Prompt, Lazy Assertions in Haskell
A Monadic Approach

Olaf Chitil Frank Huch
University of Kent, UK University of Kiel, Germany
oc@kent.ac.uk fhu@informatik.uni-kiel.de

Abstract

Assertions check expected properties of run-time values without disrupting the normal
computation of a program. Unfortunately, in lazy languages like Haskell checking asser-
tions may be problematic since the check will evaluate data structures although they are
not demanded by the computation of the program. We obtain a strict program. This
will especially be problematic if the programmer makes use of laziness, e.g. uses infinite
data structures.

As a solution, the evaluation of an assertion has to respect how far corresponding data
structures are evaluated. We developed a pattern logic for enriching Haskell programs
with assertions. In this pattern logic expected properties combine pattern matching with
logical operations and predicates. The assertions are both lazy, that is, they do not force
evaluation but only examine what is evaluated by other parts of the program, and prompt,
that is, assertion failure is reported as early as possible, before a faulty value is used by
the main computation.

However, in comparison to Haskell this logic is very restricted and some properties
are very difficult to explain. In this talk, we present a monadic extension of this pattern
logic which allows the definition of assertions similar to arbitrary Haskell functions. The
evaluation of these assertions is also lazy and prompt. Its implementation is based
on lazy observations and computing/suspending assertion checks in continuation-based
coroutines.



