Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

Marcus Ermler

University of Bremen, Department for Mathematics and Computer Science

WFLP 2013, September 11, 2013

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Motivation

<u>Aim</u>: Application of graph transformation for the verification of Haskell programs via structural induction.

Questions:

- 1. Is graph transformation a useful approach in this context?
- 2. How to tackle the nondeterminism of function equation application in automatic verification?

Answers:

- 1. graph transformation has been successfully applied to term rewriting (term graph rewriting/CLEAN/SPARKLE)
- 2. heuristics, exhaustive search, parallelization, SAT solving

 \Rightarrow We use graph transformation units and SAT solving to verify Haskell programs.

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

(ロ)、(四)、(E)、(E)、(E)

- predefined data types like Int, Char, String, Lists
- functions defined by functions equations without guards or local definitions
- higher order functions
- in preparation: lambda abstractions, control structures, self-defined data types

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ つ へ ()・

Translating Haskell programs into Trees

- edge labeled directed graphs without multiple edges and with a finite set of typed node. For a finite set Σ of labels and a set \mathcal{T} of types: G = (V, E, t) where $V = \{1, \ldots, n\} = [n]$, $E \subseteq V \times \Sigma \times V$, and $t: V \to \mathcal{T}$.
- rectangles for function names; outermost function name is the root; circles for constants and variables (leafs)
- outgoing edges are labeled with argument positions

Example: length ([] ++ ys) is expressed via

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

Graph transformational rules

- **rule** $r = (L \rightarrow R)$: left-hand side L and right-hand side R
- translation of Haskell function equations l = r into rules: $tree(I) \rightarrow tree(r)$
- for technical reasons: only edge addition and deletion, node addition and deletion is realized via a simple trick \Rightarrow in drawings: node labels instead of labeled loops

Example: The function equation [] ++ ys = ys (denoted by $(++)_1$) is translated into

Rule application and derivations

- injective graph morphisms for matching of subgraphs (structure-, label-, and type-preserving morphisms)
- application of a rule: find a match of g(L) in a graph G, delete the edges of g(L), and add the edges of g(R)

Example: mapping $g = \{1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 4\}$ for $(++)_1$

Graph transformation units

- **graph transformation units**: gtu = (I, P, C, T) where I and T are graph class expressions, R is a set of rules, and C is a control condition
- graph class expressions: for example, the class of all undirected graphs, also single graphs allowed
- control conditions: guide the rule application, restrict the nondeterminism of units; we use regular expressions
- Semantics of gtu = (I, P, C, T): all derivations from initial to terminal graphs that are allowed by the control condition \Rightarrow such derivations are called *successful*

From graphs to SAT

- graphs in derivation steps are represented via variables for their edges: $E(n, m) = \{edge(v, a, v', k) \mid (v, a, v') \in [n] \times \Sigma \times [n], k \in [m]\}$ where *n* is the graph size and *m* the maximum derivation step
- single graph in the kth derivation step expressed via edges that are in the graph and edges that are not in the graph

$$graph(G, k) = \bigwedge_{\substack{(v, a, v') \in E_G}} edge(v, a, v', k) \land$$
$$\bigwedge_{\substack{(v, a, v') \in ([n] \times \Sigma \times [n]) - E_G}} \neg edge(v, a, v', k).$$

・ロ・・母・・ヨ・・ヨ・ りゃぐ

From graph rewriting to SAT

rule application is expressed via five formulas: morph, rem, add, keep, and apply

• The matching of a rule r in a graph G_{k-1} with respect to a mapping g is expressed via: $morph(r, g, k) = morph(r, g, k) \leftrightarrow \bigwedge_{(v, a, v') \in E_l} edge(g(v), a, g(v'), k-1),$

- further formulas for derivation steps, single derivations, and all derivations up to a certain bound
- morph, rem, add, keep, and apply can be converted in at most quadratic time to CNF, all other formulas are already in CNF

Proving properties via graph transformation (1)

Hypothesis is given as list property: p(xs) = (l(xs)=r(xs))

Definition

Let p(xs) = (1(xs)=r(xs)) be a list property with induction variable xs and let P be a set of graph transformational rules representing Haskell function equations. Then the base case unit and the inductive step unit are defined as follows.

