On Interactive Data Structures

WALTER DOSCH

Institute of Software Technology and Programming Languages
University of Liibeck
LUbeck, Germany

http://www.isp.uni-luebeck.de

Summary

Modern computer systems are composed of software and hardware components
of different kinds that communicate (a)synchronously by exchanging information
along connecting channels. Over the years, the computing paradigm shifted from
sequential systems to component-based distributed systems.

Characteristically, a sequential process describes a finite computation where in-
putis provided in the initial state and output is generated in the final state. Unlike a
sequential process, an interactive component shows a potentially infinite behaviour
where partial input is received during an ongoing computation and incremental out-
put is generated in reaction to the input received. As time progresses, an interactive
component consumes a stream of input messages and produces a stream of output
messages.

Software and hardware components often encapsulate a data structure as the
component’s internal state. In the algebraic approach, a data structure is described
as a multi-sorted algebra composed from carrier sets, constants and operations.
The algebraic approach supports well the specification of abstract data types and
the paradigm of functional programming. The static description of data structures,
however, does not cover the dynamic aspects of interactive components.

We present a formal method how to transform a functional data structure in a
systematic way into an interactive component. In the first design step, we convert
the functional interface of the data structure into an interaction interface. In the
second design step, we derive the component’s input/output behaviour as a relation
between input histories and output histories. In the third design step, we implement
the component’s input/output behaviour as a state transition machine introducing
states as history abstractions.

The formal method provides a safe roadmap from functional data structures to
state-based implementations as interactive components. The approach contributes
to a better understanding of functional, communication-oriented and state-based
descriptions of data structures.



