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Motivation

Main motivation: Tool support in graph rewriting

Aim: A tool for graph rewriting and verification

Questions:

1. How to tackle the nondeterminism of graph rewriting,
especially in case of NP-complete graph problems?

2. What could be a useful programming language in this context?

Answers:

1. heuristics, exhaustive search, parallelization, SAT solving
⇒ chip design, term rewriting, UML/OCL models

2. Java, C++, Python, Haskell
⇒ formulas, graphs, and rules are near to their mathematical
description
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Tool history

translation of graph transformational derivation process into
propositional formulas (presented on ICGT 2010)

first implementation in the author’s diploma thesis (2010)

introducing SATaGraT (SAT solver assists Graph
Transformation Engine) on AGTIVE 2011

today: three processing steps, verification of WFLP2013a,
first steps to translations into CSP and SMT, more examples
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SATaGraT - main components

Graph rewriting: Modules for graphs, graph morphisms, rules,
control conditions, and graph transformation units

Propositional formulas: Three different translations

– ICGT 2010
– AGTIVE 2011
– WFLP 2013

plus first steps for translations into CSP and SMT

Solvers: SAT solvers MiniSat, Limboole, and Funsat; CSP
solver Sugar; SMT solver Yices

Verification: existentially quantified graph properties and all
quantified properties over terms

Examples: Hamiltonian path problem, job-shop scheduling, . . .
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Graphs

edge labeled directed graphs without multiple edges and with
a finite node set over a set Σ of labels: G = (V ,E ) where
V = {1, . . . , n} = [n] and E ⊆ V × Σ× V

injective graph morphisms g : G → H for matching of
subgraphs (structure- and label-preserving)
⇒ these morphisms are injective mappings between the node
sets of G and H: gV : VG → VH
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Rule application

r = (L→ R) where VL = VR (no node addition or deletion)

rule application to a graph G : find a match g(L) in G . If g(L)
is found, delete the edges of g(L) and add the edges of g(R).

rule application: G =⇒
r ,g

H

remEdge = 1
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Derivation

d = G0 =⇒
r1,g1

G1 =⇒
r2,g2

· · ·=⇒
rn,gn

Gn is called a derivation

G0
∗

=⇒
P

Gn
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Graph transformation units

graph transformation units: gtu = (I ,P,C ,T ) where I and T
are graph class expressions, R is a set of rules, and C is a
control condition

graph class expressions: for example, the class of all
undirected graphs, also single graphs allowed

control conditions: guide the rule application, restrict the
nondeterminism of units; we use regular expressions

Semantics of gtu = (I ,P,C ,T ): all derivations from initial to
terminal graphs that are allowed by the control condition
⇒ such derivations are called successful
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Graph rewriting for graph problems

VertexCover(k)
initial: unlabeled&undirected&∅− loops
rules:

choose : 1 ∅ −→ 1 member

remEdges : 1

member

2 −→ 1

member

2

cond.: choosek ; remEdges∗

terminal: no edges&(member | ∅)− loops
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Derivation revisited
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From graphs to SAT

graphs in derivation steps are represented via variables for their
edges: E (n,m) = {edge(v , a, v ′, k) | (v , a, v ′) ∈ [n]× Σ× [n],
k ∈ [m]} where n is the graph size and m the maximum
derivation step

Theorem

Let p be a formula over E (n,m) and f a satisfying assignment to
p. Then f (p) represents a sequence of graphs G1, . . . ,Gm such that
Gk contains (v , a, v ′) if and only if f (edge(v , a, v ′, k)) = TRUE.

single graph in the kth derivation step expressed via edges
that are in the graph and edges that are not in the graph

graph(G)(k) =
∧

(v,a,v′)∈EG

edge(v , a, v ′, k)∧
∧

(v,a,v′)∈([n]×Σ×[n])−EG

¬edge(v , a, v ′, k).
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From graph rewriting to SAT (1)

The application of a rule r to a graph Gk−1 with respect to a
mapping g is expressed via

matching: morph(r, g, k) =
∧

(v,a,v′)∈EL
edge(g(v), a, g(v ′), k − 1),

edge deletion: rem(r, g, k) =
∧

(v,a,v′)∈EL−ER

¬edge(g(v), a, g(v ′), k),

edge addition: add(r, g, k) =
∧

(v,a,v′)∈ER
edge(g(v), a, g(v ′), k),

kept edges:
keep(r, g, k) =

∧
(v,a,v′) 6∈g(EL∪ER )

(
edge(v , a, v ′, k − 1)↔ edge(v , a, v ′, k)

)
where g(EL ∪ ER) = {(g(v), a, g(v ′)) | (v , a, v ′),∈ EL ∪ ER}
⇒ the assignment to variables of kept edges remains
unchanged from Gk−1 to Gk
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From graph rewriting to SAT (2)

whole rule application:
apply(r, g, k) = morph(r, g, k)∧rem(r, g, k)∧add(r, g, k)∧keep(r, g, k)

Theorem

Gk−1 =⇒
r ,g

Gk if and only if there is a satisfying assignment to the

formula graph(Gk−1)(k− 1) ∧ apply(r, g, k) ∧ graph(Gk)(k).

further formulas for derivation steps, single derivations, and all
derivations up to a certain bound
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From graph rewriting to SAT (3)
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is yielded by a satisfying assignment to:
graph(G0)(0) ∧ apply(choose, {1 7→ 4}, 1) ∧ apply(choose, {1 7→ 2}, 2) ∧
apply(remEdge, {1 7→ 4, 2 7→ 3}, 3) ∧ apply(remEdge, {1 7→ 2, 2 7→ 1}, 4) ∧
apply(remEdge, {1 7→ 2, 2 7→ 3}, 5) ∧ apply(remEdge, {1 7→ 4, 2 7→ 2}, 6).
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SATaGraT - preprocessing

L(C )(p(n)) denotes the language resulting from a control
condition C with the restriction to a word length of p(n)

each r1 · · · rn ∈ L(C )(p(n)) describes a sequence of rule
applications from initial to terminal graphs.
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SATaGraT - processing

generates a formula in CNF

MiniSat is a powerful, competitive, and award-wining SAT
solver (http://www.satcompetition.org/)

this process runs as long as no solution is found or alle
possible rule sequenes are processed

a satisfying assignment states a successful derivation
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SATaGraT - postprocessing (1)

derivation is extracted from the variable assignment

GrGen.NET is used for visualization

additional informations on console
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SATaGraT - postprocessing (2)
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Experiments: vertex cover problem

|V | |E | k VC? SATaGraT 2011 SATaGraT 2012

7 8 2 no 5 5
9 12 2 no 30 32

11 14 4 yes 96 34.5
13 20 3 yes 366 112
13 18 3 no 357 456
15 24 3 yes > 3600 438

SATaGraT 2011 is based on ICGT 2010 and AGTIVE 2011

SATaGraT 2012 is based on formulas of WFLP 2013
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What about verification?

SATaGraT can be used to verify properties like

Is the graph Eulerian?

Is there a vertex cover of size k?

Is there a feasible schedule with a makespan of at most l for a
job-shop instance?

length (xs ++ ys)
?
= length xs + length ys

map f xs ++ map f ys
?
= map f (xs ++ ys)

We can verify existentially quantified properties over graphs and
existentially or all quantified properties over terms.

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 20



Conclusion and Outlook

SATaGraT is a SAT-based tool for graph rewriting and
verification

verification of existentially quantified graph properties and all
quantified properties over terms

Qutlook:

graphical user interface for input of graph transformation
units and the final visualization

proving all quantified properties over graphs

termination and non-termination proofs for graph and term
rewriting
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