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Background

◮ Answer set programming (ASP) features a rule-based

syntax subject to answer-set semantics.

Problem
Solve
−−−→ Solution(s)

Formalize ↓ ↑ Extract

Set of rules
Ground & Search
−−−−−−−−−−−→ Answer set(s)
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Background

◮ Answer set programming (ASP) features a rule-based

syntax subject to answer-set semantics.

Problem
Solve
−−−→ Solution(s)

Formalize ↓ ↑ Extract

Set of rules
Ground & Search
−−−−−−−−−−−→ Answer set(s)

◮ One viable way to implement ASP is to translate programs
into SAT and its extensions in the SMT framework:

— Pure SAT [Janhunen, ECAI, 2004]

— Difference logic [Niemelä, AMAI, 2008]
— Bit-vector logic [Nguyen et al., INAP, 2011]

— Mixed integer programming [Liu et al., KR, 2012]
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ASP and Linear Constraints

◮ It is also possible to enrich the language of ASP using
linear constraints as additional primitives:

— Integrating ASP and CLP [Mellarkod et al., AMAI, 2008]

— Constraint ASP [Gebser et al., ICLP, 2009]

— ASP(LC) programs [Liu et al., KR, 2012]

e(I)− s(I) ≥ D ← task(I,E ,D).
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◮ The answer sets of an ASP(LC) program can be computed
in three steps:
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2. The resulting linear program is solved using a MIP solver.

3. Answer sets are recovered from the solutions found (if any).
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ASP and Linear Constraints

◮ It is also possible to enrich the language of ASP using
linear constraints as additional primitives:

— Integrating ASP and CLP [Mellarkod et al., AMAI, 2008]

— Constraint ASP [Gebser et al., ICLP, 2009]

— ASP(LC) programs [Liu et al., KR, 2012]

e(I)− s(I) ≥ D ← task(I,E ,D).

◮ The answer sets of an ASP(LC) program can be computed
in three steps:

1. All rules are translated into linear constraints.
2. The resulting linear program is solved using a MIP solver.

3. Answer sets are recovered from the solutions found (if any).

◮ A proof of concept implementation is available under

http://researh.is.aalto.fi/software/asp/mingo/

http://research.ics.aalto.fi/software/asp/mingo/
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Objectives

◮ The goal of this paper is to study how real variables could

be incorporated into ASP(LC) programs.

◮ The introduction of real-valued variables is non-trivial:

1. Strict constraints over reals are not fully supported by

contemporary MIP solvers.
2. In the strict setting, the existence of optimal solutions is not

guaranteed even if all variables are bounded.

3. Numerical instability may result due to coefficients used.
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Objectives

◮ The goal of this paper is to study how real variables could

be incorporated into ASP(LC) programs.

◮ The introduction of real-valued variables is non-trivial:

1. Strict constraints over reals are not fully supported by

contemporary MIP solvers.
2. In the strict setting, the existence of optimal solutions is not

guaranteed even if all variables are bounded.

3. Numerical instability may result due to coefficients used.

Example

The completion of {a← x ≤ 1} is effectively a↔ x ≤ 1:

◮ Then ¬a implies x > 1.

◮ What if f (x) = x is additionally minimized?
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1. PRELIMINARIES

◮ A linear constraint is an expression of the form
∑n

i=1 uixi ∼ k

where
◮ the ui ’s and k are real numbers,
◮ the xi ’s are variables ranging over real numbers, and
◮ the operator ∼ is one of ≤, ≥, <, and >.
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1. PRELIMINARIES

◮ A linear constraint is an expression of the form
∑n

i=1 uixi ∼ k

where
◮ the ui ’s and k are real numbers,
◮ the xi ’s are variables ranging over real numbers, and
◮ the operator ∼ is one of ≤, ≥, <, and >.

◮ A mixed integer program (a MIP program) has the form

minimize/maximize

∑n
i=1 uixi

subjet to C1, ...,Cm.

where the Ci ’s are linear constraints.