- $base(p([])) = (tree(l([])), P, P^*, tree(r([])))$
- $step(p(x:xs)) = (tree(l(x:xs)), P_{step}, C_{step}, tree(r(x:xs)))$ where

$$\begin{aligned} hyp_1 &= (tree(l(xs)) \rightarrow tree(r(xs))), \\ hyp_2 &= (tree(r(xs)) \rightarrow tree(l(xs))), \\ P_{step} &= P \cup \{hyp_1, hyp_2\}, \text{ and} \\ C_{step} &= P^* ; (hyp_1 \mid hyp_2) ; P^*. \end{aligned}$$

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

(ロ) (同) (三) (三) (三) (1)

Proving properties via graph transformation (2)

Theorem

Let p(xs) be a property, base(p([])) be a base case unit, and step(p(x:xs)) be an inductive step unit. If there is a successful derivation in base(p([])) as well as in step(p(x:xs)), then the property holds.

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

$\frac{\text{Hypothesis:}}{\text{for all lists xs and ys.}} = \text{length xs + length ys}$

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Base case: length ([] ++ ys) = length [] + length ys base initial: tree(length ([] ++ vs)) rules: $tree([] ++ xs) \rightarrow tree(xs) [(++)_1]$ $tree(0) \rightarrow tree(length []) [length'_1]$ $tree(x) \rightarrow tree(0 + x)$ [identity_{add}] $((++)_1 \mid length'_1 \mid identity_{add})^*$ cond.: terminal: *tree*(length [] + length ys)

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

◆□ → ◆□ → ◆三 → ◆三 → ○ ◆ ◎ ◆

A sample derivation for proving the base case

 $I_{base} = tree(length ([] ++ ys))$

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

■▶ ■ のへの

Inductive step: length (x:xs ++ ys) = length (x:xs) + length ys, x::a

$$\begin{array}{ll} \text{rules:} & tree(\texttt{x:xs} ++\texttt{ys}) \to tree(\texttt{x:(xs++ys)}) & [(++)_2] \\ & tree(\texttt{length} (\texttt{x:xs})) & [length_2 \\ & \stackrel{\leftarrow}{\to} tree(\texttt{l} + \texttt{length} \texttt{xs}) & + \ length_2'] \\ & tree(\texttt{x} + (\texttt{y} + \texttt{z})) \to tree((\texttt{x} + \texttt{y}) + \texttt{z}) & [assoc_{add}] \\ & hypothesis \end{array}$$

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

くしゃ (中)・(中)・(中)・(日)

 $\frac{\text{Hypothesis:}}{\text{for all lists xs and ys.}} = \text{length xs + length ys}$

 \Rightarrow the *hypothesis*-rule:

・ロト ・ 同ト ・ ヨト

A sample derivation for the inductive step

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

Experiments

Lemmata¹:

2.
$$xs ++ (ys ++ zs) = (xs ++ ys) ++ zs$$

4. [] ++
$$(xs ++ []) = xs$$

Lemma	Strategy	Base case	Inductive step
1.	induction	8 sec	90 sec
2.	induction	0.3 sec	17 sec
3.	induction	1 sec	1 sec
4.	direct proof	0 sec	

¹tested under Ubuntu 10.04 LTS on an AMD 2.0 GHz with 4GB RAM where lemma 4 is proven by a direct proof via lemma 3. Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

18

Summary

- graph transformational approach for structural induction proofs
- experiments nurture the hope that our approach can be employed for verification proofs

<u>Outlook:</u>

- more Haskell features step-by-step or via preprocessing described in Giesl et al., Automated termination proofs for Haskell by term rewriting, 2011
- automatic translation of functional programs into rules and units (in preparation)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへで

Questions?

