Open Types and Bidirectional Relationships
as an Alternativeto Classes and | nheritance

Christian Heinlein, Abt. Rechnerstrukturen, Universitat Ulm

Since the advent of procedural programming languages in the 1960s, data structures appearing in
programs are typically modeled as records (or structs), and even the object-oriented notion of a class
is basically a record equipped with a suite of procedures or methods. Even though data modeling
based on records, e.g., modeling a person as a record possessing fields (or members) such as name,
date of birth, address (which might itself be a record), etc., is rather natural and straightforward, a
severe limitation of records is the fact that they are fixed: Once a record type has been defined, the set
of its fields is invariably determined, and all its instances will possess exactly these fields.

Variant records in procedural languages and subclasses in object-oriented languages provide some
more flexibility in this regard, but a particular type or class still remains fixed once it has been
defined. So, even though it is possible, for instance, to “extend” a given class Per son by defining a
subclass Per sonW t hSsno in order to model persons with a social security number (ssno), the base
class Person actually remains unchanged (so the term “extend” is quite misleading). This is
particularly problematic when an existing program (e.g., a person management system) shall be
extended later in an unanticipated way: If the original source code is not available or shall not be
modified for reasons of modularity, introducing a subclass of Per son does not help since the original
code still creates instances of the original class.

To overcome these limitations of traditional record and class types, open types will be presented in
this talk as an alternative data model for procedural and object-oriented programming languages. Its
basic idea is to separate the definition of types from the definition of their constituents, i. e, their data
fields, associations, and base types. Data fields are modeled as attributes defining unidirectional
mappings from an open type to any other type, while associations are modeled as relationships
defining bidirectional mappings between two open types (i. e., pairs of attributes constituting mutually
inverse mappings). Finally, base types (or “supertypes” in object-oriented terminology) of an open
type are declared by establishing one-to-one relationships between the type and its base types which
are applied automatically on demand to map an object of the derived type (“subtype”) to an associated
object of a base type (“supertype”). By that means, attributes of the base types are apparently
“inherited” by the derived type, i.e., objects of the derived type can be used whenever an object of a
base type is required (“subtype polymorphism”). On the other hand, the model is more flexible than
typical object-oriented approaches for the following reasons:

« Relationships to base types can be established retroactively, i. e., after a type has been defined. This
allows in particular to introduce new “supertypes” later, which is usually impossible in object-
oriented languages.

» Multiple and even repeated inheritance is possible without encountering any of the typical problems
usually associated with these concepts. For example, name collisions between multiply “inherited”
attributes are simply solved by explicitly moving from an object to the appropriate “supertype” ob-
ject before applying the attribute, instead of relying on the automatic mapping described above.
Similarly, the distinction between “virtual” and “non-virtual” inheritance (to use C++ terminology),
i.e., whether a multiply inherited base type is shared or replicated in the derived type, is simply
expressed by creating either a single or multiple objects of it. By that means it is even possible to
model intermediate forms between virtual and non-virtual inheritance, i. e., to partially share several
base type objects in an object of a derived type.

» An object of some type can dynamically “evolve” to an object of a derived type (e. g., a person can
become a student) without changing its identity by simply creating an associated object of the
derived type and establishing a relationship between the objects. Again, this kind of object evolution
is usually impossible in object-oriented languages.