INAP’13, September 11, 2013

12/51

ASP(LC) Programs

◮ An ASP(LC) program has extended normal rules of form

a← b1, . . . ,bn,not c1, . . . ,not cm, t1, . . . , tl

where each theory atom ti is a linear constraint.
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a← b1, . . . ,bn,not c1, . . . ,not cm, t1, . . . , tl

where each theory atom ti is a linear constraint.

◮ The reduct of an ASP(LC) program P with respect to an

interpretation 〈M,T 〉 such that T ∪ T̄ is satisfiable:

P〈M,T 〉 = {H(r)← B+(r) | r ∈ P,

H(r) 6= ∅, B−(r) ∩M = ∅, and Bt(r) ⊆ T}.
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ASP(LC) Programs

◮ An ASP(LC) program has extended normal rules of form

a← b1, . . . ,bn,not c1, . . . ,not cm, t1, . . . , tl

where each theory atom ti is a linear constraint.

◮ The reduct of an ASP(LC) program P with respect to an

interpretation 〈M,T 〉 such that T ∪ T̄ is satisfiable:

P〈M,T 〉 = {H(r)← B+(r) | r ∈ P,

H(r) 6= ∅, B−(r) ∩M = ∅, and Bt(r) ⊆ T}.

◮ Given an ASP(LC) program P, an answer set 〈M,T 〉
satisfies P such that M is a ⊆-minimal model of P〈M,T 〉.
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Example

Consider the following ASP(LC) program P:

a← x − y ≤ 2. b ← x − y ≥ 5. ← x − y ≥ 0.



INAP’13, September 11, 2013

16/51

Example

Consider the following ASP(LC) program P:

a← x − y ≤ 2. b ← x − y ≥ 5. ← x − y ≥ 0.

1. I1 = 〈{a}, {x − y ≤ 2}〉 ∈ AS(P) since
◮ {(x − y ≤ 2),¬(x − y ≥ 5),¬(x − y ≥ 0)} is satisfiable,
◮ I1 |= P, and
◮ {a} is the minimal model of P I1 = {a← .}.
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Example

Consider the following ASP(LC) program P:

a← x − y ≤ 2. b ← x − y ≥ 5. ← x − y ≥ 0.

1. I1 = 〈{a}, {x − y ≤ 2}〉 ∈ AS(P) since
◮ {(x − y ≤ 2),¬(x − y ≥ 5),¬(x − y ≥ 0)} is satisfiable,
◮ I1 |= P, and
◮ {a} is the minimal model of P I1 = {a← .}.

2. I2 = 〈{b}, {x − y ≥ 5}〉 6∈ AS(P) since

{(x − y ≥ 5),¬(x − y ≤ 2),¬(x − y ≥ 0)} |= ⊥.
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Example

Consider the following ASP(LC) program P:

a← x − y ≤ 2. b ← x − y ≥ 5. ← x − y ≥ 0.

1. I1 = 〈{a}, {x − y ≤ 2}〉 ∈ AS(P) since
◮ {(x − y ≤ 2),¬(x − y ≥ 5),¬(x − y ≥ 0)} is satisfiable,
◮ I1 |= P, and
◮ {a} is the minimal model of P I1 = {a← .}.

2. I2 = 〈{b}, {x − y ≥ 5}〉 6∈ AS(P) since

{(x − y ≥ 5),¬(x − y ≤ 2),¬(x − y ≥ 0)} |= ⊥.

3. I3 = 〈∅, {x − y ≥ 0}〉 6∈ AS(P) since I3 6|= P.
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MIP Translation

◮ For simplicity, let us consider simple rules of form a← t .

◮ Consider a definition of the form a← t1, . . . , a← tn.
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MIP Translation

◮ For simplicity, let us consider simple rules of form a← t .

◮ Consider a definition of the form a← t1, . . . , a← tn.

