Preliminary version. Final version in Journal of Computer Languages (Elsevier),

Vol. 23, No. 2-4, pp. 61-85, 1997
Lazy Narrowing with Simplification*

Michael Hanus
Informatik IT, RWTH Aachen
D-52056 Aachen, Germany

hanus@informatik.rwth-aachen.de

Abstract

Languages that integrate functional and logic programming styles with a complete opera-
tional semantics are based on narrowing. In order to avoid useless computations, lazy narrowing
strategies have been proposed in the past. This paper presents an improvement of lazy narrowing
by incorporating deterministic simplification steps into lazy narrowing derivations. These simpli-
fication steps reduce the search space so that in some cases infinite search spaces are reduced to
finite ones. We consider two classes of programs where this strategy can be applied. Firstly, we
show soundness and completeness of our strategy for functional logic programs based on ground
confluent and terminating rewrite systems. Then, we show similar results for constructor-based
weakly orthogonal (not necessarily terminating) rewrite systems. Finally, we demonstrate the
improved operational behavior by means of several examples. Since most functional logic lan-
guages are based on programs belonging to one of these classes, our result is a significant step
to improve the operational semantics of existing functional logic languages.

1 Introduction

In recent years, a lot of proposals have been made to amalgamate functional and logic programming
languages [22]. Functional logic languages with a sound and complete operational semantics are
based on narrowing, a combination of the reduction principle of functional languages and the
resolution principle of logic languages. Narrowing, originally introduced in automated theorem
proving [43], is used to solve equations by finding appropriate values for variables occurring in
arguments of functions. This is done by unifying (rather than matching) an input term with the
left-hand side of some rule and then replacing the instantiated input term by the instantiated
right-hand side of the rule.

Example 1.1 Consider the following rules defining the addition of two natural numbers which are
represented by terms built from 0 and s:

O+y — y (R1)
s(zy+y — s(z+y) (R)

“This paper is a revised version of papers appeared in the proceedings of ESOP’94 and PLILP’94.

The equation z + s(0) = s(s(0)) can be solved by a narrowing step with rule Ry followed by a
narrowing step with rule Ry so that z is instantiated to s(0) and the instantiated equation is
reduced to the trivial equation s(s(0)) =~ s(s(0)):

2+ 8(0) ® 5(s(0)) ~pzss@yy s(@+5(0)) = s(s(0)) ~ a0y 5(s(0)) ~ s(s(0))
Hence we have found the solution z — s(0) to the given equation. O

In order to ensure completeness in general, the left-hand side of each rule must be unified with
each nonvariable subterm of the given equation. Clearly, this yields a huge search space. The
situation can be improved by particular narrowing strategies which restrict the possible positions
for the application of the next narrowing step, e.g., basic [26], innermost [14], outermost [11],
lazy [41], or needed narrowing [2]. In this paper we consider lazy narrowing strategies where
narrowing steps are applied at outermost positions in general and at an inner position only if
it is demanded and contributes to some later narrowing step at an outer position. Similarly to
pure functional programming, such a lazy strategy avoids useless steps in comparison to an eager
strategy. However, in the context of functional logic programming, a lazy narrowing strategy can
also have an unpleasant behavior if a demanded argument term has infinitely many head normal
forms (i.e., if it can be derived to infinitely many terms with a variable or constructor at the top).

Example 1.2 Consider the following rules which may be part of a program for arithmetic opera-
tions:

Oxz — 0 (R3) one(0) — s(0) (R5)
zx0 — 0 (Ry) one(s(z)) — one(z) (Rg)

If we want to compute a solution to the equation one(z) x 0 ~ 0 by lazy narrowing, we could try
to apply rule R3 to evaluate the left-hand side. In this case the first argument one(z) is demanded
and must be evaluated to a term with a constructor at the top. Unfortunately, there are infinitely
many possibilities to compute a head normal form s(0) of the term one(z) by instantiating z with
i,—i (0) - -) for arbitrary n. Hence lazy narrowing has an infinite search space in this example and

dogs not compute a solution in a sequential implementation (see [18] for a discussion of problems
with sequential implementations of lazy narrowing). However, we could avoid this infinite search
space by computing the normal form of both sides of the equation before applying a narrowing
step. The normal form of the initial equation is 0 &~ 0 (reduction of the left-hand side with rule
Ry) which is trivially true. O

