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Abstract. In this paper we propose a new concept to deal with dynamic
predicates in functional logic programs. The definition of a dynamic pred-
icate can change over time, i.e., one can add or remove facts that define
this predicate. Our approach is easy to use and has a clear semantics that
does not depend on the particular (demand-driven) evaluation strategy
of the underlying implementation. In particular, the concept is not based
on (unsafe) side effects so that the order of evaluation does not influence
the computed results—an essential requirement in non-strict languages.
Dynamic predicates can also be persistent so that their definitions are
saved across invocations of programs. Thus, dynamic predicates are a
lightweight alternative to the explicit use of external database systems.
Moreover, they extend one of the classical application areas of logic pro-
gramming to functional logic programs. We present the concept, its use
and an implementation in a Prolog-based compiler.

1 Motivation and Related Work

Functional logic languages [10] aim to integrate the best features of functional
and logic languages in order to provide a variety of programming concepts to
the programmer. For instance, the concepts of demand-driven evaluation, higher-
order functions, and polymorphic typing from functional programming can be
combined with logic programming features like computing with partial infor-
mation (logical variables), constraint solving, and non-deterministic search for
solutions. This combination leads to optimal evaluation strategies [2] and new
design patterns [4] that can be applied to provide better programming abstrac-
tions, e.g., for implementing graphical user interfaces [12] or programming dy-
namic web pages [13].

However, one of the traditional application areas of logic programming is not
yet sufficiently covered in existing functional logic languages: the combination
of declarative programs with persistent information, usually stored in relational
databases, that can change over time. Logic programming provides a natural
framework for this combination (e.g., see [7, 9]) since externally stored relations
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can be considered as facts defining a predicate of a logic program. Thus, logic
programming is an appropriate approach to deal with deductive databases or
declarative knowledge management.

In this paper, we propose a similar concept for functional logic languages.
Nevertheless, this is not just an adaptation of existing concepts to functional
logic programming. We will show that the addition of advanced functional pro-
gramming concepts, like the clean separation of imperative and declarative com-
putations by the use of monads [24], provides a better handling of the dynamic
behavior of database predicates, i.e., when we change the definition of such pred-
icates by adding or removing facts. To motivate our approach, we shortly discuss
the problems caused by traditional logic programming approaches to dynamic
predicates.

The logic programming language Prolog allows to change the definition
of predicates1 by adding or deleting clauses using predefined predicates like
asserta (adding a new first clause), assertz (adding a new last clause), or
retract (deleting a matching clause). Problems occur if the use of these pred-
icates is mixed with their update. For instance, if a new clause is added during
the evaluation of a literal, it is not directly clear whether this new clause should
be visible during backtracking, i.e., a new proof attempt for the same literal.
This has been discussed in [18] where the so-called “logical view” of database
updates is proposed. In the logical view, only the clauses that exist at the first
proof attempt to a literal are used. Although this solves the problems related to
backtracking, advanced evaluation strategies cause new problems.

It is well known that advanced control rules, like coroutining, provide a better
control behavior w.r.t. the termination and efficiency of logic programs [21].
Although the completeness of SLD resolution w.r.t. any selection rule seems to
justify such advanced control rules, it is not the case w.r.t. dynamic predicates.
For instance, consider the Prolog program

ap(X) :- assertz(p(X)).

q :- ap(X), p(Y), X=1.

If there are no clauses for the dynamic predicate p, the proof of the literal
q succeeds due to the left-to-right evaluation of the body of the clause for q.
However, if we add the block declaration (in Sicstus-Prolog) “:- block ap(-).”
to specify that ap should be executed only if its argument is not a free variable,
then the proof of the literal q fails, because the clause for p has not been asserted
when p(Y) should be proved.

This example indicates that care is needed when combining dynamic predi-
cates and advanced control strategies. This is even more important in functional
logic languages that are usually based on demand-driven (and concurrent) eval-
uation strategies where the exact order of evaluation is difficult to determine in
advance [2, 11].

1 In many Prolog systems, such predicates must be declared as “dynamic” in order to
change their definitions dynamically.



Unfortunately, existing approaches to deal with dynamic predicates do not
help here. For instance, Prolog and its extensions to persistent predicates stored
in databases, like the Berkeley DB of Sicstus-Prolog or the persistence module
of Ciao Prolog [6], suffer from the same problems. In the other hand, functional
language bindings to databases do not offer the constraint solving and search
facilities of logic languages. For instance, HaSQL2 supports a simple connection
to relational databases via I/O actions but provides no abstraction for computing
queries (the programmer has to write SQL queries in plain text). This is improved
in Haskell/DB [17] which allows to express queries through the use of specific
operators. More complex information must be deduced by defining appropriate
functions.

