a holiday.

• First friend says "If we don't go to Germany, then we must go to Sweden"

sweden ← not germany. etc. for the first 3 friends.
Fourth friend says "We must go to Denmark" denmark ←.

> $sweden \leftarrow not germany$ $denmark \leftarrow not sweden$ $germany \leftarrow not denmark$ $denmark \leftarrow$

The *MH* Spirit: the holiday Problem (2/2)

There is a single stable model solution.

SM(P)={denmark, not germany, sweden}

But on simple inspection, another solution is devised.

SM(P)={denmark, germany, not sweden}

Both solutions are obtained if we envisage the loop in the program as a **choice device**, by considering all the default negated atoms as assumable hypotheses.

WFM Computation via Program Transformation LWFM Computation via Program Layered Remainder MH Models Computation

WFM Computation via Program Transformation

The **WFM** of a logic program may be computed via the **remainder** of the program.

The **remainder** is computed by transforming the original program using 5 operations: **loop detection**, **failure**, **positive reduction**, **success**, **negative reduction**.

This reduction system is **terminating** and **confluent** for finite ground normal logic programs.

WFM Computation via Program Transformation LWFM Computation via Program Layered Remainder MH Models Computation

WFM Computation via Program Remainder (2/2)

Example

• Rules and literals highlighted in program *Q*, below, are eliminated during remainder computation

• remainder(Q) =
$$Q$$

 $WFM(Q) = WFM(\widehat{(Q)}) = \{d, s\} \cup not \{g, k, u, w\}.$
 $u \leftarrow w$
 $u \leftarrow w$
 $u \leftarrow u$
 $k \leftarrow g$
 $s \leftarrow not g, d$
 $d \leftarrow not s$
 $d \leftarrow Negative Reduction$

Mário António Abrantes¹ and Luís Moniz Pereira² An Abductive Paraconsistent Semantics – *MH*_P

WFM Computation via Program Transformation LWFM Computation via Program Layered Remainder MH Models Computation

Layered Remainder Computation (1/2)

The **layered remainder** uses the loops as **choice devices**. The key to preserve loops is to replace **negative reduction** by ...

The **layered remainder** is computed by transforming the original program using 5 operations: loop detection, failure, positive reduction, success, **layered negative reduction**.

The model obtained with the layered remainder is the **layered** well-founded model, *LWFM*.

WFM Computation via Program Transformation LWFM Computation via Program Layered Remainder MH Models Computation

Layered Remainder Computation (2/2): example

Example of layered remainder computation of program Q below:

- The highlighted rules and literals are eliminated.
- Denote by \mathring{Q} the **layered remainder** of Q.

•
$$LWFM(Q) = \{d\} \cup not \{u, w\}$$

$u \leftarrow w$	Loop Detection
$w \leftarrow u$	Loop Detection
$k \leftarrow g$	
$s \leftarrow not \ g, \ d$	Success
$g \leftarrow \textit{not} d$	
$d \leftarrow \textit{not s}$	
$d \leftarrow$	

Mário António Abrantes¹ and Luís Moniz Pereira² An Abductive Paraconsistent Semantics – *MH*_P

WFM Computation via Program Transformation LWFM Computation via Program Layered Remainder MH Models Computation

MH Models Computation

- Form the assumable hypotheses set of Q (default negated atoms that are not facts in Q): {g, s}.
- Compute all the 2-valued stable models of Q ∪ H, for all nonempty minimal hypotheses sets H ⊆ {g, s} and for H = Ø.
- *MH* models of *Q*: {*d*, not *g*, not *k*, *s*} with hypotheses sets *H* = Ø and *H* = {*s*}, and {*d*, *g*, *k*, not *s*} with hypotheses set *H* = {*g*}.

$$egin{array}{ccc} & & & & & & \ & & & & \\ k \leftarrow g & & & s \leftarrow \ not \ g & \leftarrow \ not \ d & & & d \leftarrow \end{array} \end{array}$$

Mário António Abrantes¹ and Luís Moniz Pereira² An Abductive Paraconsistent Semantics – *MH*_P

WFSXp Models WFSXp embedding into WFS

WFSX_P Semantics (1/4)

Extended logic programs allow two types of negation: **default negation** *not b* and **explicit negation** $\neg b$.

WFSXp: well-founded semantics for extended logic programs.

- Collapses into WFS for normal logic programs.
- Relates default negation and explicit negation through the coherence principle: if ¬/ holds, then not / also does (similarly, if / then not ¬/).
- Detects dependencies on contradiction.

WFSXp Models WFSXp embedding into WFS

WFSX_P Semantics (2/4)

Example: WFSXp model	
Р	
$z \leftarrow not z$	
¬a ←	
$u \leftarrow not a$	
$c \leftarrow not d$	
$WFSXp(P) = \langle \{\neg a, c, u\}^+, \{z, \neg z\}^u, \{a, \neg c, \neg u\}^- \rangle.$	

 $\neg a$ and $u \leftarrow not a$ render u true via the coherence principle.

WFSXp Models WFSXp embedding into WFS

*WFSX*_P Semantics (3/4)

WFSXp may be embedded into WFS by a simple transformation.

