
Demonstration of Factory - A Java Extension for
Generative Programming

Christof Lutteroth

Institute of Computer Science
Freie Universität Berlin

Takustr.9, 14195 Berlin, Germany
lutterot@inf.fu-berlin.de

Abstract. Factory is an extension of Java which provides a template-
based reflection mechanism for generative programming. Java classes can
be parameterized by types, and the structure of the classes can be de-
scribed dependent on these type parameters. Factory can address a wide
range of applications and save programmers a lot of work. It is designed
to integrate seamlessly with Java, to be intuitive for the user, extensible,
and safe.

1 Introduction

Generative programming is about the idea to automate parts of the software
development process. It is a paradigm that tries to bring the development of
software onto a new level of abstraction and provide new means of reuse. Usu-
ally, there are programming tasks in software projects which are so regular that
we can make the computer do them for us by programming a generator. A com-
mon example is a compiler, which generates the representation of a program
in one language from its representation in another. Of course, we could do this
translation by hand, but with the help of the compiler a lot of time is saved
and we are able to focus on the aspects of our program on a level that is much
more abstract than machine language. Programming languages, which are often
implemented as compilers, can make a big difference to the programmer with
the level of abstraction they provide.

There are many such tasks for which technologies of generative programming
are used. For example, there are compiler generators, tools for the generation
of database interfaces (e.g., [3]) and stub-generators (e.g. the Java rmic tool
[12]). But it is not always an external tool that performs generation: Many
programming languages have inbuilt features for generative programming, even
though they are usually not seen from that point of view. A macro mechanism, for
example, like the C preprocessor, is a generative feature, and also some features
of object-oriented languages, like inheritance. In all such cases, the information
given in the source-code is used to generate, according to a well-specified pattern,
code with properties that are not expressed directly in the source.

Besides the widespread traditional mechanisms, like macros and inheritance,
there are also more advanced ones. Nowadays, many programming languages

incorporate parametric polymorphism [4], also known as generic types, and in-
trospective access to runtime objects (as, for example, provided by the Java
reflection API [12]). Then, there exist more complex mechanisms, reflective ar-
chitectures [6] that allow many aspects of a program to be changed at compile-
time or even at runtime. For a general account on such technologies, see [7] or
[5].

Factory [9] is a generative programming concept for problems for which para-
metric polymorphism without reflection, as known from C++ [11] and other
languages [1], is not sufficient. The name ”Factory” points out its generative
capabilities on the level of metaprogramming and should not be confused with
the factory design pattern. While the factory design-pattern refers to a class
that creates objects, our factories are template-like entities that create classes.
One could say that Factory takes the design pattern from the level of object
generation to the metalevel of class generation.

Parametric polymorphism without reflection is used, e.g, for building type-
safe containers, like lists or hash tables. But many important applications for
generative programming require more powerful mechanisms. Examples that can-
not be solved with traditional parametric polymorphism include those in which
not only types are substituted but new signatures and code are created. A gener-
ator that yields EJB-conformant [10] wrappers for an arbitrary interface would
be such an example. For each method of a given interface, the wrapper would
have to generate a method with a different signature, dependent on the signa-
ture of the original method. Other examples include the generation of test suites
for given classes, of a database interface, error handlers, stubs, etc. A genera-
tive approach to address these examples needs introspection, i.e., queries to the
metamodel of the source-code that is dealt with, in order to explore all methods,
as well as intercession, i.e., modifications of the metamodel, in order to create
the new methods and their signatures (see also [6]).

Factory does support this kind of reflection, with a focus on static reflection,
i.e., reflection done at compile-time. This is because in most practical examples,
compile-time reflection seems to be sufficient. Runtime reflection is only needed
in special cases, e.g., for hot deployment enabled containers in adaptive systems.
Nevertheless, Factory is also capable of runtime reflection, but yet, compile-time
reflection is easier to use.

Factory has been designed to provide a particularly strong notion of safety,
generator-type-safety, by enabling certain analysis techniques of the Factory
source-code representation at definition-time. Generator-type-safety guarantees
the type-safety of all classes that can possibly be generated by a Factory gener-
ator. It can be verified with help of a type system [2]. Furthermore, Factory can
determine if a generator terminates always.

2 The Factory Language

Factory has its own language that embeds a specialized XML-like syntax for
compile-time generation into the standard syntax of Java 1.4. It uses the tem-

plate approach, so the programmer only needs to use Factory specific syntax
whenever he wants to make use of its generative capabilities. Apart from that,
programming is the same as in Java. However, the concept of Factory is not
restricted to Java, and one day, it might be a good choice to integrate the
compile-time part and the runtime part of the Factory syntax into a homoge-
neous, language independent abstract syntax.