The idea of reduction to normal form before applying a narrowing step has been mainly proposed
with respect to eager narrowing strategies [13, 14, 25, 38, 42]. It has been shown that eager nar-
rowing with normalization is a more efficient control strategy than left-to-right SLD-resolution for
equivalent logic programs [14, 21]. On the other hand, only little work has been done to improve
the efficiency of outermost or lazy strategies. Echahed [12] has shown the completeness of any
narrowing strategy with simplification under strong requirements (uniformity of specifications).
Dershowitz et al. [9] have proposed to combine lazy narrowing with simplification and demon-
strated the usefulness of inductive consequences for simplification. However, they have not proved

completeness of their lazy unification calculus if all terms are simplified to their normal form after

each unification step.!

The main contribution of this paper is the combination of lazy narrowing with intermediate
simplification steps. We show that this combination does not destroy the completeness of lazy
narrowing. We prove this result for the following two classes of functional logic programs.?

1. Ground confluent and terminating rewrite systems: All existing proposals for combining nar-
rowing with simplification require terminating rewrite systems [13, 14, 25, 38, 42]. For this
case, narrowing is a method to compute unifiers in the presence of an equational theory
(known as E-unification, see [3] for a survey). We will develop a calculus for this class, called
lazy unification with simplification, and provide a rigorous completeness proof. This calculus
has a lazy behavior w.r.t. unification, i.e., functions are only evaluated if their value is re-
quired to decide the unifiability of terms. Moreover, we allow to use program rules as well as
additional inductive consequences for simplification between narrowing steps. This has been
proved to be useful in other (eager) calculi [12, 14, 38].

2. Weakly orthogonal (not necessarily terminating) rewrite systems: If the functional logic pro-
gram is not based on a terminating rewrite system, a lazy narrowing strategy is needed
[6, 35, 41]. Since normal forms may not exist in the presence of nonterminating functions,
equality between two expressions is interpreted as strict equality in such languages (e.g.,
BABEL [37], K-LEAF [17]), i.e., two expressions are equal iff they are reducible to a same
ground constructor term. The confluence of the rewrite system is ensured by syntactic criteria
(left-linearity and nonambiguity). Lazy narrowing is a complete method to compute unifiers
w.r.t. strict equality for such programs. However, no attempt has been made to use program
rules for simplification between narrowing steps. Due to the absence of normal forms for
some expressions, full normalization between narrowing steps would be incomplete. There-
fore, we propose the integration of lazy simplification into lazy narrowing derivations for such
programs.

As far as we know, all functional logic languages with a complete operational semantics are based
on programs belonging to one of these classes. For instance, programs with the requirements of
ALF [19], LPG [4] or SLOG [14] are ground complete and terminating, whereas programs with the
requirements of BABEL [37] or K-LEAF [17] are weakly orthogonal. Thus our result is a significant
step to improve the operational semantics of existing functional logic languages. We will emphasize
this point by discussing the advantage of lazy narrowing with simplification for various classes of
functional logic programs.

In the next section we recall basic notions from term rewriting and functional logic programming.
In Section 3 we present the lazy unification calculus with simplification and prove its soundness
and completeness for ground confluent and terminating rewrite systems. In Section 4 we show

n fact, their completeness proof for lazy narrowing does not hold if eager rewriting is included since rewriting in
their sense does not reduce the complexity measure used in their completeness proof and may lead to infinite instead
of successful derivations.

2For the sake of simplicity, we consider only programs based on unconditional rewrite systems. However, it does
not seem difficult to extend the results of Section 4 to conditional rules with extra variables in conditions using the
transformation techniques presented in [24].

how to include a deterministic simplification process into lazy narrowing derivations w.r.t. weakly
orthogonal rewrite systems. In Section 5 we discuss the usefulness of this simplification process
for different classes of functional logic programs. Finally, we conclude with a discussion of related
work.

2 Preliminaries

In this section we recall basic notions of term rewriting [8] and functional logic programming [22].