• Take an extended program *P* and compute the *P*^{*t*-*o*} transformed of *P*:

P
$$P^{t-o}$$
 $\neg a \leftarrow$ $\neg a \leftarrow$ $\neg a^o \leftarrow$ not a $c \leftarrow not b$ $c \leftarrow not b^o$ $c^o \leftarrow not b, not \neg c$ $u \leftarrow \neg a$ $u \leftarrow \neg a$ $u^o \leftarrow \neg a^o, not \neg u$

 $\neg_a, \neg_a^o, \neg_c, \neg_u$ in P^{t-o} language are names of atoms, not explicit negations. Bold literals enforce the coherence principle.

• Compute the $WFM(P^{t-o})$:

Mário António Abrantes¹ and Luís Moniz Pereira²

An Abductive Paraconsistent Semantics – MH_P

WFSXp Models WFSXp embedding into WFS

*WFSX*_P Semantics (4/4)

$$WFM(P^{t-o}) = \langle \{\neg_{-a}, \neg_{-a}^{o}, c, c^{o}, u, u^{o}\}^{+}, \{\}^{u} \\ \{a, a^{o}, b, b^{o}, \neg_{-b}, \neg_{-b}^{o}, \neg_{-c}, \neg_{-c}^{o}, \neg_{-u}, \neg_{-u}^{o}\}^{-} \rangle.$$

• **Read** the WFSXp(P) model from $WFM(P^{t-o})$

 $a \in WFMp(P) \text{ iff } a \in WFM(P^{t-o})$ not $a \in WFMp(P) \text{ iff } not a^{o} \in WFM(P^{t-o})$ $\neg a \in WFMp(P) \text{ iff } \neg_{-}a \in WFM(P^{t-o})$ not $\neg a \in WFMp(P) \text{ iff } not \neg_{-}a^{o} \in WFM(P^{t-o})$

 $WFMp(P) = \langle \{\neg a, c, u\}^+, \{\}^u \{a, b, \neg b, \neg c, \neg u\}^- \rangle.$

Computing MH_P Models (1/2)

- Take an extended normal logic program P.
- Compute the transformed P^{t-o} .
- Compute the **balanced layered remainder** bP^{t-o} (for preserving loops) by means of the **balanced reduction system**.

balanced reduction system, consists in 5 operations: loop detection, failure, positive reduction, success, **balanced layered negative reduction**.

balanced layered negative reduction: Use fact f^o (resp. f) to eliminate rule $r=h \leftarrow not \ f^o$ (resp. $r^o=h^o \leftarrow not \ f)$ iff r,r^o are not in loop through not $f^o, not \ f.$

Computing MH_P Models (2/2)

Compute the set of assumable hypotheses of *P*, Hyps(P): all the literals *k* such that not $k^o \in bP^{t-o}$ and *k* is not a fact of bP^{t-o} .

MHp models: total *WFSXp* models of programs $P \cup H$, for all nonempty minimal hypotheses sets $H \subseteq Hyps(P)$ and for $H = \emptyset$.

Computing MH_P Models: an example (1/2)

 An extended program P and its balanced layered remainder, bP^{t-o}

Р	bP ^{t-o}	
$b \leftarrow h$	$b \leftarrow h$	$b^{o} \leftarrow h^{o}, not \neg b$
$h \leftarrow \textit{not} p$	$h \leftarrow \textit{not } p^o$	$h^{o} \leftarrow not \ p, not \ \neg h$
$p \leftarrow \textit{not} b$	$p \leftarrow \textit{not} \ b^o$	$p^o \leftarrow not \ b, \frac{not \ \neg p}{}$
$b \leftarrow$	$b \leftarrow$	$b^o \leftarrow \frac{not \neg b}{}$
$ eg h \leftarrow$	$ eg h \leftarrow$	$\neg h^o \leftarrow \textit{not } h$

Assumable set of hypotheses, Hyps(P) = {p}: not p^o appears in bP^{t-o} and p is not a fact.

Computing MH_P Models: an example (2/2)

• *MH*_P models of *P*:

$$M_{1} = \langle \{b, h, \neg h\}^{+}, \{\}^{u}, \{\neg b, h, \neg h, p, \neg p\}^{-} \rangle$$

with hypotheses set $H = \emptyset$
$$M_{2} = \langle \{b, p, \neg h\}^{+}, \{\}^{u}, \{h, \neg b, \neg p\}^{-} \rangle$$

with hypotheses set $H = \{p\}$

- *M*₁ is *default inconsistent* (e.g. *h* and *not h* belong to *M*₁).
- *M*₂ is *consistent*: is a solution to this variant of the **holiday problem**.

Conclusion

- *MH*_P is a total models paraconsistent semantics that **solves any** extended normal logic program.
- *MH_P* models detect dependency on contradiction: objective literals *L* that are dependent on contradiction exhibit **default inconsistency, i.e. both** *L* **and** *notL* **are in the model**.
- Computing a MH_P model is a Σ_2^P task.
- Belief revision, or contradiction removal is treated elsewhere, in MA's forthcoming PhD thesis.

THANKS!