◮ The MIP translation of this definition consists of:

1. For each i ∈ {1, . . . , n}, indicator constraints

di = 1→ ti di = 0→ ¬ti

where d1, . . . , dn act as names for t1, . . . , tn.
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◮ The MIP translation of this definition consists of:

1. For each i ∈ {1, . . . , n}, indicator constraints

di = 1→ ti di = 0→ ¬ti

where d1, . . . , dn act as names for t1, . . . , tn.

2. To satisfy the definition, linear constraints

a− d1 ≥ 0, . . . , a− dk ≥ 0.
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MIP Translation

◮ For simplicity, let us consider simple rules of form a← t .

◮ Consider a definition of the form a← t1, . . . , a← tn.

◮ The MIP translation of this definition consists of:

1. For each i ∈ {1, . . . , n}, indicator constraints

di = 1→ ti di = 0→ ¬ti

where d1, . . . , dn act as names for t1, . . . , tn.

2. To satisfy the definition, linear constraints

a− d1 ≥ 0, . . . , a− dk ≥ 0.

3. For the completion of the definition, linear constraint

d1 + . . .+ dk − a ≥ 0.
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Correspondence

Let ν be an assignment for the MIP translation τ(P) of P.

◮ The ν-induced interpretation of P is IνP = 〈M,T 〉 where

M = {a | a ∈ A(P), ν(a) = 1} and

T = {t | t ∈ T (P), ν |= t}.

◮ The correspondence theorem from [Liu et al., KR, 2012]:

1. If ν is a solution of τ(P), then IνP ∈ AS(P).
2. If I ∈ AS(P), there is a solution ν of τ(P) such that I = IνP .
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Correspondence

Let ν be an assignment for the MIP translation τ(P) of P.

◮ The ν-induced interpretation of P is IνP = 〈M,T 〉 where

M = {a | a ∈ A(P), ν(a) = 1} and

T = {t | t ∈ T (P), ν |= t}.

◮ The correspondence theorem from [Liu et al., KR, 2012]:

1. If ν is a solution of τ(P), then IνP ∈ AS(P).
2. If I ∈ AS(P), there is a solution ν of τ(P) such that I = IνP .

Example
d1 = 1→ x − y ≤ 2, d1 = 0→ x − y > 2, a− d1 = 0,
d2 = 1→ x − y ≥ 5, d2 = 0→ x − y < 5, b − d2 = 0,

d3 = 1→ x − y ≥ 0, d3 = 0→ x − y < 0, d3 = 0.
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Correspondence

Let ν be an assignment for the MIP translation τ(P) of P.

◮ The ν-induced interpretation of P is IνP = 〈M,T 〉 where

M = {a | a ∈ A(P), ν(a) = 1} and

T = {t | t ∈ T (P), ν |= t}.

◮ The correspondence theorem from [Liu et al., KR, 2012]:

1. If ν is a solution of τ(P), then IνP ∈ AS(P).
2. If I ∈ AS(P), there is a solution ν of τ(P) such that I = IνP .

Example
d1 = 1→ x − y ≤ 2, d1 = 0→ x − y > 2, a− d1 = 0,
d2 = 1→ x − y ≥ 5, d2 = 0→ x − y < 5, b − d2 = 0,

d3 = 1→ x − y ≥ 0, d3 = 0→ x − y < 0, d3 = 0.

ν(a) = 1, ν(b) = 0, ν |= x − y ≤ 2 =⇒ 〈{a}, {x − y ≤ 2}〉 ∈ AS(P).
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2. EXTENSION WITH REAL VARIABLES

◮ The MIP translation of ASP(LC) programs brings about

strict constraints involving integer and/or real variables.
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2. EXTENSION WITH REAL VARIABLES

◮ The MIP translation of ASP(LC) programs brings about

strict constraints involving integer and/or real variables.