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Previous work

- translation of graph transformational derivation process into propositional formulas (presented on ICGT 2010)
- introducing SATaGraT (SAT solver assists Graph Transformation Engine) on AGTIVE 2011
- using SAT solving to find a successful derivation
- applied on NP-complete graph problems
- bottleneck: conversion into conjunctive normal form

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Simple graph transformation unit

Very simple example:

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

From graph rewriting to SAT (1)

The application of a rule r to a graph G_{k-1} with respect to a mapping g is expressed via

matching:

 $\mathsf{morph}(\mathsf{r},\mathsf{g},\mathsf{k}) = \mathit{morph}(\mathsf{r},\mathsf{g},\mathsf{k}) \leftrightarrow \bigwedge_{(\mathsf{v},\mathsf{a},\mathsf{v}')\in \mathsf{E}_L} \mathit{edge}(\mathsf{g}(\mathsf{v}),\mathsf{a},\mathsf{g}(\mathsf{v}'),\mathsf{k}-1),$

edge deletion:

$$\operatorname{rem}(\mathsf{r},\mathsf{g},\mathsf{k}) = \operatorname{rem}(\mathsf{r},\mathsf{g},\mathsf{k}) \leftrightarrow \bigwedge_{(\mathsf{v},\mathsf{a},\mathsf{v}')\in \mathsf{E}_L - \mathsf{E}_R} \neg \operatorname{edge}(\mathsf{g}(\mathsf{v}),\mathsf{a},\mathsf{g}(\mathsf{v}'),\mathsf{k}),$$

edge addition:

$$\operatorname{add}(\mathsf{r},\mathsf{g},\mathsf{k}) = \operatorname{add}(\mathsf{r},\mathsf{g},\mathsf{k}) \leftrightarrow \bigwedge_{(\mathsf{v},\mathsf{a},\mathsf{v}')\in \mathsf{E}_R} \operatorname{edge}(\mathsf{g}(\mathsf{v}),\mathsf{a},\mathsf{g}(\mathsf{v}'),\mathsf{k}),$$

$$keep(\mathbf{r}, \mathbf{g}, \mathbf{k}) = keep(\mathbf{r}, \mathbf{g}, \mathbf{k}) \leftrightarrow \left(\bigwedge_{(\mathbf{v}, a, \mathbf{v}') \notin g(E_L \cup E_R)} \left(edge(\mathbf{v}, a, \mathbf{v}', \mathbf{k} - 1) \right. \\ \left. \leftrightarrow edge(\mathbf{v}, a, \mathbf{v}', \mathbf{k})\right) \right)$$

where $g(E_L \cup E_R) = \{(g(v), a, g(v')) \mid (v, a, v'), \in E_L \cup E_R\}$

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

From graph rewriting to SAT (2)

whole application of a rule r to G_{k-1} with respect to graph morphism g is described by

$$\begin{aligned} \mathsf{apply}(\mathsf{r},\mathsf{g},\mathsf{k}) &= \mathsf{apply}(\mathsf{r},\mathsf{g},\mathsf{k}) \leftrightarrow \Big(\mathsf{morph}(\mathsf{r},\mathsf{g},\mathsf{k}) \wedge \mathsf{rem}(\mathsf{r},\mathsf{g},\mathsf{k}) \wedge \mathsf{add}(\mathsf{r},\mathsf{g},\mathsf{k}) \\ & \wedge \mathsf{keep}(\mathsf{r},\mathsf{g},\mathsf{k}) \Big) \end{aligned}$$

Theorem

 $G_{k-1} \xrightarrow[r,g]{} G_k$ if and only if it there is a satisfying assignment to graph $(G_{k-1}, k-1) \land apply(r, g, k) \land graph(G_k, k).$

- further formulas for derivation steps, single derivations, and all derivations up to a certain bound
- morph, rem, add, keep, and apply can be converted in at most quadratic time to CNF, all other formulas are already in CNF

▲ 臣 ▶ 臣 • • • • •