
Towards a Verification Framework for Haskell by
Combining Graph Transformation Units and SAT

Solving

Marcus Ermler

University of Bremen, Department for Mathematics and Computer Science

WFLP 2013, September 11, 2013

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 1

Motivation

Aim: Application of graph transformation for the verification of
Haskell programs via structural induction.

Questions:

1. Is graph transformation a useful approach in this context?

2. How to tackle the nondeterminism of function equation
application in automatic verification?

Answers:

1. graph transformation has been successfully applied to term
rewriting (term graph rewriting/CLEAN/SPARKLE)

2. heuristics, exhaustive search, parallelization, SAT solving

⇒ We use graph transformation units and SAT solving to verify
Haskell programs.

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 2

Considering a small subset of Haskell

predefined data types like Int, Char, String, Lists

functions defined by functions equations without guards or
local definitions

higher order functions

in preparation: lambda abstractions, control structures,
self-defined data types

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 3

Translating Haskell programs into Trees

edge labeled directed graphs without multiple edges and with
a finite set of typed node. For a finite set Σ of labels and a
set T of types: G = (V ,E , t) where V = {1, . . . , n} = [n],
E ⊆ V × Σ× V , and t : V → T .

rectangles for function names; outermost function name is the
root; circles for constants and variables (leafs)

outgoing edges are labeled with argument positions

Example: length ([] ++ ys) is expressed via

++

length

[] ys

1

1 2 or
++ 2

length 1

[]
3

ys
4

1

1

2

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 4

Graph transformational rules

rule r = (L→ R): left-hand side L and right-hand side R

translation of Haskell function equations l = r into rules:
tree(l)→ tree(r)

for technical reasons: only edge addition and deletion, node
addition and deletion is realized via a simple trick
⇒ in drawings: node labels instead of labeled loops

Example: The function equation [] ++ ys = ys (denoted by
(++)1) is translated into

++ 1

[]
2

ys
3
−→

ys 1

del
2

del
3

1

2
1

2
or

++

[]

ys −→ ys

1

2

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 5

Rule application and derivations

injective graph morphisms for matching of subgraphs
(structure-, label-, and type-preserving morphisms)

application of a rule: find a match of g(L) in a graph G ,
delete the edges of g(L), and add the edges of g(R)

Example: mapping g = {1 7→ 2, 2 7→ 3, 3 7→ 4} for (++)1

length 1

++ 2

[]
3

: 4

x
5

xs
6

=⇒
(++)1

length 1

: 4

x
5

xs
6

1

1 2

1 2

1

1 2

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 6

Graph transformation units

graph transformation units: gtu = (I ,P,C ,T) where I and T
are graph class expressions, R is a set of rules, and C is a
control condition

graph class expressions: for example, the class of all
undirected graphs, also single graphs allowed

control conditions: guide the rule application, restrict the
nondeterminism of units; we use regular expressions

Semantics of gtu = (I ,P,C ,T): all derivations from initial to
terminal graphs that are allowed by the control condition
⇒ such derivations are called successful

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 7

From graphs to SAT

graphs in derivation steps are represented via variables for their
edges: E (n,m) = {edge(v , a, v ′, k) | (v , a, v ′) ∈ [n]× Σ× [n],
k ∈ [m]} where n is the graph size and m the maximum
derivation step

single graph in the kth derivation step expressed via edges
that are in the graph and edges that are not in the graph

graph(G, k) =
∧

(v ,a,v ′)∈EG

edge(v , a, v ′, k) ∧

∧
(v ,a,v ′)∈([n]×Σ×[n])−EG

¬edge(v , a, v ′, k).

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 8

From graph rewriting to SAT

rule application is expressed via five formulas: morph, rem,
add, keep, and apply

The matching of a rule r in a graph Gk−1 with respect to a
mapping g is expressed via:
morph(r, g, k) = morph(r , g , k)↔

∧
(v,a,v′)∈EL

edge(g(v), a, g(v ′), k − 1),

further formulas for derivation steps, single derivations, and all
derivations up to a certain bound

morph, rem, add, keep, and apply can be converted in at most
quadratic time to CNF, all other formulas are already in CNF

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 9

Proving properties via graph transformation (1)

Hypothesis is given as list property: p(xs) = (l(xs)=r(xs))

Definition

Let p(xs) = (l(xs)=r(xs)) be a list property with induction
variable xs and let P be a set of graph transformational rules
representing Haskell function equations. Then the base case unit
and the inductive step unit are defined as follows.

base(p([])) = (tree(l([])),P,P∗, tree(r([])))

step(p(x:xs)) = (tree(l(x:xs)),Pstep,Cstep, tree(r(x:xs)))
where

hyp1 = (tree(l(xs))→ tree(r(xs))),
hyp2 = (tree(r(xs))→ tree(l(xs))),
Pstep = P ∪ {hyp1, hyp2}, and
Cstep = P∗ ; (hyp1 | hyp2) ; P∗.

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 10

Proving properties via graph transformation (2)

Theorem

Let p(xs) be a property, base(p([])) be a base case unit, and
step(p(x:xs)) be an inductive step unit. If there is a successful
derivation in base(p([])) as well as in step(p(x:xs)), then the
property holds.

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 11

Example: a length property

Hypothesis: length (xs ++ ys) = length xs + length ys

for all lists xs and ys.