◮ It is possible to isolate strict relationships: for

1. a set Γ of non-strict constraints,
2. a set S = {x1 > 0, . . . , xn > 0} of strict constraints, and

3. a new variable δ:

Γ ∪ S is satisfiable iff for any bound b > 0,

Γ ∪ Sδ ∪ {0 < δ ≤ b}

with Sδ = {x1 ≥ δ, . . . , xn ≥ δ} is satisfiable.
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2. EXTENSION WITH REAL VARIABLES

◮ The MIP translation of ASP(LC) programs brings about

strict constraints involving integer and/or real variables.

◮ It is possible to isolate strict relationships: for

1. a set Γ of non-strict constraints,
2. a set S = {x1 > 0, . . . , xn > 0} of strict constraints, and

3. a new variable δ:

Γ ∪ S is satisfiable iff for any bound b > 0,

Γ ∪ Sδ ∪ {0 < δ ≤ b}

with Sδ = {x1 ≥ δ, . . . , xn ≥ δ} is satisfiable.

◮ The result is a generalization of a lemma by Dutertre and

de Moura [CAV, 2006] based on rationals (no bound b).
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Non-Strict Translation of Programs

◮ The set S can be replaced by strict indicator constraints.

◮ The idea is to establish δ > 0 indirectly by maximizing δ

subject to Γ ∪ Sδ ∪ {0 ≤ δ ≤ b}.

◮ All strict relationships occurring in the MIP translation τ(P)
can be isolated in indicator constraints.
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Non-Strict Translation of Programs

◮ The set S can be replaced by strict indicator constraints.

◮ The idea is to establish δ > 0 indirectly by maximizing δ

subject to Γ ∪ Sδ ∪ {0 ≤ δ ≤ b}.

◮ All strict relationships occurring in the MIP translation τ(P)
can be isolated in indicator constraints.

Theorem
Let P be an ASP(LC) program that may involve real variables, δ

a new variable, and b > 0 a bound.

1. If ν is a solution of τ(P)b
δ such that ν(δ) > 0, then

IνP ∈ AS(P).

2. If I ∈ AS(P), then there is a solution ν of τ(P)b
δ such that

I = IνP and ν(δ) > 0.
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3. EXTENSION WITH OBJECTIVE FUNCTIONS

◮ Typical ASP languages support objective functions of form

#minimize/maximize [a1 = wa1
, ...,am = wam ,

not b1 = wb1
, ...,not bn = wbn

].

where ai ’s and bi ’s are Booleans with integer weights.
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#minimize/maximize [a1 = wa1
, ...,am = wam ,

not b1 = wb1
, ...,not bn = wbn

].

where ai ’s and bi ’s are Booleans with integer weights.

◮ The MIP translation τ(P) can be conjoined with any integer

objective function if P is free from optimization statements.
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3. EXTENSION WITH OBJECTIVE FUNCTIONS

◮ Typical ASP languages support objective functions of form

#minimize/maximize [a1 = wa1
, ...,am = wam ,

not b1 = wb1
, ...,not bn = wbn

].

where ai ’s and bi ’s are Booleans with integer weights.

◮ The MIP translation τ(P) can be conjoined with any integer

objective function if P is free from optimization statements.

Example

Consider an integer variable x in the following setting:

minimize x . x ≥ 1. x ≤ n.
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Identifying Optimal Answer Sets

Let P be an ASP(LC) program with an objective function f .

◮ An answer set 〈M,T 〉 ∈ AS(P) is optimal iff there is a

solution of T ∪ T̄ that gives the optimal value to f among

the set of valuations

{ν | ν |= T ∪ T̄ for some 〈M,T 〉 ∈ AS(P)}.
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Identifying Optimal Answer Sets

Let P be an ASP(LC) program with an objective function f .

◮ An answer set 〈M,T 〉 ∈ AS(P) is optimal iff there is a

solution of T ∪ T̄ that gives the optimal value to f among

the set of valuations

{ν | ν |= T ∪ T̄ for some 〈M,T 〉 ∈ AS(P)}.

◮ The following result can be established for ASP(LC)

programs involving integer variables only.