Other approaches to integrate functional logic programs with databases con-
centrate only on the semantical model for query languages. For instance, [1] pro-
poses an integration of functional logic programming and relational databases
by an extended data model and relational calculus. However, the problem of
database updates is not considered and an implementation is not provided. Echa-
hed and Serwe [8] propose a general framework for functional logic programming
with processes and updates on clauses. Since they allow updates on arbitrary
program clauses (rather than facts), it is unclear how to achieve an efficient im-
plementation of this general model. Moreover, persistence is not covered in their
approach.

Since real applications require the access and manipulation of persistent data,
we propose a new model to deal with dynamic predicates in functional logic pro-
grams where we choose the declarative multi-paradigm language Curry [16] for
concrete examples.3 Although the basic idea is motivated by existing approaches
(a dynamic predicate is considered as defined by a set of basic facts that can
be externally stored), we propose a clear distinction between the accesses and
updates to a dynamic predicate. In order to abstract from the concrete (demand-
driven) evaluation strategy, we propose the use of time stamps to mark the
lifetime of individual facts.

Dynamic predicates can also be persistent so that their definitions are saved
across invocations of programs. Thus, our approach to dynamic predicates is
a lightweight alternative to the explicit use of external database systems that
can be easily applied. Nevertheless, one can also store dynamic predicates in an
external database if the size of the dynamic predicate definitions becomes too
large.

The next section contains a description of our proposal to integrate dynamic
predicates into functional logic languages. Section 3 sketches a concrete imple-
mentation of this concept and Section 4 contains our conclusions. We assume
familiarity with the concepts of functional logic programming [10] and Curry
[11, 16].

2 http://members.tripod.com/~sproot/hasql.htm
3 Our proposal can be adapted to other modern functional logic languages that are

based on the monadic I/O concept to integrate imperative and declarative compu-
tations in a clean manner, like Escher [19], Mercury [23], or Toy [20].



2 Dynamic Predicates

In this section we describe our proposal to dynamic predicates in functional logic
programs and show its use by several examples.

2.1 General Concept

Since the definition of dynamic predicates is also intended to be stored persis-
tently in files, we assume that dynamic predicates are defined by ground (i.e.,
variable-free) facts. However, in contrast to predicates that are explicitly de-
fined in a program, the definition of a dynamic predicate is not provided in the
program code but will be dynamically computed. Thus, dynamic predicates are
similar to “external” functions whose code is not contained in the program but
defined elsewhere. Therefore, the programmer has to specify in a program only
the (monomorphic) type signature of a dynamic predicate (remember that Curry
is strongly typed) and mark its name as “dynamic”.

As a simple example, we want to define a dynamic predicate prime to store
prime numbers whenever we compute them. Thus, we provide the following
definition in our program:

prime :: Int -> Dynamic
prime dynamic

The predefined type “Dynamic” is abstract, i.e., there are no accessible data
constructors of this type but a few predefined operations that act on objects of
this type (see below). From a declarative point of view, Dynamic is similar to
Success (the type of constraints), i.e., prime can be considered as a predicate.
However, since the definition of dynamic predicates may change over time, the
access to dynamic predicates is restricted in order to avoid the problems men-
tioned in Section 1. Thus, the use of the type Dynamic ensures that the specific
access and update operations (see below) can be applied only to dynamic predi-
cates. Furthermore, the keyword “dynamic” informs the compiler that the code
for prime is not in the program but externally stored (similarly to the definition
of external functions).

In order to avoid the problems related to mixing update and access to dy-
namic predicates, we put the corresponding operations into the I/O monad since
this ensures a sequential evaluation order [24]. Thus, we provide the following
predefined operations:

assert :: Dynamic -> IO ()

retract :: Dynamic -> IO Bool

getKnowledge :: IO (Dynamic -> Success)

assert adds a new fact about a dynamic predicate to the database where the
database is considered as the set of all known facts for dynamic predicates.
Actually, the database can also contain multiple entries (if the same fact is



repeatedly asserted) so that the database is a multi-set of facts. For the sake of
simplicity, we ignore this detail and talk about sets in the following.

Since the facts defining dynamic predicates do not contain unbound variables
(see above), assert is a rigid function, i.e., it suspends when the arguments (after
evaluation to normal form) contain unbound variables. Similarly, retract is also
rigid and removes a matching fact, if possible (this is indicated by the Boolean
result value). For instance, the sequence of actions

assert (prime 1) >> assert (prime 2) >> retract (prime 1)

asserts the new fact (prime 2) to the database.

