Extension of the Gelfond-Lifschitz Reduction for Preferred Answer Sets

Alexander Šimko simko@fmph.uniba.sk

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University In Bratislava, Slovakia

11th September 2013

< □ > < @ > < 注 > < 注 > ... 注

Context

The Quetion of the paper Preliminaries Transformation A Direct Definition of the Semantics Properties Comparison to Other Approaches

- If a slope is too difficult for a user, do not recommend it.
- If a user likes a slope, recommed it.
- If there is no snow on a slope, do no recommend it.

Recommend or not to recommend?

- the first rule is the weakest one,
- the third rule is the strongest one.

Do not recommend

A 3 b

 $\mathcal{P} = (P, <)$

<i>r</i> ₁ :	$\neg rec$	\leftarrow	difficult, not rec
<i>r</i> ₂ :	rec	\leftarrow	likes, not ¬rec

 r_3 : $\neg rec \leftarrow no_snow, not rec$

 $r_1 < r_2 < r_3$

Answer Sets

 $\{rec, \dots\}, \{\neg rec, \dots\}$

э

How should semantics change in the presence of preferences on rules?

Select the subset of the standard answer sets as preferred.

Preferred Answer Sets {¬*rec*,...}

・ 同 ト ・ ヨ ト ・ ヨ

Existing approaches, e.g.:

- Brewka and Eiter, Delgrande et al., Wang et al.,
- Zhang and Foo, Sakama and Inoue, Šefránek

Context

The Quetion of the paper Preliminaries Transformation A Direct Definition of the Semantics Properties Comparison to Other Approaches Where to Go From Here?

Independent rules: $\{a, b\}$

 $r_1 : a \leftarrow r_2 : b \leftarrow$

Exception: $\{b\}$

 $r_1 : a \leftarrow not b$ $r_2 : b \leftarrow$

Conflicting rules: $\{a\}, \{b\}$

 $r_1: a \leftarrow not b$ $r_2: b \leftarrow not a$

A 3 b

3.5

Preference handling as the reverse transformation

 $\mathsf{conflicts} \to \mathsf{exceptions?}$

Remove default negated literals from a preferred conflicting rule

 $r_2 < r_1$

And define
$$\mathcal{PAS}(\mathcal{P}) = \mathcal{AS}(t(\mathcal{P}))$$

3 N

- How the transformation looks like?
- What is the direct definition of the semantics?
- What are the properties of the semantics?
- What is the connection with existing approaches?

A 3 b

A rule is an expression of the from

$$l_0 \leftarrow l_1, \dots, l_m, not \ l_{m+1}, \dots, not \ l_n,$$

head $(r) = l_0, \ body^+(r) = \{l_1, \dots, l_m\}, \ body^-(r) = \{l_{m+1}, \dots, l_n\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

An answer set of a program P without *not* is given by the bottom-up evaluation using $T_P(X) = \{head(r) : body^+(r) \subseteq X\}$ from \emptyset .

$$r_1: a \leftarrow$$
 $X_0 = \emptyset$ $r_2: b \leftarrow a$ $X_1 = \{a\}$ $r_3: d \leftarrow c$ $X_2 = \{a, b\}$ $X_3 = X_2$

伺 ト イ ヨ ト イ ヨ ト

Answer sets of programs with *not* are defined using Gelfond-Lifschitz reduction:

For a program P and a set of literals S we obtain P^S by:

- removing each rule r with $body^{-}(r) \cap S \neq \emptyset$, and
- removing *not* from the remaining rules.

• • • • • • •

Set of literal S is an answer set of a program P iff

S is answer set of P^S

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Two rules are conflicting if they are of the form

 $a \leftarrow \dots, not b$ $b \leftarrow \dots, not a$

イロト イボト イヨト イヨト

э

Simple case – Each head has different head:

Remove from the body of a rule the head of a less preferred conflicting rule.

 $\begin{array}{cccc} r_1: a \leftarrow not \ b & a \leftarrow \\ r_2: b \leftarrow not \ a & \rightarrow & b \leftarrow not \ a \end{array}$

 $r_2 < r_1$

伺下 イヨト イヨ

This is not usable in general:

 $r_3 < r_2 < r_1$

In the body of r_2 we need to distinguish between "*a*" derived by r_1 and r_3 .