A signature is a set F of function symbols.> Every f € F is associated with an arity n, denoted
f/m. Let X be a countably infinite set of variables. Then the set T (F,X) of terms built from F
and X is the smallest set containing X such that f(¢1,...,t,) € T(F,X) whenever f € F has arity
nand ty,...,t, € T(F,X). We write f instead of f() whenever f has arity 0. The set of variables
occurring in a term ¢ is denoted by Var(t) (similarly for the other syntactic constructions defined
below, like equation, rewriting rule etc.). A term ¢ is called ground if Var(t) = 0. In the following
we assume that F is a signature with at least one constant.

The execution of functional logic programs requires notions like substitution, unifier and sub-
term which will be defined next. A substitution o is a mapping from X into 7 (F,X) such that
its domain Dom(oc) = {x € X | o(z) # =z} is finite. We frequently identify a substitution o
with the set {z — o(z) | x € Dom(o)}. Substitutions are extended to morphisms on 7 (3, X) by
o(f(ty,... tn)) = f(o(t1),...,0(ty)) for every term f(t1,...,t,). A substitution o is called ground
if o(z) is a ground term for all z € Dom(c). The composition of two substitutions ¢ and o is
defined by ¢ o o(z) = ¢(o(z)) for all x € X. The union of two substitutions ¢ and o is defined by

¢(z) if z € Dom(p)
(pUo)(z) = < o(z) if z € Dom(o)
x otherwise

only if Dom(¢) N Dom(o) = (). The restriction o}y of a substitution o to a set V' of variables is
defined by o}y (z) = o(z) if z € V and oy (z) = v if ¢ V. A term s is called instance of a term
t if there is a substitution o with s = o(¢) (similarly for the other syntactic constructions defined
below).

A unifier of two terms s and ¢ is a substitution o with o(s) = o(t). A unifier o is called most
general (mgu) if for every other unifier ¢’ there is a substitution ¢ with ¢’ = ¢ o 0. Most general
unifiers are unique up to variable renaming. By introducing a total ordering on variables we can
uniquely choose the most general unifier of two terms. A position p in a term ¢ is represented by a
sequence of natural numbers, ¢|, denotes the subterm of ¢ at position p, and ¢[s], denotes the result
of replacing the subterm t|, by the term s (see [8] for details).

Let — be a binary relation on a set S. Then —* denotes the transitive and reflexive closure of
the relation —, and <* denotes the transitive, reflexive and symmetric closure of —. — is called
terminating if there are no infinite chains e; — es — e3 — ---. — is called confluent if for all
e,e1,es € S with e —* e; and e —* ey there exists an element es € S with e; —* e3 and e; —* e3.

3In this paper we consider only single-sorted programs. The extension to many-sorted signatures is straightforward
[39]. Since sorts are not relevant to the subject of this paper, we omit them for the sake of simplicity.

An equation s = t is a multiset containing two terms s and ¢. Thus equations to be unified
are symmetric. In order to compute with functional logic programs, we will use the equations
specifying functions only in one direction. Hence we define a rewrite rule [— r as a pair of terms
[,r satisfying [¢ X and Var(r) C Var(l) where [and r are called left-hand side and right-hand
side, respectively. A rewrite rule is called a wariant of another rule if it is obtained by a unique
replacement of variables by other variables. In the following we assume that R is a set of rewrite

rules, which is also called term rewriting system.

A rewrite step is an application of a rewrite rule to a term, i.e., ¢ —5 s if there exist a position
p in t, a rewrite rule [— r and a substitution o with t[, = o(l) and s = t[o(r)],. In this case we
say t is reducible (at position p). A term ¢ is called irreducible or in normal form if there is no term
s with t -% s. A substitution o is called irreducible or normalized if o(z) is in normal form for all
variables z € X. A term rewriting system is (ground) confluent if the restriction of —5 to the set
of all (ground) terms is confluent. If R is (ground) confluent and terminating, then each (ground)
term ¢ has a unique normal form which is denoted by t]%.