The action getKnowledge is intended to retrieve the set of facts stored in the
database at the time when this action is executed. In order to provide access to
the set of facts, getKnowledge returns a function of type “Dynamic -> Success”
which can be applied to expressions of type “Dynamic”, i.e., calls to dynamic
predicates. For instance, the following sequence of actions (we use Haskell’s “do”
notation [22] in the following) asserts a new fact (prime 2) and retrieves its
contents by unifying the logical variable x with the value 2:4

do assert (prime 2)
known <- getKnowledge
doSolve (known (prime x))

Since there might be several facts that match a call to a dynamic predicate, we
have to encapsulate the possible non-determinism occurring in a logic compu-
tation. This can be done in Curry by the primitive action to encapsulate the
search for all solutions to a goal [5, 15]:

getAllSolutions :: (a -> Success) -> IO [a]

getAllSolutions takes a constraint abstraction and returns the list of all solu-
tions, i.e., all values for the argument of the abstraction such that the constraint
is satisfiable.5 For instance, the evaluation of

getAllSolutions (\x -> known (prime x))

returns the list of all values for x such that known (prime x) is satisfied. Thus,
we can define a function printKnownPrimes that prints the list of all known
prime numbers as follows:

printKnownPrimes = do
known <- getKnowledge
sols <- getAllSolutions (\x -> known (prime x))
print sols

4 The action doSolve is defined as “doSolve c | c = done” and can be used to embed
constraint solving into the I/O monad.

5 getAllSolutions is an I/O action since the order of the result list might vary from
time to time due to the order of non-deterministic evaluations.



Note that we can use all logic programming techniques also for dynamic predi-
cates: we just have to pass the result of getKnowledge (i.e., the variable known
above) into the clauses defining the deductive part of the database program and
wrap all calls to a dynamic predicate with this result variable. For instance, we
can print all prime pairs by the following definitions:

primePair known (x,y) =
known (prime x) & known (prime y) & x+2 =:= y

printPrimePairs = do
known <- getKnowledge
sols <- getAllSolutions (\p -> primePair known p)
print sols

The constraint primePair specifies the property of being a prime pair w.r.t. the
knowledge known, and the action printPrimePairs prints all currently known
prime pairs.

Our concept provides a clean separation between database updates and ac-
cesses. Since we get the knowledge at a particular point of time, we can access
all facts independent on the order of evaluation. Actually, the order is difficult to
determine due to the demand-driven evaluation strategy. For instance, consider
the following sequence of actions:

do assert (prime 2)
known1 <- getKnowledge
assert (prime 3)
assert (prime 5)
known2 <- getKnowledge
sols2 <- getAllSolutions (\x -> known2 (prime x))
sols1 <- getAllSolutions (\x -> known1 (prime x))
return (sols1,sols2)

Executing this code with the empty database, the pair of lists ([2],[2,3,5]) is
returned. Although the concrete computation of all solutions is performed later
than they are conceptually accessed (by getKnowledge) in the program text,
we get the right facts (in contrast to Prolog with coroutining, see Section 1).
Therefore, getKnowledge conceptually copies the current database for later ac-
cess. However, since an actual copy of the database can be quite large, this is
implemented by the use of time stamps (see Section 3).

2.2 Persistent Dynamic Predicates

One of the key features of our proposal is the easy handling of persistent data.
The facts about dynamic predicates are usually stored in main memory which
supports fast access. However, in most applications it is necessary to store the
data also persistently so that the actual definitions of dynamic predicates survive
different executions (or crashes) of the program. One approach is to store the
facts in relational databases (which is non-trivial since we allow arbitrary term



structures as arguments). Another alternative is to store them in files (e.g., in
XML format). In both cases the programmer has to consider the right format
and access routines for each application. Our approach is much simpler (and
often also more efficient if the size of the dynamic data is not extremely large):
it is only necessary to declare the predicate as “persistent”. For instance, if we
want to store our knowledge about primes persistently, we define the predicate
prime as follows:

prime :: Int -> Dynamic
prime persistent "file:prime_infos"

Here, prime_infos is the name of a directory where the run-time system au-
tomatically puts all files containing information about the dynamic predicate
prime.6 Apart from changing the dynamic declaration into a persistent decla-
ration, nothing else needs to be changed in our program. Thus, the same actions
like assert, retract, or getKnowledge can be used to change or access the
persistent facts of prime. Nevertheless, the persistent declaration has important
consequences:

– All facts and their changes are persistently stored, i.e., after a termination
(or crash) and restart of the program, all facts are automatically recovered.

