
A new language for algebraic dynamic
programming

Georg Sauthoff, Robert Giegerich

Faculty of Technology, Bielefeld University

Algebraic Dynamic Programming
Algebraic Dynamic Programming (ADP) is a declarative style of dynamic programming,
which has emerged in the area of biosequence analysis. Based on the concepts of signa-
tures, algebras, and regular tree grammars, a dynamic programming algorithm can be
expressed at a convenient level of abstraction, obviating the development and the tedious
debugging of the matrix recurrences typical of dynamic programming. The perfect sep-
aration of search space composition and evaluation of solution candidates, as enforced
in ADP, leads to unprecedenced versatility in the combination of different analyses via
product algebras. The ADP method has been used in implementing a good number of
bioinformatics tools in the area of RNA structure prediction.
Historically, the implementation of ADP was prototyped in the lazy functional lan-

guage Haskell, but efficiency as well as proliferation concerns require a stand-alone im-
plementation.

Bellman’s GAP and its compiler
Bellman’s GAP is a new domain specific language for writing programs in the ADP
paradigm. Bellman’s GAP contains C/Java-like syntax elements and a notation for tree
grammars resembling function calls. Compiling the declarative source code essentially
means the derivation of and code generation for efficient dynamic programming recur-
rences. The current compiler implements non-trivial semantic analyses for yield size
analysis and table design. Further examples are the automatic generation of different
backtracing schemes or the generation of OpenMP-parallelized code.

Overview of the presentation
The talk will give a short introduction to the declarative concepts of algebraic dynamic
programming. We will examplify the use of the new language with simple textbook
style examples. We then report on some optimization by the compiler which lead to
implementations competitive with handwritten code.