The unit of generation and compilation is a factory, a file which contains
exactly one class or interface definition (excluding inner interfaces/classes). It
can be parameterized, use the Factory syntax of generative control constructs
and generative terms, and invoke any number of other factories. But since the
syntax is, apart from these Factory-specific extensions, that of a normal Java
source file, all Java source files that contain only one class or interface (inner
ones excluded) are valid factories.

2.1 Generator Variables

Generator variables are the variables used at generation-time, as opposed to the
normal Java variables which are used at runtime. They are similar to normal
Java variables, but they contain only object values. This is not a restriction, since
the Factory system performs, when calling methods, casts to and from primitive
types automatically. Furthermore, not all of these variables have an explicit
type bound, but simply accept any object as value. Since the Factory generation
system works with factory terms, which are functional, it is not possible to
directly assign a value to a variable after it has been declared. There are several
ways in which generator variables can be introduced into a factory: by declaring
a Factory parameter with the <param> tag or by using the <for> or <let>
constructs.

2.2 Factory Terms

Factory terms are a functional notation with which Java classes and other fac-
tories can be accessed in a safely restricted way. Usually, those terms are used
to introspect the type parameters of the respective factory and to extract or
construct the information that is needed for intercession.

It is one of the basic decisions in the design of Factory not to create a new
metamodel for reflection but rather to integrate Factory seamlessly into the
existing metaobject protocol of Java. This makes it a lot easier for people with a
knowledge of the Java reflection API to use Factory. Furthermore, the integration
with Java makes it easy to use and extend Factory with all the possibilities that
Java offers. It is possible to access the standard classes as well as self-made ones,
given that all the fields, methods and constructors that should be accessible are
registered with the Factory system. Only classes that are considered safe, i.e.,
that terminate and have no harmful side effects, should be registered. The syntax
of a Factory term is defined as follows:

term: (constant

| variable
| get
| application)

Internally, those terms work with objects, but any method that specifies pa-
rameters with primitive types can be used with objects of the corresponding
class types. Also, if a method returns a value of a primitive type, it is internally
converted into an object of the corresponding class type.

Constant literals can be created with constant terms that use the <const>
tag. With this tag, objects for all the primitive Java types can be created, simply
by using the respective literal standard notation. Also instances of metaclass
class can be created by specifying the fully qualified class name.

Generator variables can be accessed with <var>:

variable: <var> IDENT </var>

Member variables of Java classes can be accessed with <get>. If the first tag
in the body is another factory term, a member variable of the returned object
is accessed; if it is a <class> tag, a static member variable of the named class
is accessed.

get: <get>
(term
| <class> CLASS IDENT </class>)
<field> VAR IDENT </field>
</get>

Applications are done with an <apply> tag. If the first tag in the body is a
term, a method is invoked on the object returned by that term. If it is a <class>
tag followed by a <method> tag, the respective static method of the named class
is invoked. If there is just the <class> tag, a constructor for the named class
is invoked. If the <factory> is the first tag in the body of <apply>, a factory
generator is applied, which returns the Class object for the generated class or
interface. All applications may give arguments in the form of other terms in the
<args> tag. If there is no argument, <args> can be left out.

application: <apply>
(term

<method> METHOD IDENT </method>
| <class> CLASS IDENT </class>

(<method> METHOD IDENT </method>)?

| <factory> FACTORY IDENT </factory>)
(<args> (term)+ </args>)?

</apply>

2.3 Intercession with Factory Terms

Factory terms are placed at certain positions into standard Java source-code in
order to perform intercession, i.e., to make the result of the term generate an
element of the Java syntax. The terms are placeholders for Java syntax, which
is filled in at generation-time.

Factory terms are only allowed at certain syntactical positions, and the po-
sition depends on the type of the term. In other words, if we want to generate a
certain syntax element at a certain position, we have to use a term that evalu-
ates to an object that models that syntax element correctly. The following table
lists valid return types of Factory terms and positions where those terms can be
used. In the second column, at the place of the term, we inserted the name of
the class of which an object must be returned by the term.

