
Electronic Notes in Theoretical Computer Science 80 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume80.html 18 pages

Formalizing Java’s Two’s-Complement Integral
Type in Isabelle/HOL

Nicole Rauch 1

Universität Kaiserslautern, Germany

Burkhart Wolff

Albert-Ludwigs-Universität Freiburg, Germany

Abstract

We present a formal model of the Java two’s-complement integral arithmetics. The
model directly formalizes the arithmetic operations as given in the Java Language
Specification (JLS). The algebraic properties of these definitions are derived. Un-
derspecifications and ambiguities in the JLS are pointed out and clarified. The
theory is formally analyzed in Isabelle/HOL, that is, machine-checked proofs for
the ring properties and divisor/remainder theorems etc. are provided. This work
is suited to build the framework for machine-supported reasoning over arithmetic
formulae in the context of Java source-code verification.

Key words: Java, Java Card, formal semantics, formal methods, tools, theorem
proving, integer arithmetic.

1 Introduction

Admittedly, modelling numbers in a theorem prover is not really a “sexy
subject” at first sight. Numbers are fundamental, well-studied and well-
understood, and everyone is used to them since school-mathematics. Basic
theories for the naturals, the integers and real numbers are available in all
major theorem proving systems (e.g. [11,26,21]), so why care?

However, numbers as specified in a concrete processor or in a concrete pro-
gramming language semantics are oriented towards an efficient implementation
on a machine. They are finite datatypes and typically based on bit-fiddling
definitions. Nevertheless, they often possess a surprisingly rich theory (ring
properties, for example) that also comprises a number of highly non-standard
and tricky laws with non-intuitive and subtle preconditions.

1 Partially funded by IST VerifiCard (IST-2000-26328)

c©2003 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume80.html

Rauch and Wolff

In the context of program verification tools (such as the B tool [2], KIV [3],
LOOP [5], and Jive [20], which directly motivated this work), efficient numeri-
cal programs, e.g. square roots, trigonometric functions, fast Fourier transfor-
mation or efficient cryptographic algorithms represent a particular challenge.
Fortunately, theorem proving technology has matured to a degree that the
analysis of realistic machine number specifications for widely-used program-
ming languages such as Java or C now is a routine task [13].

With respect to the formalization of integers, we distinguish two approaches:

(1) the partial approach: the arithmetic operations + − * / % are only de-
fined on an interval of (mathematical) integers, and left undefined when-
ever the result of the operation is outside the interval (c.f. [4], which is
mainly geared towards this approach).

(2) the wrap-around approach: integers are defined on [−2n−1 .. 2n−1 − 1],
where in case of overflow the results of the arithmetic operations are
mapped back into this interval through modulo calculations. These num-
bers can be equivalently realized by bitstrings of length n in the widely-
used two’s-complement representation system [10].

While in the formal methods community there is a widespread reluctance
to integrate machine number models and therefore a tendency towards either
(infinite) mathematical integers or the first approach (“either remain fully
formal but focus on a smaller or simpler language [. . .]; or remain with the
real language, but give up trying to achieve full formality.” [23]), we strongly
argue in favour of the second approach for the following reasons:

(1) In a wrap-around implementation, certain properties like “Maxint + 1 =
Minint” hold. This has the consequence that crucial algebraic properties
such as the associativity law “a + (b + c) = (a + b) + c” hold in
the wrap-around approach, but not in the partial approach. The wrap-
around approach is therefore more suited for automated reasoning.

(2) Simply using the mathematical operators on a subset of the mathematical
integers does not handle surprising definitions of operators appropriately.
E.g. in Java the result of an integer division is always rounded towards
zero, and thus the corresponding modulo operation can return negative
values. This is unusual in mathematics. Therefore, this näıve approach
does not only disregard overflows and underflows but also disregards un-
conventionally defined operators.

(3) The Java type int is defined in terms of wrap-around in the Java Language
Specification [12], so why should a programmer who strictly complies to
it in an efficient program be punished by the lack of formal analysis tools?

(4) Many parts of the JLS have been analyzed formally — so why not the
part concerning number representations? There are also definitions and
claimed properties that should be checked; and there are also possible in-
consistencies or underspecifications as in all other informal specifications.

2

Rauch and Wolff

As technical framework for our analysis we use Isabelle/HOL and the Isar
proof documentation package, whose output is directly used throughout this
paper (for lack of space, however, we will not present any proofs here. The
complete documentation will be found in a forthcoming technical report). Is-
abelle [21] is a generic theorem prover, i.e. new object logics can be introduced
by specifying their syntax and inference rules. Isabelle/HOL is an instance
of Isabelle with Church’s higher-order logic (HOL) [11], a classical logic with
equality enriched by total polymorphic higher-order functions. In HOL, in-
duction schemes can be expressed inside the logic, as well as (total) functional
programs. Isabelle’s methodology for safely building up large specifications
is the decomposition of problems into conservative extensions. A conserva-
tive extension introduces new constants (by constant definitions) and types
(by type definitions) only via axioms of a particular, machine-checked form; a
proof that conservative extensions preserve consistency can be found in [11].
Among others, the HOL library provides conservative theories for the logical
type bool, for the numbers such as int and for bitstrings bin.

1.1 Related Work

The formalization of IEEE floating point arithmetics has attracted the interest
of researchers for some time [8,1], e.g. leading to concrete, industry strength
verification technologies used in Intel’s IA64 architecture [13].