Theorem
An answer set 〈M,T 〉 ∈ AS(P) is optimal iff there is a solution

ν |= τ(P) so that IνP = 〈M,T 〉 and ν gives the optimal value to f .
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4. COMPARISON OF ASP(LC) AND MIP

◮ The aim of this part is to study modeling capabilities of
ASP(LC) and pure MIP languages using two problems:

1. Hamiltonian Routing Problem (HRP)

2. Job Shop Problem (JSP)
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◮ The aim of this part is to study modeling capabilities of
ASP(LC) and pure MIP languages using two problems:

1. Hamiltonian Routing Problem (HRP)

2. Job Shop Problem (JSP)

◮ The ASP(LC) language can express non-trivial logical

relationships leading to more intuitive/compact encodings.
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4. COMPARISON OF ASP(LC) AND MIP

◮ The aim of this part is to study modeling capabilities of
ASP(LC) and pure MIP languages using two problems:

1. Hamiltonian Routing Problem (HRP)

2. Job Shop Problem (JSP)

◮ The ASP(LC) language can express non-trivial logical

relationships leading to more intuitive/compact encodings.

◮ Further observations on the relationship:

1. It is difficult to write/maintain τ(P) directly as part of a MIP
program.

2. Any MIP program can be viewed as an ASP(LC) program.
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An ASP(LC) Encoding of HRP

hc(X ,Y )← e(X ,Y ,D), not nhc(X ,Y ).
nhc(X ,Y )← e(X ,Y ,D1), e(X ,Z ,D2), hc(X ,Z ), Y 6= Z .

nhc(X ,Y )← e(X ,Y ,D1), e(Z ,Y ,D2), hc(Z ,Y ), X 6= Z .
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An ASP(LC) Encoding of HRP

hc(X ,Y )← e(X ,Y ,D), not nhc(X ,Y ).
nhc(X ,Y )← e(X ,Y ,D1), e(X ,Z ,D2), hc(X ,Z ), Y 6= Z .

nhc(X ,Y )← e(X ,Y ,D1), e(Z ,Y ,D2), hc(Z ,Y ), X 6= Z .

initial(1).
reach(X )← reach(Y ), hc(Y ,X ), not initial(Y ), e(Y ,X ,D).
reach(X )← hc(Y ,X ), initial(Y ),e(Y ,X ,D).
← v(X ), not reach(X ).
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An ASP(LC) Encoding of HRP

hc(X ,Y )← e(X ,Y ,D), not nhc(X ,Y ).
nhc(X ,Y )← e(X ,Y ,D1), e(X ,Z ,D2), hc(X ,Z ), Y 6= Z .

nhc(X ,Y )← e(X ,Y ,D1), e(Z ,Y ,D2), hc(Z ,Y ), X 6= Z .

initial(1).
reach(X )← reach(Y ), hc(Y ,X ), not initial(Y ), e(Y ,X ,D).
reach(X )← hc(Y ,X ), initial(Y ),e(Y ,X ,D).
← v(X ), not reach(X ).

t(1) = 0.

t(X )− t(Y ) = D ← hc(Y ,X ), e(Y ,X ,D), X 6= 1.

t(X ) ≤ T ← critical(X ,T ).
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A MIP Encoding of HRP

∑
(i ,j ,d)∈E xij = 1 i ∈ V

∑
(j ,i ,d)∈E xji = 1 i ∈ V

1 ≤ pi ≤ n i ∈ V
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A MIP Encoding of HRP

∑
(i ,j ,d)∈E xij = 1 i ∈ V

∑
(j ,i ,d)∈E xji = 1 i ∈ V

1 ≤ pi ≤ n i ∈ V

pi 6= pj i ∈ V , j ∈ V , i 6= j

pj 6= pi + 1 (i , j ,d) 6∈ E , i 6= j

(pi = n)→ (pj ≥ 2) (i , j ,d) 6∈ E , i 6= j
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A MIP Encoding of HRP