– Changes to dynamic predicates are immediately written into a log file so
that they can be recovered.

– getKnowledge gets always the current knowledge persistently stored, i.e.,
if other processes also change the facts of the same predicate, it becomes
immediately visible with the next call to getKnowledge.

– In order to avoid conflicts between concurrent processes working on the
same dynamic predicates, there is also a transaction concept (which is not
described in this extended abstract).

Note that the easy and clean addition of persistency was made possible due to our
concept to separate the update and access to dynamic predicates. Since updates
are put into the I/O monad, there are obvious points where changes must be
logged. On the other hand, the getKnowledge action needs only a (usually short)
synchronization with the external data and then the knowledge can be used with
the efficiency of the internal program execution.

3 Implementation

In order to test our concept and to provide a reasonable implementation, we
have implemented it in the PAKCS implementation of Curry [14]. The system
compiles Curry programs into Prolog by transforming pattern matching into

6 The prefix “file:” instructs the compiler to use a file-based implementation of
persistent predicates. For future work, it is planned also to use relational databases
to store persistent facts so that this prefix is used to distinguish the different access
methods.



predicates and exploiting coroutining for the implementation of the concurrency
features of Curry [3]. Due to the use of Prolog as the back-end language, the
implementation of our concept is not very difficult. Therefore, we highlight only
a few aspects of this implementation.

First of all, the compiler of PAKCS has to be adapted since the code for
dynamic predicates must be different from other functions. Thus, the compiler
translates a declaration of a dynamic predicate into specific code so that the run-
time evaluation of a call to a dynamic predicate yields a data structure containing
information about the actual arguments and the name of the external database
(in case of persistent predicates). In this implementation, we have not used a
relational database for storing the facts since this is not necessary for the size of
the dynamic data (in our applications only a few megabytes). Instead, all facts
are stored in main memory and in files in case of persistent predicates. First, we
describe the implementation of non-persistent predicates.

Each assert and retract action is implemented via Prolog’s assert and
retract. However, as additional arguments we use time stamps to store the
lifetime (birth and death) of all facts in order to implement the visibility of
facts for the getKnowledge action (similarly to [18]). Thus, there is a global
clock (“update counter”) in the program that is incremented for each assert
and retract. If a fact is asserted, it gets the actual time as birth time and ∞
as the death time. If a fact is retracted, it is not retracted in memory but only
the death time is set to the actual time since there might be some unevaluated
expression for which this fact is still visible. getKnowledge is implemented by
returning a predefined function that keeps the current time as an argument. If
this function is applied to some dynamic predicate, it unifies the predicate with
all facts and, in case of a successful unification, it checks whether the time of
the getKnowledge call is in the birth/death interval of this fact.

Persistent predicates are similarly implemented, i.e., all known facts are al-
ways kept in main memory. However, each update to a persistent predicate is
written into a log file. Furthermore, all facts of this predicate are stored in a
file in Prolog format. This file is only read and updated in the first call to
getKnowledge or in subsequent calls if another concurrent process has changed
the persistent data. In this case, the following operations are performed:

1. The previous database file with all Prolog facts is read.
2. All changes from the log file are replayed, i.e., executed.
3. A new version of the database file is written.
4. The log file is cleared.

In order to avoid problems in case of program crashes during this critical period,
the initialization phase is made exclusive to one process via operating system
locks and backup files are written.

4 Conclusions

We have proposed a new approach to deal with dynamic predicates in functional
logic programs. It is based on the idea to separate the update and access to



dynamic predicates. Updates can only be performed on the top-level in the I/O
monad in order to ensure a well-defined sequence of updates. The access to
dynamic predicates is initiated also in the I/O monad in order to get a well-
defined set of visible facts for dynamic predicates. However, the actual access
can be done at any execution time since the visibility of facts is controlled by time
stamps. This is important in the presence of an advanced operational semantics
(demand-driven evaluation) where the actual sequence of evaluation steps is
difficult to determine in advance.

Furthermore, dynamic predicates can be also persistent so that their defini-
tions are externally stored and recovered when programs are restarted. We have
sketched an implementation of this concept in a Prolog-based compiler which is
freely available with the current release of PAKCS [14].

Although the use of our concept is quite simple (one has to learn only three
basic I/O actions), it is quite powerful at the same time since the applications of
logic programming to declarative knowledge management can be directly imple-
mented with this concept. We have used this concept in practice to implement a
bibliographic database system and obtained quite satisfying results. The loading
of the database containing almost 10,000 bibliographic entries needs only a few
milliseconds, and querying all facts is also performed in milliseconds due to the
fact that they are stored in main memory.
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