In hardware verification, it is a routine task to verify two’s complement
number operations and their implementations on the gate level. Usually, vari-
ants of binary decision diagrams are used to represent functions over bit words
canonically; thus, if a trusted function representation is identical to one gener-
ated from a highly complex implementation, the latter is verified. Meanwhile,
addition, multiplication and restricted forms of operations involving division
and remainder have been developed [15]. Unfortunately, it is known that
one variant particularly suited for one operation is inherently intractable for
another, etc. Moreover, general division and remainder functions have been
proven to be intractable by word-level decision diagrams (WLDD) [24]. For
all these reasons, the approach is unsuited to investigate the theory of two’s
complement numbers: for example, the theorem JavaInt-div-mod (see Sec-
tion 4.2), which involves a mixture of all four operations, can only be proven
up to a length of 9 bits, even with leading edge technology WLDD packages 2 .

Amazingly, formalized theories of the two’s complement number have only
been considered recently; i.e. Fox formalized 32-bit words and the ARM pro-
cessor for HOL [9], and Bondyfalat developed a (quite rudimentary) bit words
theory with division in the AOC project [6]. In the context of Java and the
JLS, Jacobs [16] presented a fragment of the theory of integral types. This
work (like ours) applies to Java Card as well since the models of the four
smaller integral types (excluding long) of Java and Java Card are identical

2 Thanks to Marc Herbstritt [14] to check this for us!

3

Rauch and Wolff

[25, § 2.2.3.1]. However, although our work is in spirit and scope very similar
to [16], there are also significant differences:

• We use standard integer intervals as reference model for the arithmetic oper-
ations as well as two’s-complement bitstrings for the bitshift and the bitwise
AND, OR, XOR operations (which have not been covered by [16] anyway).
Where required, we prove lemmas that show the isomorphy between these
two representations.

• While [16] just presents the normal behavior of arithmetic expressions, we
also cover the exceptional behavior for expressions like “x / 0” by adding a
second theory layer with so-called strictness principles (see Sect. 6).

• [16] puts a strong emphasis on widening and narrowing operations which are
required for the Java types short and byte. We currently only concentrate
on the type int and therefore did not model widening and narrowing yet.

The Java Virtual Machine (JVM) [19] has been extensively modelled in the
Project Bali [22]. However, the arithmetic operations in this JVM model are
based on mathematical integers. Since our work is based on the same system,
namely Isabelle2002, our model of a two’s-complement integer datatype could
replace the mathematical integers in this JVM theory.

1.2 Outline of this Paper

Section 2 introduces the core conservative definitions and the addition and
multiplication, Section 3 presents the division and remainder theory and Sec-
tion 4 gives the bitwise operations. Sections 2, 3 and 4 examine the normal

behavior, while Section 5 describes the introduction of exceptional behavior

into our arithmetic theory leading to operations which can deal with excep-
tions that may occur during calculations.

2 Formalizing the Normal Behavior Java Integers

The formalization of Java integers models the primitive Java type int as closely
as possible. The programming language Java comes with a quite extensive
language specification [12] which tries to be accurate and detailed. Nonethe-
less, there are several white spots in the Java integer specification which are
pointed out in this paper. The language Java itself is platform-independent.
The bit length of the data type int is fixed in a machine-independent way.
This simplifies the modelling task. The JLS states about the integral types:

“The integral types are byte, short, int, and long, whose values are 8-bit, 16-
bit, 32-bit and 64-bit signed two’s-complement integers, respectively, and char,
whose values are 16-bit unsigned integers representing Unicode characters. [...]
The values of the integral types are integers in the following ranges: [...] For int,
from −2147483648 to 2147483647, inclusive”

Java Language Specification [12], §4.2

The Java int type and its range are formalized in Isabelle/HOL [21] this way:

4

Rauch and Wolff

constdefs

BitLength :: nat BitLength ≡ 32
MinInt-int :: int MinInt-int ≡ − (2 ˆ (BitLength − 1))
MaxInt-int :: int MaxInt-int ≡ 2ˆ(BitLength − 1) − 1

Now we can introduce a new type for the desired integer range:

typedef JavaInt = {i. MinInt-int ≤ i ∧ i ≤ MaxInt-int}

This construct is the Isabelle/HOL shortcut for a type definition which de-
fines the new type JavaInt isomorphic to the set of integers between MinInt-int
and MaxInt-int. The isomorphism is established through the automatically
provided (total) functions Abs-JavaInt :: int⇒JavaInt and Rep-JavaInt ::
JavaInt⇒int and the two axioms y : {i. MinInt-int ≤ i ∧ i ≤ MaxInt-int}
=⇒ Rep-JavaInt (Abs-JavaInt y) = y and Abs-JavaInt (Rep-JavaInt x) = x.
Abs-JavaInt yields an arbitrary value if the argument is outside of the defining
interval of JavaInt.

We define MinInt and MaxInt to be elements of the new type JavaInt:

constdefs

MinInt :: JavaInt MinInt ≡ Abs-JavaInt MinInt-int
MaxInt :: JavaInt MaxInt ≡ Abs-JavaInt MaxInt-int

In Java, calculations are only performed on values of the types int and
long. Values of the three smaller integral types are widened first:

“If an integer operator other than a shift operator has at least one operand of
type long, then the operation is carried out using 64-bit precision, and the result
of the numerical operator is of type long. If the other operand is not long, it is
first widened (§5.1.4) to type long by numeric promotion (§5.6). Otherwise, the
operation is carried out using 32-bit precision, and the result of the numerical
operator is of type int. If either operand is not an int, it is first widened to
type int by numeric promotion. The built-in integer operators do not indicate
overflow or underflow in any way.”