Type Possible Positions
Class Instead of types:

Class x;
Class myMethod() . . .
int myMethod(Class x) . . .
x = (Class) y;

String Instead of most identifiers:
class String . . .
int String;
x = String + 1;
x = String (1);

Package package Package ;
Integer Instead of modifiers:

Integer class C { . . . }
Integer int x;
Integer int myMethod(. . .) { . . . }

Method Instead of method head:
Method { . . . }

Class[] Instead of parameter or argument list:
public int myMethod Class[] { . . . }
x = myMethod Class[];

Argument[] Instead of argument list:
x = myMethod Argument[];

2.4 Partial Evaluation

Factory terms can also be used in order to perform a simple partial evaluation.
This optimization allows to do computations at generation-time and insert the
result into the generated class.

1 class Calculator {
2 final double pi =

3 <literal>
4 <apply>
5 <class> myPackage.myClass </class>
6 <method> calcPi </method>
7 </apply>
8 </literal>;
9 ...

10 }

The <literal> tag can be used in Java expressions and must contain a term
that evaluates to an object corresponding to a primitive Java type or String –
those types, for which the Java syntax defines literals.

2.5 Control Constructs

In addition to terms, Factory provides control constructs: an <if>-tag for con-
ditional generation, a <for>-tag for iterative generation, and a <let>-tag for
assigning the value of a term to a new generator variable. Each of these con-
structs is available in two variants: one variant that can be used in place of a
Java statement, e.g., in a method body, to generate statements, and one variant
that can be used in place of a field to generate member variables and meth-
ods. Consequently, the nonterminal symbol element in the following rules can be
either a statement or a field, depending on where the construct is placed.

The <for> allows to iterate over the elements of any array object. The array
object must be given by the term after <var>. During generation, the fields
or statements in the body are generated for each element in the array, and in
each iteration, the respective element can be accessed in the generator variable
declared in the <var> tag.

for:
<for> <var> IDENT </var> term
<body> (element)∗ </body>
</for>

The <if> allows conditional generation. The term after <if> must evaluate
to an object of type Boolean, and if its value is true, the field(s)/statement(s) in
the <then> tag are generated, otherwise the ones in the <else> tag. The <else>
is optional.

if:
<if> term
<then> (element)∗ </then>
(<else> (element)∗ </else>)?

</if>

The let-construct allows to use a new generator variable in place of a term.
The construct declares the variable and assigns it the value of the term, which
can then be used in the <body>.

let:
<let> <var> IDENT </var> term
<body> (element)∗ </body>
</let>

The <let> can be seen as a special case of the <for> because it can be reduced
to a loop that iterates over a single-element array.

3 Example for Compile-Time Reflection: Generating
Setters

For an actual type parameter Person, the following factory Setters generates a
class PersonWithSetters that extends class Person. PersonWithSetters over-
rides each public member variable of Person with a private member variable of
the same type and name and declares a setter-method for each of it, similar to
the convention of (non-enterprise-) JavaBeans.

This is more an academic example that demonstrates the reflexion capabili-
ties of Factory. In real world applications, getter- and setter-methods are usually
used in order to do something more than just reading or writing a single member
variable, like notifying other objects when a value is changed.

1 <param>
2 <bound> java.lang.Object </bound>
3 <var> T </var>
4 </param>
5

6 public class
7 <apply>
8 <apply>
9 <var> T </var>

10 <method> getName </method>
11 </apply>
12 <method> concat </method>
13 <args> <const> "WithSetters" </const> </args>
14 </apply>
15 extends <var> T </var> {
16 <for> <var> I </var>
17 <apply> <var> T </var>
18 <method> getFields </method>
19 </apply> <body>
20 <let> <var> FT </var>
21 <apply> <var> I </var>
22 <method> getType </method>
23 </apply> <body>
24 <let> <var> FN </var>
25 <apply> <var> I </var>

26 <method> getName </method>
27 </apply> <body>
28 private <var> FT </var> <var> FN </var>;
29

30 public void
31 <apply>
32 <const> "set" </const>
33 <method> concat </method>
34 <args> <var> FN </var> </args>
35 </apply>
36 (<var> FT </var> value) {
37 this.<var> FN </var> = value;
38 }
39 </body> </let> </body> </let>
40 </body> </for>
41 }

The following factory applies factory Setters to class Person, instantiates
an object of the resulting class PersonWithSetters and uses its setter-method
for its private member variable plz. If we uncomment line 12, which tries to
access plz directly, we would not be able to compile it because a private member
variable cannot be accessed outside of its class.