We are interested in proving the validity of equations. An equation s ~ ¢ is called valid (w.r.t.
R) if s <3} t. By Birkhoft’s Completeness Theorem, this is equivalent to the validity of s ~ ¢ in all
models of R. In this case we also write s =g ¢. If R is (ground) confluent and terminating, we can
decide the validity of a (ground) equation s ~ ¢ by computing the normal form of both sides using
an arbitrary sequence of rewrite steps, since s <+% t iff s|lg = t/%. In order to compute solutions
to a nonground equation s = ¢, we have to find appropriate instantiations for the variables in s and
t. This can be done by narrowing. A term t is narrowable into a term ¢’ if there exist a nonvariable
position p (i.e., t|, ¢ X), a variant | — r of a rewrite rule with Var(t) N Var(l) = 0, a substitution
o such that o is a mgu of t|, and I, and t' = o(t[r],). In this case we write ¢ ~+p,;_,, »1 ' or simply
t ~o t'.4 If there is a narrowing sequence t; ~+y, to ~ry, -++ ~3y . lp, We write t; ~% t, with
0 =0p-10---0092001.

Narrowing is able to solve equations w.r.t. R. For this purpose we introduce two new function
symbols =7 and true and add the rewrite rule =" z — true to R. Then narrowing is sound and
complete in the following sense.

Theorem 2.1 ([26]) Let R be a term rewriting system so that —x is confluent and terminating.
1. If s =" t ~% true, then o(s) =g o(t).

2. If o'(s) =g o'(t), then there exist a narrowing derivation s =’ t ~»* true and a substitution
¢ with ¢(o(x)) = o' (z) for all z € Var(s) U Var(t).

Since this simple narrowing procedure (enumerating all narrowing derivations) is very inefficient,
several authors have proposed restrictions on the admissible narrowing derivations (see [22] for
a detailed survey). For instance, Hullot [26] has introduced basic narrowing where narrowing
steps in positions introduced by substitutions are forbidden. Fribourg [14] has proposed innermost
narrowing where narrowing is applied only at innermost positions, and Holldobler [25] has combined
innermost and basic narrowing. Krischer and Bockmayr [29] have proposed additional tests during
narrowing derivations to eliminate redundant derivations. Narrowing at outermost positions is

4Since the instantiation of the variables in the rule [— r by ¢ is not relevant for the computed solution of a
narrowing derivation, we omit this part of ¢ in the example derivations in this paper.

complete only if the term rewrite system satisfies strong restrictions [11]. Lazy narrowing [6, 35, 41]
is influenced by the idea of lazy evaluation in functional programming languages. Lazy narrowing
steps are only applied at outermost positions with the exception that arguments are evaluated by
narrowing to their head normal form if their values are required for an outermost narrowing step
(see [37] for an exact definition of a lazy narrowing position). Since lazy strategies are relevant
in the context of nonterminating rewrite rules, these strategies have been proved to be complete
w.r.t. domain-based interpretations of rewrite rules [17, 37]. Lazy unification is very similar to lazy
narrowing but manipulates sets of equations rather than terms. It has been proved to be complete
for confluent and terminating term rewriting systems w.r.t. standard semantics [9, 34]. Therefore,
lazy unification calculi are more appropriate in the context of terminating rewrite systems and
standard semantics of equality, whereas lazy narrowing calculi are appropriate in the presence of
nonterminating rules. Thus, we follow this distinction.’

Another improvement of simple narrowing is normalizing narrowing [13] where the term is
rewritten to its normal form before a narrowing step is applied. This optimization is important
since it prefers deterministic computations: rewriting a term to normal form can be done in a
deterministic way since every rewriting sequence yields the same result (if R is confluent and
terminating) whereas different narrowing steps may lead to different solutions and, therefore, all
admissible narrowing steps must be considered. In a sequential implementation, rewriting can
be efficiently implemented like reductions in functional languages whereas narrowing steps need
costly backtracking management like in Prolog. For instance, if s =% ¢, normalizing narrowing will
prove the validity by a pure deterministic computation (reducing s and ¢ to the same normal form)
whereas simple narrowing would compute the normal form of s and ¢ by costly narrowing steps.
As shown in [14, 21], normalizing narrowing has the desirable effect that functional logic programs
are more efficiently executable than pure logic programs.