Java Language Specification [12], §4.2.2

This paper describes the formalization of the Java type int, therefore con-
versions between the different numerical types are not in the focus of this
work. The integer types byte and short can easily be added as all calculations
are performed on the type int anyways, so the only operations that need to
be implemented are the widening to int, and the cast operations from int to
byte and short, respectively. The Java type long can be added equally easily as
our theory uses the bit length as a parameter, so one only need to change the
definition of the bit length (see above) to gain a full theory for the Java type
long, and again only the widening operations need to be added. Therefore, we
only conentrate on the Java type int in the following.

Our model of Java int covers all side-effect-free operators. This excludes
the operators ++ and −−, both in pre- and postfix notation. These operators
return the value of the variable they are applied to while modifying the value
stored in that variable independently from returning the value. We do not
treat assignment of any kind either as it represents a side-effect as well. This

5

Rauch and Wolff

also disallows combined operators like a += b etc. which are a shortcut for
a = a + b. This is in line with usual specification languages, e.g. JML [17],
which also allows only side-effect-free operators in specifications. From a log-
ical point of view, this makes sense as the specification is usually regarded as
a set of predicates. In usual logics, predicates are side-effect-free. Thus, ex-
pressions with side-effects must be treated differently, either by special Hoare
rules or by program transformation.

In our model, all operators are defined in Isabelle/HOL, and their prop-
erties as described in the JLS are proven, which ensures the validity of the
definitions in our model. In the following, we quote the definitions from the
JLS and present the Isabelle/HOL definitions and lemmas.

Our standard approach of defining the arithmetic operators on JavaInt is to
convert the operands from JavaInt to Isabelle int, to apply the corresponding
Isabelle int operation, and to convert the result back to JavaInt. The first con-
version is performed by the representation function Rep-JavaInt (see above).
The inverse conversion is performed by the function Int-to-JavaInt:

Int-to-JavaInt :: int ⇒ JavaInt

Int-to-JavaInt (x::int) ≡ Abs-JavaInt(
((x + (−MinInt-int)) mod (2 ∗ (−MinInt-int))) + MinInt-int)

This function first adds (−MinInt) to the argument and then performs a
modulo calculation by 2 ∗ (−MinInt) which maps the value into the inter-
val [0 .. 2∗ (−MinInt)−1] (which is equivalent to only regarding the lowest 32
bits), and finally subtracts the value that was initially added. This definition
is identical to the function Abs-JavaInt on arguments which are already in
JavaInt. Larger or smaller values are mapped to JavaInt values, extending the
domain to int.

This standard approach is not followed for operators that are explicitly
defined on the bit representation of the arguments. Our approach differs from
the approach used by Jacobs [16] who exclusively uses bit representations for
the integer representation as well as the operator definitions.

2.1 Unary Operators

This section gives the formalizations of the unary operators +, − and the
bitwise complement operator ∼. The unary plus operator on int is equivalent
to the identity function. This is not very challenging, thus we do not elaborate
on this operator. In the JLS, the unary minus operator is defined in relation
to the binary minus operator described below.

“At run time, the value of the unary minus expression is the arithmetic negation
of the promoted value of the operand. For integer values, negation is the same
as subtraction from zero.(1)

[. . .] negation of the maximum negative int or long results in that same maximum
negative number.(2)

[. . .] For all integer values x, −x equals (∼x)+1.(3)”

Java Language Specification [12], §15.15.4

6

Rauch and Wolff

The unary minus operator is formalized as

uminus-def : − (x::JavaInt) ≡ Int-to-JavaInt (− Rep-JavaInt x)

We prove the three properties described in the JLS:

(1) lemma uminus-property: 0 − x = − (x::JavaInt)

(2) lemma uminus-MinInt: − MinInt = MinInt

(3) lemma uminus-bitcomplement: (∼ x) + 1 = − x

Note that the unary minus operator has two fixed points: 0 and MinInt.
This leads some unexpected results, e.g. Math.abs(MinInt) = MinInt, a neg-
ative number. Also, many of the lemmas presented in this paper do not hold
for MinInt and therefore exclude that value in their assumptions.

The bitwise complement operator is defined by unary and binary minus:

“At run time, the value of the unary bitwise complement expression is the bitwise
complement of the promoted value of the operand; note that, in all cases, ∼x
equals (−x)−1.”

Java Language Specification [12], §15.15.5

This is formalized in Isabelle/HOL as follows:

constdefs

JavaInt-bitcomplement :: JavaInt ⇒ JavaInt

JavaInt-bitcomplement (x::JavaInt) ≡ (−x) − (1::JavaInt)

We use the notations ∼ and JavaInt-bitcomplement interchangeably.

3 Additive and Multiplicative Operators

3.1 Additive Operators

This section formalizes the binary + operator and the binary − operator.