∑
(i ,j ,d)∈E xij = 1 i ∈ V

∑
(j ,i ,d)∈E xji = 1 i ∈ V

1 ≤ pi ≤ n i ∈ V

pi 6= pj i ∈ V , j ∈ V , i 6= j

pj 6= pi + 1 (i , j ,d) 6∈ E , i 6= j

(pi = n)→ (pj ≥ 2) (i , j ,d) 6∈ E , i 6= j

r1 = 0

xij = 1→ rj − ri = d (i , j ,d) ∈ E

ri ≤ t (i , t) ∈ CV
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5. EXPERIMENTS

◮ We modified the MINGO system to enable real-valued

variables to the extent possible.

◮ We used several benchmark problems that involve
reachability conditions and disjunctive information:

1. HRP and JSP

2. Newpaper, Routing Max, and Routing Min Problems
[Liu et al., KR, 2012]

3. Disjunctive Scheduling Problem [2nd ASP-COMP, 2009]
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1. HRP and JSP

2. Newpaper, Routing Max, and Routing Min Problems
[Liu et al., KR, 2012]

3. Disjunctive Scheduling Problem [2nd ASP-COMP, 2009]

◮ Memory and time were limited to 4GB and 600s.



INAP’13, September 11, 2013

47/51

5. EXPERIMENTS

◮ We modified the MINGO system to enable real-valued

variables to the extent possible.

◮ We used several benchmark problems that involve
reachability conditions and disjunctive information:

1. HRP and JSP

2. Newpaper, Routing Max, and Routing Min Problems
[Liu et al., KR, 2012]

3. Disjunctive Scheduling Problem [2nd ASP-COMP, 2009]

◮ Memory and time were limited to 4GB and 600s.

◮ The bound b = 10−6 was determined experimentally.

◮ Due to maximizing δ subject to 0 ≤ δ ≤ b, real variables

could be incorporated into decision problems only.
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Results: Hamiltonian Routing

Density
Decision Optimization

MINGOr CPLEX MINGOr CPLEX

10 0.03 0.01 0.07 0.01

20 0.05 0.01 0.12 0.01

30 0.92 NA 50.81 NA

40 41.62 NA NA NA

50 13.94 NA NA NA

60 64.91 NA NA NA

70 35.78 NA NA NA

80 8.02 95.40 NA NA

90 181.33 24.74 NA NA

100 146.18 13.88 NA NA
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Results: Job Shop Scheduling

Tasks
Decision Optimization

MINGOr CPLEX MINGOr CPLEX

10 0.42 0.14 0.35 0.08

20 4.04 0.18 1.56 0.14

30 6.78 0.40 4.69 0.49

40 13.74 0.72 12.18 1.62

50 27.37 1.36 16.15 1.16

60 45.44 1.72 30.82 2.01

70 51.56 1.57 47.85 1.80

80 88.72 2.34 68.99 2.83

90 114.32 2.97 79.28 6.43

100 192.09 4.19 112.09 8.05
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6. CONCLUSIONS AND FUTURE WORK

◮ In this research, we alternatively extend ASP by
◮ linear constraints involving real variables, or
◮ integer objective functions.

◮ The proposed extensions of ASP facilitate modeling.

◮ For some benchmarks, also computational advantage can

be obtained in the ASP(LC) approach.

◮ The ASP and MIP paradigms can benefit from integration.
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6. CONCLUSIONS AND FUTURE WORK

◮ In this research, we alternatively extend ASP by
◮ linear constraints involving real variables, or
◮ integer objective functions.

◮ The proposed extensions of ASP facilitate modeling.

◮ For some benchmarks, also computational advantage can

be obtained in the ASP(LC) approach.

◮ The ASP and MIP paradigms can benefit from integration.

Future work:

◮ There are ways to improve the current translation and its
computational performance:

◮ reducing the number of extra variables needed, and
◮ stopping optimization early (as soon as δ > 0).

◮ Our prototype lacks a user-friendly front-end parser

(special predicates are used to express linear constraints).
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