
Strict Observations
Jan Christiansen

Department of Computer Science
CAU Kiel, Germany

jac@informatik.uni-kiel.de

Abstract

Call-by-name is known to be an optimal evaluation strategy with respect to termination. In prac-
tice you can only benefit from this result if functions are not unnecessarily strict. Often it is not trivial
to implement a function in a least strict way. In the following we use the lazy functional programming
language Haskell.

Consider a data type for Peano Numbers. A Peano Number is either zero or the successor of
another Peano Number.

data Peano = Zero | Succ Peano
We define the multiplication of two numbers by means of the addition plus.

mult :: Peano→ Peano→ Peano
mult Zero y = Zero
mult (Succ x) y = plus y (mult x y)

Furthermore we define an infinite Peano number which is an infinite sequence of successors.
infinity :: Peano
infinity = Succ infinity

Thanks to non-strictness the evaluation of mult Zero infinity yields Zero. But the evaluation of
mult infinity Zero does not terminate. We can improve mult with respect to strictness and therefore
termination. Consider the following implementation of the multiplication.

mult′ :: Peano→ Peano→ Peano
mult′ Zero y = Zero
mult′ (Succ ) Zero = Zero
mult′ (Succ x) y = plus y (mult′ x y)

For all total arguments mult and mult′ yield the same results. But the evaluation of mult′ infinity Zero
yields Zero. Note that it is not trivial to check whether mult′ is less strict than mult as the two
functions can still be incomparable.

This is not an artificial example. The paper “Declaring Numbers” [1] introduces lazy natural
numbers by a binary representation. As a motivating example they present a multiplication of Peano
Numbers which is implemented in the exact same manner as mult. Furthermore the library “Num-
bers”1 provides an implementation of Peano Numbers which implements the multiplication in the
same manner as mult . Both paper and library care about least strict implementations. This demon-
strates that it is not even trivial to implement a simple function like the multiplication of Peano
Numbers in a least strict way. On the other hand you can only benefit from non-strict programming
languages if functions are least strict.

Olaf Chitil first presented the idea of least-strictness and implemented a tool called StrictCheck
[2]. The tool was supposed to check whether a function is least strict. But it has some shortcomings.
In particular it does not consider sequentiality. That is, it suggests implementations that are not
implementable in a sequential language. In the long term we aim at a lightweight tool for checking
whether a function is least strict that does consider sequentiality.

References
[1] Bernd Brassel, Sebastian Fischer, and Frank Huch. Declaring numbers. In Proc. of the 16th International

Workshop on Functional and (Constraint) Logic Programming WFLP 2007, 2007.
[2] Olaf Chitil. Promoting non-strict programming. In Draft Proceedings of the 18th International Symposium

on Implementation and Application of Functional Languages, IFL 2006, pages 512–516, Budapest, Hungary,
September 2006. Eotvos Lorand University.

1available via hackage (http://hackage.haskell.org)

http://hackage.haskell.org