“The binary + operator performs addition when applied to two operands of nu-
meric type, producing the sum of the operands. The binary - operator performs
subtraction, producing the difference of two numeric operands.(1) [. . .]
Addition is a commutative operation if the operand expressions have no side
effects. Integer addition is associative when the operands are all of the same
type(2) [. . .]
If an integer addition overflows, then the result is the low-order bits of the mathe-
matical sum as represented in some sufficiently large two’s-complement format.(3)

If overflow occurs, then the sign of the result is not the same as the sign of the
mathematical sum of the two operand values.(4)

For both integer and floating-point subtraction, it is always the case that a−b
produces the same result as a+(−b).(5)”

Java Language Specification [12], §15.18.2

(1) These two operators are defined in the standard way described above.
We only give the definition of the binary + operator:
defs (overloaded)

add-def : x + y ≡ Int-to-JavaInt (Rep-JavaInt x + Rep-JavaInt y)

(2) This behavior is captured by the two lemmas

7

Rauch and Wolff

lemma JavaInt-add-commute: x + y = y + (x::JavaInt)
lemma JavaInt-add-assoc: x + y + z = x+(y+z::JavaInt)

(3) This requirement is already fulfilled by the definition.

(4) This specification can be expressed as
lemma JavaInt-add-overflow-sign :
(MaxInt-int < Rep-JavaInt a + Rep-JavaInt b) −→ (a + b < 0)
This is a good example of how inexact several parts of the Java Language
Specification are. If indeed only overflow, i.e. regarding two operands
whose sum is larger than MaxInt, is meant here, then why pose such
a complicated question? “the sign of the mathematical sum of the two
operand values” will always be positive in this case, so why talk about
“the sign of the result is not the same”? It would be much clearer to state
“the sign of the result is always negative”. But what if the authors also
wanted to describe underflow, i.e. negative overflow, which is sometimes
also referred to as “overflow”? In §4.2.2 the JLS states “The built-in
integer operators do not indicate overflow or underflow in any way.” Thus,
the term “underflow” is known to the authors and is used in the JLS.
Why do they not use it in the context quoted above? This would also
explain the complicated phrasing of the above formulation.
To clarify these matters, we add the lemma
lemma JavaInt-add-underflow-sign :
(Rep-JavaInt a + Rep-JavaInt b < MinInt-int) −→ (0 ≤ a + b)

(5) This has been formalized as
lemma diff-uminus: a − b = a + (−b::JavaInt)

3.2 Multiplication Operator

The multiplication operator is described and formalized as follows:

“The binary * operator performs multiplication, producing the product of its
operands. Multiplication is a commutative operation if the operand expressions
have no side effects. [...] integer multiplication is associative when the operands
are all of the same type”

Java Language Specification [12], §15.17.1

defs (overloaded)
times-def : x ∗ y ≡ Int-to-JavaInt (Rep-JavaInt x ∗ Rep-JavaInt y)

The commutativity and associativity are proven by the lemmas

lemma JavaInt-times-commute: (x::JavaInt) ∗ y = y ∗ x
lemma JavaInt-times-assoc: (x::JavaInt) ∗ y ∗ z = x ∗ (y ∗ z)

“If an integer multiplication overflows, then the result is the low-order bits of the
mathematical product as represented in some sufficiently large two’s-complement
format. As a result, if overflow occurs, then the sign of the result may not be
the same as the sign of the mathematical product of the two operand values.”

Java Language Specification [12], §15.17.1

This is again implicitly fulfilled by our standard modelling.

8

Rauch and Wolff

4 Division and Remainder Operators

4.1 Division Operator

In Java, the division operator produces the first surprise if compared to the
mathematical definition of division, which is also used in Isabelle/HOL:

“The binary / operator performs division, producing the quotient of its operands.
[. . .] Integer division rounds toward 0. That is, the quotient produced for
operands n and d that are integers after binary numeric promotion (§5.6.2)
is an integer value q whose magnitude is as large as possible while satisfying
|d × q| ≤ |n|; moreover, q is positive when |n| ≥ |d| and n and d have the same
sign, but q is negative when |n| ≥ |d| and n and d have opposite signs.(1)

There is one special case that does not satisfy this rule: if the dividend is the
negative integer of largest possible magnitude for its type, and the divisor is -1,
then integer overflow occurs and the result is equal to the dividend.(2)

Despite the overflow, no exception is thrown in this case. On the other hand, if
the value of the divisor in an integer division is 0, then an ArithmeticException
is thrown.(3)”

Java Language Specification [12], §15.17.2

This definition points out a major difference between the definition of
division in Isabelle/HOL and Java. If the signs of dividend and divisor are
different, the results differ by one because Java rounds towards 0 whereas
Isabelle/HOL floors the result. Thus, the näıve approach of modelling Java
integers by partialization of the corresponding operations of a theorem prover
gives the wrong results in these cases.