The idea of normalizing narrowing can also be combined with other narrowing restrictions.
Réty [42] has proved completeness of normalizing basic narrowing, Fribourg [14] has proposed nor-
malizing innermost narrowing and Holldobler [25] has combined innermost basic narrowing with
normalization. Because of these advantages, normalizing narrowing is the foundation of several
programming languages which combines functional and logic programming, like ALF [19], LPG [4],
or SLOG [14]. However, normalization has not been included in lazy narrowing strategies.® There-
fore, we will show that deterministic simplification steps can be performed before nondeterministic
lazy narrowing steps without destroying the completeness of lazy narrowing. The problems of
integrating normalization into basic narrowing [42] shows that such a result is not obvious.

3 Ground Confluent and Terminating Programs

In this section we assume that R is a ground confluent and terminating term rewriting system.
First, we present our basic lazy unification calculus to solve a system of equations. The inclusion
of a normalization process will be shown in Section 3.2. The “laziness” of our calculus is in the
spirit of lazy evaluation in functional programming languages, i.e., terms are evaluated only if their
values are needed.

*Note that this distinction becomes essential if one considers higher-order rewrite rules [40].
®Except for [9, 12], but see the remarks in Section 1.

Lazy narrowing

Fltr, ot~ E 25 timl,.. bt~y r~tE

iftg X orteVar(f(tr,...,tn)) UVar(FE) and f(l1,...,l,) = r new variant of a rewrite rule
Decomposition of equations

bt~ fth,. .) E L ti~t),. . ta~t E

Partial binding of variables

fzf(tl,...,tn),E % l’zf(fl,...,l’n),l’lz(ﬁ(tl),...,l‘nz(ﬁ(tn),(ﬁ(E)
if x € Var(f(ti,...,tn)) UVar(E) and ¢ = {z — f(z1,...,7,)} (where z; new variable)

Figure 1: The lazy unification calculus

3.1 A Calculus for Lazy Unification

Lazy narrowing as introduced in Section 2 is defined only for constructor-based programs (see
also Section 4). Since we do not require constructor-based programs in this section, we present a
lazy unification calculus which is slightly more general than lazy narrowing. This lazy unification
calculus manipulates sets of equations in the style of Martelli and Montanari [33] rather than terms
as in narrowing calculi. Hence we define an equation system E to be a multiset of equations (in
the following we write such sets without curly brackets if it is clear from the context). A solution
of an equation system E is a ground substitution o such that Var(E) C Dom(c) and o(s) = o(t)
for all equations s =~ t € E.” An equation system E is solvable if it has at least one solution. A set
S of substitutions is a complete set of solutions for E iff

1. for all 0 € S, o is a solution of F;
2. for every solution 0 of E, there exists some o € S with 6(z) =x o(x) for all z € Var(F).

In order to compute solutions of an equation system, we transform it by the rules in Figure 1
until no more rules can be applied. The lazy narrowing transformation applies a rewrite rule to a
function occurring outermost in an equation.® Actually, this is not a narrowing step as defined in
Section 2 since the argument terms may not be unifiable. Narrowing steps can be simulated by a
sequence of transformations in the lazy unification calculus but not vice versa since our calculus also
allows the application of rewrite rules to the arguments of the left-hand sides. The decomposition
transformation generates equations between the argument terms of an equation if both sides have
the same outermost symbol. The partial binding of variables can be applied if the variable z occurs
at different positions in the equation system. In this case we instantiate the variable only with
the outermost function symbol. A full instantiation by the substitution ¢ = {z — f(t1,...,t,)}
may increase the computational work if z occurs several times and the evaluation of f(t1,...,t,)

"We are interested in ground solutions since later we will include inductive consequences which are valid in the
ground models of R. As pointed out in [38], this ground approach subsumes the conventional narrowing approaches
where also nonground solutions are taken into account (as in Theorem 2.1).

8Similarly to logic programming, we have to apply rewrite rules with fresh variables in order to ensure completeness.

is costly. In order to avoid this problem of eager variable elimination (see [15]), we perform only a
partial binding which is also called “root imitation” in [15].
It is possible to add further rules to simplify equation systems like the elimination of trivial

equations:
t~t,E 2% E

However, these rules are not really necessary and we omit them in our first approach. Later we
will see how to add deterministic (failure) rules to reduce the search space of the calculus.