1 class SettersTest {
2 public static void main(String argv[]) {
3 <let> <var> T </var>
4 <apply>
5 <factory> Setters </factory>
6 <args> <const> Person </const> </args>
7 </apply>
8 <body>
9 <var> T </var> p = new <var> T </var>();

10 p.setPlz(1);
11

12 // p.plz++;
13 </body> </let>
14 }
15 }

4 Runtime Reflection

Since Factory is itself written in Java, it can easily be used from within other
Java classes. This means that the generation process done by a factory can be
invoked at runtime; and since Java supports dynamic class loading and reflective
access to classes, the generated classes can be used straight away. This example
demonstrates how Factory can be used for runtime reflection, as it is useful in

hot-deployment enabled environments. It would enable components, e.g., GUI
components, to adapt dynamically to system changes, upgrades and extensions,
providing a high degree of flexibility and tolerance. A type checker for generator-
type-safety can statically ensure the dynamic safety of such adaptive components
because it would assure that no adaption would bring the component into an
erroneous state.

The following Java source-code snippet applies the factory EditFrame dy-
namically to the Class object in variable t: it creates an instance of factory
EditFrame and uses its facture() method on t to generate a corresponding
GUI component class editFrame, which is a GUI control for modifying the pub-
lic member variables of instances of type t. The generated class is instantiated
by means of the Java reflection API, and the edit() method called on that
instance with an instance o of class t as argument.

1 Class editFrameClass =
2 new Factory("EditFrame")
3 .facture(t);
4 EditFrame myEditFrame =
5 (EditFrame) editFrameClass
6 .getConstructor(null)
7 .newInstance(null);
8 myEditFrame.edit(o);

5 Conclusion

We introduced the Factory language, outlined its syntax and semantics and de-
scribed how it can be used to perform reflection and partial evaluation. Our
idea was to formulate generators as templates. The template approach means
that as much as possible of the desired output can be expressed directly. Often,
this approach is already used for parametric polymorphism (e.g., in [11]), so it
seemed straightforward to integrate into it further support for generative pro-
gramming. In order to do advanced generation work, we implemented means to
perform partial evaluation with the capability to introspect type parameters and
to generate new signature elements and code. An important aim was to provide
powerful reflection capabilities while still ensuring type-safety, i.e., a new, more
general kind of safety that we call generator-type-safety.

We gave some examples in order to demonstrate the power and, above all,
usefulness of Factory for real software development. Factory can be useful in the
development of a wide range of applications. Like aspect oriented programming
[8], it can address crosscutting concerns, i.e., functionality in a software system
that is needed at different places, effectively by generating adapted subclasses
and can be used dynamically in adaptive systems.

References

1. Boris Bokowski and Markus Dahm. Poor Man’s Genericity for Java. In Serge De-
meyer and Jan Bosch, editors, Object-Oriented Technology, ECOOP’98 Workshop
Reader, ECOOP’98 Workshops, Demos, and Posters, Brussels, Belgium, July 20-
24, 1998, Proceedings, volume 1543 of Lecture Notes in Computer Science, page
552. Springer, 1998.

2. Luca Cardelli. Type Systems. In Handbook of Computer Science and Engineering,
chapter 103. CRC Press, 1997.

3. Oracle Corporation. Build Superior Java Applications with
Oracle9iAS TopLink. Oracle Whitepaper, September 2002.
http://otn.oracle.com/products/ias/toplink/TopLink WP.pdf.

4. Benjamin C.Pierce. Types and Programming Languages. MIT Press, 2002.
5. K. Czarnecki and U. Eisenecker. Generative Programming - Methods, Tools, and

Applications. Addison-Wesley, 2000.
6. Franois-Nicola Demers and Jacques Malenfant. Reflection in Logic, Functional and

Object-oriented Programming: a Short Comparative Study, 1995.
7. Dirk Draheim, Christof Lutteroth, and Gerald Weber. An Analytical Comparison

of Generative Programming Technologies. In Proceedings of the 19. Workshop GI
Working Group 2.1.4. Technical Report at Christian-Albrechts-University of Kiel,
November 2002.

8. Kiczales et al. An Overview of AspectJ. In Proceedings of the European Conference
on Object-Oriented Programming, pages 18–22. Budapest, Hungary, June 2001.

9. Christof Lutteroth. Factory, 2003. http://www.inf.fu-berlin.de/pj/factory/.
10. Sun Microsystems. Enterprise JavaBeans(TM) Specification 2.1 Proposed Final

Draft 2, June 2003. http://java.sun.com/products/ejb/.
11. Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, June 1997.
12. Sun Microsystems. Java 2 SDK, Standard Edition - Documentation, 2003.

http://java.sun.com/j2se/1.4.2/docs/.