We model the division by performing case distinctions:

defs (overloaded)
div-def : (x::JavaInt) div y ≡

if ((0 < x ∧ y < 0) ∨ (x < 0 ∧ 0 < y))
∧ ¬ (∃ z. Rep-JavaInt x = z ∗ Rep-JavaInt y) then
Int-to-JavaInt (Rep-JavaInt x div Rep-JavaInt y) + 1

else
Int-to-JavaInt(Rep-JavaInt x div Rep-JavaInt y)

The properties mentioned in the language report are formalized as follows:

(1) lemma quotient-sign-plus :
((abs d ≤ abs n) ∨ (n = MinInt)) ∧ (n 6= MinInt ∨ d 6= -1)
∧ (neg (Rep-JavaInt n) = neg (Rep-JavaInt d)) ∧ d 6= 0
=⇒ 0 < (n div d)

lemma quotient-sign-minus :
((abs d ≤ abs n) ∨ (n = MinInt)) ∧ (n 6= MinInt ∨ d 6= -1)
∧ (neg (Rep-JavaInt n) 6= neg (Rep-JavaInt d)) ∧ d 6= 0
=⇒ (n div d) < 0

The predicate “neg” holds iff the value of its argument is less than zero.
We have to treat the case n = MinInt separately because the abs function
on JavaInt produces an unusable result for MinInt (see above).

Again, the phrasing in the JLS is quite imprecise as the “one special

9

Rauch and Wolff

case that does not satisfy this rule” refers to both of the lemmas above.

(2) lemma JavaInt-div-minusone : MinInt div −1 = MinInt

(3) is not modelled by the theory presented in this section because this the-
ory does not introduce a bottom element for integers in order to treat
exceptional cases. Our model returns 0 in this case due to the definition
of the total function div in Isabelle/HOL. Exceptions are handled by the
next theory layer (see Sect. 6) which adds a bottom element to JavaInt

and lifts all operations in order to treat exceptions appropriately.

Again, the JLS is not very elaborate in (2) regarding the sign of the re-
sulting value if the magnitude of the dividend is less than the magnitude of
the divisor. It would have been clearer had they stated the result instead of
letting the reader derive the result from the presented inequalities.

4.2 Remainder Operator

The remainder operator is closely related to the division operator. Thus, it
does not conform to standard mathematical definitions either.

“The binary % operator is said to yield the remainder of its operands from an
implied division [...] The remainder operation for operands that are integers after
binary numeric promotion (§5.6.2) produces a result value such that
(a/b) ∗ b + (a%b) is equal to a.(1)

This identity holds even in the special case that the dividend is the negative inte-
ger of largest possible magnitude for its type and the divisor is -1 (the remainder
is 0).(2)

It follows from this rule that the result of the remainder operation can be negative
only if the dividend is negative, and can be positive only if the dividend is
positive;(3)

moreover, the magnitude of the result is always less than the magnitude of the
divisor.(4)

If the value of the divisor for an integer remainder operator is 0, then an Arith-
meticException is thrown.(5)

Examples: 5%3 produces 2 (note that 5/3 produces 1)
5%(-3) produces 2 (note that 5/(-3) produces -1)
(-5)%3 produces -2 (note that (-5)/3 produces -1)

(-5)%(-3) produces -2 (note that (-5)/(-3) produces 1)(6)”

Java Language Specification [12], §15.17.3

When formalizing the remainder operator, we have to keep in mind the
formalization of the division operator and the required equality (1). Therefore,
the remainder operator mod is formalized as follows:

mod-def : (x::JavaInt) mod y ≡
if ((0 < x ∧ y < 0) ∨ (x < 0 ∧ 0 < y))
∧ ¬ (∃ z. Rep-JavaInt x = z ∗ Rep-JavaInt y) then

Int-to-JavaInt(Rep-JavaInt x mod Rep-JavaInt y) − y
else

Int-to-JavaInt(Rep-JavaInt x mod Rep-JavaInt y)

The formulations in the JLS give rise to the following lemmas:

10

Rauch and Wolff

(1) lemma JavaInt-div-mod : ((a::JavaInt) div b) ∗ b + (a mod b) = a

(2) lemma MinInt-mod-minusone: MinInt mod −1 = 0
lemma MinInt-minusone-div-mod-eq :

(MinInt div −1) ∗ (−1) + (MinInt mod −1) = MinInt

(3) These phrases are not at all clear to us. We formalized them as follows,
in the hope of meeting the intentions of the authors:
lemma neg-mod-sign : (a::JavaInt) < 0 ∧ b 6= 0 =⇒ a mod b ≤ 0
lemma pos-mod-sign : 0 ≤ (a::JavaInt) ∧ b 6= 0 ∧ b 6= MinInt

=⇒ 0 ≤ a mod b

(4) lemma JavaInt-mod-less : b 6= 0 ∧ b 6= MinInt
=⇒ abs ((a::JavaInt) mod b) < abs b

It is not clear whether the “magnitude of the result” refers to the math-
ematical absolute value or to the Java method Math.abs. We decided to
use the function abs on JavaInt which allows us to stay in the abstract
model. This has the drawback that the lemma cannot be used for b =
MinInt.

(5) See the discussion for div above.

(6) lemma div-mod-example1 : (5::JavaInt) mod 3 = 2 etc.

Again, it is not made explicit in the JLS what happens if the dividend equals
0.

Java is not the only language whose definitions of div and mod do not re-
semble the mathematical definitions. The languages Fortran, Pascal and Ada
define division in the same way as Java, and Fortran’s MOD and Ada’s REM
operators are modelled in the same way as Java’s % operator. Goldberg [10, p.
H-12] regrets this disagreement among programming languages and suggests
the mathematical definition, some of whose advantages he points out.

5 Formalization With Bitstring Representation

5.1 Shift Operators

The shift operators are not properly described in the JLS (§15.19) either. It
is especially unclear what happens if the right-hand-side operand of the shift
operators is negative. Due to the space limitations of this paper, we have to
refrain from presenting the full formalization of the shift operators here.

