Using Haskell’s Type Systems to Check Relation
Algebraic Programs

Bernd Brafiel

Abstract

Relation algebra provides a theoretically well founded framework to
state algorithms in a declarative and concise way. Among other properties
the language of relations is based on a rigorous typing discipline. Current
systems to compute with relations do not, however, provide the user with
type inference to ease programming. In addition, the systems lack in
other aspects, like the possibility to define new data types, or to use
primitive types for, e.g., numbers conveniently, or to easily define new
control structures.

We introduce a binding for the lazy functional programming language
Haskell to the basic operations implemented in C which underly the re-
lation algebra system RelView. The advantages of such a binding are (at
least) twofold:

1) Haskell programmers are provided with the possiblity to write highly
efficient relational programs in a concise way.

2) Relational programmer are supported with a means to let infer and
check types for their programs. Moreover, they can take advantage
of the superior programming possibilities of Haskell.

We will describe three levels of detail for typing relational programs. The
most detailed level needs to make use of a number of extensions to the
standard Haskell type system.