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 12

Base case unit

Base case: length ([] ++ ys) = length [] + length ys

base
initial: tree(length ([] ++ ys))

rules: tree([] ++ xs)→ tree(xs) [(++)1]
tree(0)→ tree(length []) [length′1]
tree(x)→ tree(0 + x) [identityadd]

cond.:
(
(++)1 | length′1 | identityadd

)∗
terminal: tree(length [] + length ys)

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 13

A sample derivation for proving the base case

Ibase = tree(length ([] ++ ys))

=

length

++

[] ys

(++)1
=⇒

length

ys

identityadd=⇒

+

0 length

ys

length′1=⇒

+

length

[]

length

ys

= tree(length [] + length ys)) = Tbase

1

1 2
1

1 2

1

1

1

2

1

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 14

Inductive step unit

Inductive step: length (x:xs ++ ys) = length (x:xs) +

length ys, x::a

initial: tree(length (x:xs ++ ys))

rules: tree(x:xs ++ ys)→ tree(x:(xs++ys)) [(++)2]
tree(length (x:xs)) [length2
←→ tree(1 + length xs) + length′2]

tree(x + (y + z))→ tree((x + y) + z) [assocadd]
hypothesis

cond.:
(
(++)2 | length2 | length′2 | assocadd

)∗
; hypothesis

;
(
(++)2 | length2 | length′2 | assocadd

)∗
terminal: tree(length x:xs + length ys)

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 15

Hypothesis

Hypothesis: length (xs ++ ys) = length xs + length ys

for all lists xs and ys.

⇒ the hypothesis-rule:

length

++

xs ys

−→

+

length length

xs ys

1

1 2

1 2

1 1

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 16

A sample derivation for the inductive step

length

Istep = ++

:

x xs

ys

(++)2 length2
=⇒

+

1 length

++

xs ys

hypothesis
=⇒

+

1 +

length

xs

length

ys

assocadd length2
=⇒

+

length

:

x xs

length = Tstep

ys

1

1 2

1 2

1 2

1 2
1

1

1 2

2

1

1

1 2

1

1

2

1

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 17

Experiments

Lemmata1:

1. length (xs ++ ys) = length xs + length ys

2. xs ++ (ys ++ zs) = (xs ++ ys) ++ zs

3. xs ++ [] = xs

4. [] ++ (xs ++ []) = xs

Lemma Strategy Base case Inductive step

1. induction 8 sec 90 sec
2. induction 0.3 sec 17 sec
3. induction 1 sec 1 sec
4. direct proof 0 sec

1tested under Ubuntu 10.04 LTS on an AMD 2.0 GHz with 4GB RAM where
lemma 4 is proven by a direct proof via lemma 3.

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 18

Summary

graph transformational approach for structural induction
proofs

experiments nurture the hope that our approach can be
employed for verification proofs

Outlook:

more Haskell features step-by-step or via preprocessing
described in Giesl et al., Automated termination proofs for
Haskell by term rewriting, 2011

automatic translation of functional programs into rules and
units (in preparation)

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 19

Questions?

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 20

Previous work

translation of graph transformational derivation process into
propositional formulas (presented on ICGT 2010)

introducing SATaGraT (SAT solver assists Graph
Transformation Engine) on AGTIVE 2011

using SAT solving to find a successful derivation

applied on NP-complete graph problems

bottleneck: conversion into conjunctive normal form

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 21

Simple graph transformation unit

Very simple example:

length

++

[] :

x xs

=⇒
(++)1

length

:

x xs

1

1 2

1 2

1

1 2

I = tree(length ([] ++ x:xs))

P = {(++)1}
C = (++)1

T = tree(length (x:xs))

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 22

From graph rewriting to SAT (1)

The application of a rule r to a graph Gk−1 with respect to a
mapping g is expressed via

matching:
morph(r, g, k) = morph(r , g , k)↔

∧
(v,a,v′)∈EL

edge(g(v), a, g(v ′), k − 1),

edge deletion:
rem(r, g, k) = rem(r , g , k)↔

∧
(v,a,v′)∈EL−ER

¬edge(g(v), a, g(v ′), k),

edge addition:
add(r, g, k) = add(r , g , k)↔

∧
(v,a,v′)∈ER

edge(g(v), a, g(v ′), k),

kept edges:
keep(r, g, k) = keep(r , g , k)↔

(∧
(v,a,v′) 6∈g(EL∪ER)

(
edge(v , a, v ′, k − 1)

↔ edge(v , a, v ′, k)
))

where g(EL ∪ ER) = {(g(v), a, g(v ′)) | (v , a, v ′),∈ EL ∪ ER}
Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 23

From graph rewriting to SAT (2)

whole application of a rule r to Gk−1 with respect to graph
morphism g is described by

apply(r, g, k) = apply(r , g , k)↔
(
morph(r , g , k) ∧ rem(r , g , k) ∧ add(r , g , k)

∧keep(r , g , k)
)

Theorem

Gk−1 =⇒
r ,g

Gk if and only if it there is a satisfying assignment to

graph(Gk−1, k− 1) ∧ apply(r, g, k) ∧ graph(Gk, k).

further formulas for derivation steps, single derivations, and all
derivations up to a certain bound

morph, rem, add, keep, and apply can be converted in at most
quadratic time to CNF, all other formulas are already in CNF

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 24