5.2 Relational Operators

As the relational operators (described in JLS §§15.20, 15.21) do not offer many
surprises, we abstain from presenting their formalization here.

11

Rauch and Wolff

5.3 Integer Bitwise Operators &, ˆ, and |

This section formalizes the bitwise AND, OR, and exclusive OR operators.

“The bitwise operators [. . .] include the AND operator &, exclusive OR operator
ˆ, and inclusive OR operator |.(1) [. . .]
Each operator is commutative if the operand expressions have no side effects.
Each operator is associative.(2) [. . .]
For &, the result value is the bitwise AND of the operand values. For ˆ, the
result value is the bitwise exclusive OR of the operand values. For |, the result
value is the bitwise inclusive OR of the operand values. For example, the result
of the expression 0xff00 & 0xf0f0 is 0xf000. The result of 0xff00 ˆ 0xf0f0 is 0x0ff0.
The result of 0xff00 | 0xf0f0 is 0xfff0.(3)”

Java Language Specification [12], §15.22, 15.22.1

(1) These bitwise operators are formalized as follows:
constdefs

JavaInt-bitand :: [JavaInt,JavaInt] ⇒ JavaInt

x & y ≡ number-of (zip-bin (op &::[bool,bool]⇒bool)
(bin-of x) (bin-of y))

where bin-of transforms a JavaInt into its bitstring representation, zip-bin
merges two bitstrings into one by applying a function (which is passed
as the first argument) to each bit pair in turn, and number-of turns the
resulting bitstring back into a JavaInt. The other two bit operators are
defined accordingly.

(2) The commutativity and associativity of the three operators is proven by
six lemmas, of which we present two here:
lemma bitand-commute: a & b = b & a
lemma bitand-assoc: (a & b) & c = a & (b & c)

(3) We verify the results of the examples by proving the three lemmas
lemma bitand-example : 65280 & 61680 = 61440
lemma bitxor-example : 65280 ˆ 61680 = 4080
lemma bitor-example : 65280 | 61680 = 65520
In these lemmas we transformed the hexadecimal values into decimal
values because Isabelle is currently not able to read hex values.

5.4 Further Features of the Model

The model of Java integers presented above forms a ring. This could easily
be proved by using Isabelle/HOL’s Ring theory which only requires standard
algebraic properties like associativity, commutativity and distributivity to be
proven. The Ring theory makes dozens of ring theorems available for use
in proofs. Our model also forms a linear ordering. To achieve this prop-
erty, reflexivity, transitivity, antisymmetry and the fact that the ≤ operator
imposes a total ordering had to be proven. This allows us to make use of
Isabelle/HOL’s linorder theory. We get a two’s-complement representation by
redefining (using our standard wrapper) the conversion function number-of-def

12

Rauch and Wolff

which is already provided for int. This representation is used for those opera-
tors that are defined bitwise. Altogether, the existing Isabelle theories make it
relatively easy to achieve standard number-theoretic properties for types that
are defined as a subset of the Isabelle/HOL integers.

5.5 Empirical Data: The Size of our Specification and Proofs

The formalization presented in the preceding sections consists of five theory
files, the size of which is as follows:

Filename Lines Filename Lines

JavaIntegersDef.thy 260 JavaIntegersAdd.thy 240

JavaIntegersTimes.thy 200 JavaIntegersRing.thy 500

JavaIntegersDiv.thy 1800 JavaIntegersBit.thy 350

It took about one week to specify the definitions and lemmas presented here
and about eight to ten weeks to prove them, but the proof work was mainly
performed by one of the authors (NR) who at the same time learned to use
Isabelle, so an expert would be able to achieve these results much faster.

6 Formalizing the Exceptional Behavior Java Integers

The Java Language Specification introduces the concept of exception in ex-
pressions and statements of the language:

“The control transfer that occurs when an exception is thrown causes abrupt
completion of expressions (§15.6) and statements (§14.1) until a catch clause is
encountered that can handle the exception [. . .]
when the transfer of control takes place, all effects of the statements executed
and expressions evaluated before the point from which the exception is thrown
must appear to have taken place. No expressions, statements, or parts thereof
that occur after the point from which the exception is thrown may appear to
have been evaluated.”

Java Language Specification [12], §11.3, §11.3.1

Thus, exceptions have two aspects in Java:

• they change the control flow of a program,

• they are a particular kind of side-effect (i.e. an exception object is created),
and they prevent program parts from having side-effects.

While we deliberately neglect the latter aspect in our model (which can be
handled in a Hoare Calculus on full Java, for example, when integrating our
expression language into the statement language), we have to cope with the
former aspect since it turns out to have dramatic consequences for the rules
over Java expressions (these effects have not been made precise in the JLS).

So far, our normal behavior model is a completely denotational model; each
expression is assigned a value by our semantic definitions. We maintain this

13

Rauch and Wolff

denotational view, with the consequence that we have to introduce exceptional

values that are assigned to expressions that “may [not] appear to have been
evaluated”. In the language fragment we are considering, only one kind of
exception may occur:

“The only numeric operators that can throw an exception (§11) are the integer
divide operator / (§15.17.2) and the integer remainder operator % (§15.17.3),
which throw an ArithmeticException if the right-hand operand is zero.”