- A 🗄 🕨

Solution:

- Introduce special-purpose literals n_r,
- divide each rule *r* into rules:
 - deriving n_r,
 - deriving head(r),
- replace default negated literals by n_r literals

- A 🗄 🕨

$$\begin{array}{lll} r_1: a \leftarrow x, \, not \ b & n_{r_1} \leftarrow x, \, not \ n_{r_2} & n_{r_1} \leftarrow x \\ a \leftarrow n_{r_1} & a \leftarrow n_{r_1} \\ r_2: b \leftarrow y, \, not \ a & \rightarrow n_{r_2} \leftarrow y, \, not \ n_{r_1}, \, not \ n_{r_3} \rightarrow n_{r_2} \leftarrow y, \, not \ n_{r_1} \\ b \leftarrow n_{r_2} & b \leftarrow n_{r_2} \\ r_3: a \leftarrow z, \, not \ b & n_{r_3} \leftarrow z, \, not \ n_{r_2} & n_{r_3} \leftarrow z, \, not \ n_{r_2} \\ a \leftarrow n_{r_3} & a \leftarrow n_{r_3} \end{array}$$

 $r_3 < r_2 < r_1$

æ

An answer set S can be represented by the rules that generate it:

$$\Gamma_P(S) = \{r \in P : body^+(r) \subseteq S \text{ and } body^-(r) \cap S = \emptyset\}$$

< ロ > < 同 > < 回 > < 回 >

э

An answer set X is preferred iff for each $r \in P \setminus \Gamma_P(X)$:

- $body^+(r) \not\subseteq X$, or
- $body^{-}(r) \cap \{head(t) : t \in \Gamma_{P}(X) \text{ and } t \text{ is not less preferred conflicting with } r\} \neq \emptyset.$

- 同 ト - ヨ ト - - ヨ ト

$$\mathcal{P} = (P, <).$$

- Compatible with the answer set semantics:
 - $\mathcal{PAS}(\mathcal{P}) \subseteq \mathcal{AS}(\mathcal{P})$,
 - If $<= \emptyset$ or P is stratified, then $\mathcal{PAS}(\mathcal{P}) = \mathcal{AS}(P)$

• Brewka and Eiter's Principle I and II are satisfied.

- Deciding whether a $\mathcal{PAS}(\mathcal{P}) \neq \emptyset$ is NP-complete.
- Semantics does not guarantee existence of a preferred answer set when a standard one exits:

 $r_1 : a \leftarrow not b$ $r_2 : b \leftarrow not a$

 r_3 : inc \leftarrow a, not inc

 $r_2 < r_1$

If P is call-consistent and head-consistent (no integrity constraints via default and explicit negation), then
 PAS(P) ≠ Ø if AS(P) ≠ Ø

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Schaub and Wang: $\mathcal{PAS}_{DST}(\mathcal{P}) \subseteq \mathcal{PAS}_{WZL}(\mathcal{P}) \subseteq \mathcal{PAS}_{BE}(\mathcal{P})$

We: $\mathcal{PAS}_{BE}(\mathcal{P}) \subseteq \mathcal{PAS}(\mathcal{P})$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

An answer set X of P is a BE preferred answer set of \mathcal{P} iff there is an enumeration $\langle r_i \rangle$ of $\Gamma_P(X)$ such that for each i, j:

• if
$$r_i < r_j$$
, then $j < i$, and
• if $r_i < r$ and $r \in P \setminus \Gamma_P(X)$, then
• $body^+(r) \not\subseteq X$ or
• $body^-(r) \cap \{head(r_j) : j < i\} \neq \emptyset$ or
• $head(r) \in X$

伺 ト イ ヨ ト イ ヨ ト

An answer set X is preferred iff for each $r \in P \setminus \Gamma_P(X)$:

- $body^+(r) \not\subseteq X$, or
- $body^{-}(r) \cap \{head(t) : t \in \Gamma_{P}(X) \text{ and } t \text{ is not less preferred conflicting with } r\} \neq \emptyset.$

- 同 ト - ヨ ト - - ヨ ト

- The semantics is not prescriptive
- The semantics is equivalent with answer set semantics for stratified programs
- Ignores preferences between non-conflicting rule, suiltable when preferences are automatically generated.

• Restriction to direct conflicts were made for two reasons:

- It is good to proceed from simple cases to complex ones,
- It was necessary in order to obtain the result

 $\mathcal{PAS}_{BE}(\mathcal{P}) \subseteq \mathcal{PAS}(\mathcal{P})$

• Plan to extend the semantics to indirect conflicts

A 3 1