At first sight our lazy unification calculus has many similarities with the lazy unification rules
presented in [9, 15, 34, 39]. This is not accidental since these systems have inspired us. However,
there are also essential differences. Since we are interested in reducing the computational costs in
the E-unification procedure, our rules behave “more lazily”. In our calculus it is allowed to evaluate
a term only if its value is needed? (in several positions). Otherwise, the term is left unevaluated.

Example 3.1 Consider the rewrite rule 0 x £ — 0. Then the only transformation sequence of the
equation 0 x ¢ &~ 0 (where ¢ may be a costly function) is

0xt~0 =% 0~ 0, t~z, 00 (lazy narrowing)
T z, 0=0 (decomposition)
L taw (decomposition,)

Thus the term % is not evaluated since its concrete value is not needed. Consequently, we may
compute solutions which are not normalized. That is a desirable property in the presence of a lazy
evaluation mechanism. O

The conventional transformation rules for unification w.r.t. an empty equational theory [33] bind
a variable z to a term ¢ only if z does not occur in ¢. This occur check must be omitted in the
presence of evaluable function symbols. Moreover, we must also instantiate occurrences of x in the
term ¢ which is done in our partial binding rule. The following example shows the necessity of

these extensions.

Example 3.2 Consider the rewrite rule f(c(a)) — a. Then we can solve the equation z = ¢(f(x))
by the following transformation sequence:

z = c(f(z)) T c(z1), z1 = f(c(zy)) (partial binding)
Lz c(z1), c(z1) = cla), T1 = a (lazy narrowing)
2 g c(r), 1 ~a, 1 ~a (decomposition)
g cla), T1 ~a, a = (partial binding)
lu .
= z=c(a), 11 =a (decomposition)

In fact, the initial equation is solvable and {z — c(a)} is a solution of this equation. This solution
is also an obvious solution of the final equation system if we disregard the auxiliary variable ;. O

9Although our lazy narrowing rule is more restricted than in other lazy unification calculi, it is not optimal in the
sense of [2] since we do not require strongly sequential rewrite systems.

Coalesce

r~y, B = zxy,¢(E)
if x,y € Var(E), ¢ #y, and ¢ = {z — y}
Trivial

var

r~z,F — FE

Figure 2: The variable elimination rules

In the rest of this section, we will prove soundness and completeness of our lazy unification
calculus. Soundness simply means that each solution of the transformed equation system is also a
solution of the initial equation system. Completeness is more difficult since we have to take into
account all possible transformations. Therefore, we will show that a solvable equation system can
be transformed into another very simple equation system which has “an obvious solution”. Such
a final equation system is said to be in “solved form”. According to [15, 33], we call an equation
x & t of an equation system F solved (in E) if x is a variable which occurs neither in ¢ nor anywhere
else in F. In this case variable z is also called solved (in E). An equation system is solved or in
solved form if all its equations are solved. A variable or equation is unsolved in F if it occurs in F
but is not solved.

The lazy unification calculus in the present form cannot transform each solvable equation system
into a solved form since equations between variables are not simplified. For instance, the equation
system

fzf(y), Y=z, Y= 22, 21 T2

is irreducible w.r.t. =% but not in solved form since the variables Y, 21, z2 have multiple occurrences.
Fortunately, this is not a problem since a solution can be extracted by merging the variables
occurring in unsolved equations. Therefore, we call this system quasi-solved. An equation system
is quasi-solved if each equation s = t is solved or has the property s,t € X. In the following
we will show that a quasi-solved equation system has solutions which can be easily computed by
applying the rules in Figure 2 to it. The separation between the lazy unification rules in Figure 1
and the variable elimination rules in Figure 2 has technical reasons that will become apparent later
(e.g., applying variable elimination to the equation y & z; may not reduce the complexity measure
used in our completeness proofs). However, it is obvious to extract the solutions of a quasi-solved
equation system FE. For this purpose we transform £ by the rules in Figure 2 into a solved equation
system which has a direct solution. This is justified by the following propositions.

Proposition 3.3 Let E and E' be equation systems with E==FE'. Then E and E' have the same
solutions.