Java Language Specification [12], §4.2.2

In order to achieve a clean separation of concerns, we apply the technique
developed in [7]. Conceptually, a theory morphism is used to convert a normal
behavior model into a model enriched by exceptional behavior. Technically,
the effect is achived by redefining all operators such as +,−,∗ etc. using “se-
mantical wrapper functions” and the normal behavior definitions given in the
previous chapters. Two types of theory morphisms can be distinguished: One
for a one-exception world, the other for a multiple-exception world. While the
former is fully adequate for the arithmetic language fragment we are discussing
throughout this paper, the latter is the basis for future extensions by e.g. array
access constructs which may raise out-of-bounds exceptions. In the following,
we therefore present the former in more detail and only outline the latter.

6.1 The One-Exception Theory Morphism

We begin with the introduction of a type constructor that disjointly adds
to a type α a failure element such as ⊥ (see e.g. [27], where the following
construction is also called “lifting”). We declare a type class bot for all types
containing a failure element ⊥ and define as semantical combinator, i.e. as
“wrapper function” of this theory morphism, the combinator strictify that
turns a function into its strict extension wrt. the failure elements:

strictify :: ((α::bot) ⇒ (β::bot)) ⇒ α ⇒ β
strictify f x ≡ if x=⊥ then ⊥ else f x

Moreover, we introduce the definedness predicate DEF :: α::bot ⇒ bool
by DEF x ≡ (x 6= ⊥). Now we introduce a concrete type constructor that lifts
any type α into the type class bot:

datatype up(α) = b c α | ⊥

In the sequel, we write t⊥ instead of up(t). We define the inverse to the
constructor b c as d e. Based on this infrastructure, we can now define the
type JAVAINT that includes a failure element:

types JAVAINT= JavaInt⊥

Furthermore, we can now define the operations on this enriched type; e.g. we
convert the JavaInt unary minus operator into the related JAVAINT operator:

constdefs

uminus :: JAVAINT⇒JAVAINT

14

Rauch and Wolff

uminus ≡ strictify(b c ◦ uminus ◦ d e)

As a canonical example for binary functions, we define the binary addition
operator by (note that Isabelle supports overloading):

op +: [JAVAINT,JAVAINT] ⇒JAVAINT

op + ≡ strictify(λ X. strictify(λ Y. bdXe + dYec))

All binary arithmetic operators that are strict extensions like − or ∗ are con-
structed analogously; the equality and the logical operators like the strict
logical AND & follow this scheme as well. For the division and modulo oper-
ators / and %, we add case distinctions whether the divisor is zero (yielding
⊥). Java’s non-strict logical AND && is defined in our framework by explicit
case distinctions for ⊥.

This adds new rules like X + ⊥= ⊥ and ⊥+ X = ⊥. But what happens
with the properties established for the normal behavior semantics? They can
also be lifted, and this process can even be automated (see [7] for details).
Thus, the commutativity and associativity laws for normal behavior, e.g.
(X:: JavaInt) + Y = Y + X, can be lifted to (X:: JAVAINT) + Y = Y + X
by generic proof procedure establishing the case distinctions for failures. How-
ever, this works smoothly only if all variables occur on both sides of the equa-
tion; variables only occurring on one side have to be restricted to be defined.
Consequently, the lifted version of the division theorem looks as follows:

�
DEF Y; Y 6= 0 � =⇒ ((X:: JAVAINT) / Y) ∗ Y + (X % Y) = X

6.2 The Multiple-Exception Theory Morphism

The picture changes a little if the semantics of more general expressions are
to be modelled, including e.g. array access which can possibly lead to out-of-
bounds exceptions. Such a change of the model can be achieved by exchanging
the theory morphism, leaving the normal behavior model unchanged.

It suffices to present the differences to the previous theory morphism here.
Instead of the class bot we introduce the class exn requiring a family of unde-
fined values ⊥e. The according type constructor is defined as:

datatype up(α) = b c α | ⊥ exception

and analogously to d e we define exn-of(⊥e) = e as the inverse of the con-
structor ⊥; exn-of is defined by an arbitrary but fixed HOL-value arbitrary
for exn-of(b c) = arbitrary. Definedness is DEF(x) = (∀e.x 6= ⊥e).

The definition of operators is analogous to the previous section for the
canonical cases; and the resulting lifting as well. Note, however, that the
lifting of the commutativity laws fails and has to be restricted to the following:

�
DEF X = DEF Y ∧ exn-of X = exn-of Y �

=⇒ (X:: JAVAINT) + Y = Y + X

15

Rauch and Wolff

These restrictions caused by the lifting reflect the fact that commutativity
does not hold in a multi-exception world; if the left expression does not raise
the same exception as the right, the expression order cannot be changed.

Hence, our proposed technique to use a theory morphism not only leads
to a clear separation of concerns in the semantic description of Java, but also
leads to the systematic introduction of the side-conditions of arithmetic laws
in Java that are easily overlooked.

7 Conclusions and Future Work

In this paper we presented a formalization of Java’s two’s-complement in-
tegral types in Isabelle/HOL. Our formalization includes both normal and
exceptional behavior. Such a formalization is a necessary prerequisite for
the verification of efficient arithmetic Java programs such as encryption algo-
rithms, in particular in tools like Jive [20] that generate verification conditions
over arithmetic formulae from such programs.

