
Typing Coroutines

Konrad Anton Peter Thiemann

A coroutine is a programming construct between function and thread. It can be
invoked like a function, but before it returns a value (if ever) it may suspend itself
arbitrarily often to return intermediate results and then be resumed with new inputs.
Unlike with preemptive threading, a coroutine does not run concurrently with the rest
of the program, but rather takes control until it voluntarily suspends to either return
control to its caller or to pass control to another coroutine. Coroutines are close to
cooperative threading, but they add value because they are capable of passing values
into and out of the coroutine and they permit explicit switching of control.

The main uses of coroutines are the implementation of compositions of state machines
and the implementation of generators. The latter use has lead to renewed interest in
coroutines and to their inclusion in mainstream languages like C#, albeit in restricted
form as generators.

Despite the renewed interest in the programming construct per se, the typing aspects of
coroutines have not received much attention. Indeed, the supporting languages are either
untyped (e.g., Lua, Scheme, Python), the typing for coroutines is trivalized, or coroutines
are restricted so that a very simple typing is sufficient. For instance, in Modula-2,
coroutines are created from parameterless procedures so that all communication between
coroutines must take place through global variables. Also, for describing generators, a
simple function type seems sufficient.

We propose a static type system for coroutines where coroutines are first-class values,
coroutine operations can be performed within nested function calls, and both asym-
metric (generator-style) and symmetric (task-switching-style) coroutine operators are
available. Moreover, we permit passing arguments to a coroutine at each start and re-
sume operations and we permit returning results on each suspend and on termination
of the coroutine (and we distinguish these two events). Our type system is based on the
simply-typed lambda calculus extended with effects that describe the way the coroutine
operations are used. We present a small-step operational semantics for the language and
prove type soundness.

1