Our formalization of the normal behavior is based on a direct analysis
of the Java Language Specification [12] and led to the discovery of several
underspecifications and ambiguities (see 3.1 (4), 4.1, 4.2, 5.1). These under-
specifications are highly undesirable since even compliant Java compilers may
interpret the same program differently, leading to unportable code. In the
future, we strongly suggest to supplement informal language definitions by
machine-checked specifications like the one we present in this paper as a part
of the normative basis of a programming language.

We applied the technique of mechanized theory morphisms (developed in
[7]) to our Java arithmetic model in order to achieve a clear separation of
concerns between normal and exceptional behavior. Moreover, we showed
that the concrete exceptional model can be exchanged — while controlling
the exact side-conditions that are imposed by a concrete exceptional model.
For the future, this leaves the option to use a lifting to the exception state

monad [18] mapping the type JAVAINT to state ⇒(JavaInt⊥,state) in order
to give semantics to expressions with side-effects like i++ + i.

Of course, more rules can be added to our theory in order to allow effective
automatic computing of large (ground) expressions — this has not been in the
focus of our interest so far. With respect to proof automation in JavaInt, it is
an interesting question whether arithmetic decision procedures of most recent
Isabelle versions (based on Cooper’s algorithm for Presburger Arithmetic) can
be used to decide analogous formulas based on machine arithmetic. While an
adoption of these procedures to Java arithmetic seems impossible (this would
require cancellation rules such as (a ≤ b) = (k × a ≤ k × b) for nonnegative
k which do not hold in Java), it is possible to retranslate JavaInt formulas
to standard integer formulas; remainder sub-expressions can be replaced via
P (a mod b) = ∃m. 0 ≤ m < a ∧ (a − m)

∣

∣ b ∧ P (m), such that finally a
Presburger formula results. Since a translation leads to an exponential blow-

16

Rauch and Wolff

up in the number of quantifiers (a critical feature for Cooper’s algorithm), it
remains to be investigated to what extent this approach is feasible in practice.

References

[1] M. D. Aagaard and C.-J. H. Seger. The formal verification of a pipelined
double-precision IEEE floating-point multiplier. In Int. Conf. on Computer
Aided Design. IEEE Computer Society, 1995.

[2] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. CUP, 1996.

[3] M. Balser et al. Formal system development with KIV. In Fundamental
Approaches to Software Engineering, LNCS 1783, 2000.

[4] B. Beckert and S. Schlager. Integer arithmetic in the specification and
verification of Java programs. In FM-TOOLS, 2002.

[5] J. v. d. Berg and B. Jacobs. The LOOP compiler for Java and JML. In
TACAS01, LNCS 2031, 2001.

[6] Dider Bondyfalat. Long integer division in Coq (algorithm divide and conquer).
http://www-sop.inria.fr/lemme/Didier.Bondyfalat/DIV/.

[7] A. D. Brucker and B. Wolff. Using theory morphisms for implementing formal
methods tools. In Types for Proof and Programs, LNCS, 2003.

[8] V. A. Carreño and P. S. Miner. Specification of the IEEE-854 floating-point
standard in HOL and PVS. In Higher Order Logic Theorem Proving and its
Applications, 1995.

[9] A. C. J. Fox. An algebraic framework for modelling and verifying
microprocessors using HOL. TR 512, University of Cambridge, 2001.

[10] D. Goldberg. Computer arithmetic. In Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 2002.

[11] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem-Proving
Environment for Higher-Order Logic. Cambridge University Press, 1993.

[12] J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM Language
Specification – Second Edition. Addison-Wesley, 2000.

[13] J. Harrison. A machine-checked theory of floating point arithmetic. In Theorem
Proving in Higher Order Logics (TPHOLs), LNCS 1690, 1999.

[14] Marc Herbstritt. e-mail communication, May 2003. Chair of Computer
Architecture, Uni Freiburg.

[15] S. Höreth and R. Drechsler. Formal verification of word-level specifications. In
IEEE Design, Automation and Test in Europe (DATE), 1999.

[16] Bart Jacobs. Java’s integral types in PVS. Submitted, 2003.

17

http://www-sop.inria.fr/lemme/Didier.Bondyfalat/DIV/

Rauch and Wolff

[17] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed design.
In Behavioral Specifications of Businesses and Systems. Kluwer, 1999.

[18] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In POPL’95: Principles of Programming Languages, 1995.

[19] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, Reading, Massachusetts, 1996.

[20] J. Meyer and A. Poetzsch-Heffter. An architecture for interactive program
provers. In TACAS00, LNCS 276, 2000.

[21] L. C. Paulson. Isabelle: A Generic Theorem Prover. LNCS 828. Springer, 1994.

[22] C. Pusch. Formalizing the Java Virtual Machine in Isabelle/HOL. Technical
Report TUM-I9816, TU München, 1998.

[23] D. Sannella and A. Tarlecki. Algebraic methods for specification and formal
development of programs. ACM Computing Surveys, 31(3es), 1999.

[24] C. Scholl, B. Becker, and T. Weis. On WLCDs and the complexity of word-
level decision diagrams — a lower bound for division. Formal Methods in System
Design, 20(3), 2002.

[25] Sun Microsystems, Inc. Java CardTM 2.1.1 Specifications – Release Notes, 2000.

[26] The Coq Development Team. The Coq Proof Assistant Reference Manual –
Version V7.3, 2002.

[27] G. Winskel. The Formal Semantics of Programming Languages. MIT Press,
1993.

18