Proof: 1t is obvious that E and E' have the same solutions if the transformation rule “Trivial” is
applied. In case of the rule “Coalesce”, E has the form z ~ y, Ey, and E' has the form z =~ y, ¢(Ep)
with ¢ = {x — y}. Let o be a solution of E. Then o(z) <% o(y) = o(¢(z)). By definition of
¢ and the congruence property of <%, o(t) <% o(4(t)) for all terms ¢. Let s =~ ¢t € Ey. Since o

is a solution of E, o(s) <3} o(t). Moreover, o(s) <3} o(¢(s)) and o(t) <% o(¢p(t)) which implies
o(p(s)) 5% o(é(t)). Therefore, o is also a solution of ¢(Ep).

If o is a solution of E’, it can be shown in a similar way that o is also a solution of Fj.]

. ., . var
Due to this proposition, the transformation = preserves solutions. Moreover, it is a terminating
relation:

Proposition 3.4 The relation == on equation systems is terminating.

Proof: Define the complexity of an equation system as the total number of occurrences of unsolved
variables in this system. Obviously, both transformation rules of == reduce this number. |

If an equation system is quasi-solved, we can always transform it into a solved system:

Proposition 3.5 Let FE be a quasi-solved equation system. Then there exists a solved equation
var

system E' with E=*FE'.

Proof: Let E be a quasi-solved equation system which is not solved. Then there exists an equation

x = y € E which is unsolved. Hence z = y or z,y € Var(E — {x = y}). In the first case we apply

the rule “Trivial” and in the second case we apply the rule “Coalesce”. The result of both cases
var

is a new equation system in quasi-solved form. Since there are no infinite derivations w.r.t. =
(Proposition 3.4), successive transformation steps w.r.t. == will end in a solved equation system.

|
The solutions of an equation system in solved form can be obtained as follows:
Proposition 3.6 Let E be an equation system in solved form, i.e.,
E = {171 R t1,...,Tp %tn}

where x1, ..., x, are different variables with x; ¢ Var(t;) fori,j € {1,...,n} (recall that equations
are multisets, thus we can write solved systems always in this form). Then the substitution set

n

{yo{z1— t1,...,2y — tp} | v is a ground substitution with Dom(~y) = U Var(t;)}

i=1
is a complete set of solutions for F.
Proof: First we show that 8 : = yo{x; — t1,..., 2, — t,} is a solution of E for an arbitrary ground
substitution v with Dom(vy) = U=, Var(t;). Clearly, Dom(0) = {z1,...,z,} UDom(y) = Var(E).
Consider the equation z; ~ t; € E. Since z1,...,x, do not occur in any t;, 0(x;) = v(t;) = 0(t;),

i.e., 0 is a solution of z; = t;. Hence 0 is a solution of F.

Next we show that every solution of E is covered by some substitution from the substitution
set defined above. Let & be a solution of E. Then &(z;) =r &(¢;) for i = 1,...,n. Since £ is a
ground substitution with Var(E) C Dom/(€), the substitution

0 := éh‘ Uﬁzlvar(ti) © {xl A T INN F tn}

is contained in the above substitution set. We have to show {(z) = 6(z) for all x € Var(E):

10

e By definition of 0 and &, 0(x;) = £(t;) =r &(z;) fori=1,...,n.

o If z € Var(t;) for some j € {1,...,n}, then f(z) = {(x) by definition of # (note that = is

different from any z; since no x; occurs in t;).

Altogether, 0(z) =x &(z) for all z € Var(FE). [

Due to Propositions 3.3, 3.5 and 3.6, it is sufficient to transform an equation system into a quasi-
solved form in order to compute its solutions. Hence we can state soundness and completeness
results by concentrating on quasi-solved forms. The next lemma shows the soundness if a trans-
formation rule of the lazy unification calculus is applied.

Lemma 3.7 Let F and E’ be equation systems with B F'. Then each solution o of E' is also
a solution of E.

Proof: Assume that E-% E' and o is a solution of . Clearly, Var(F) C Dom(o) since Var(FE) C
Var(E') C Dom(c). There are three cases corresponding to the applied transformation rule:

1. The lazy narrowing rule has been applied. Then F = f(t1,...,t,) = t, Fo, f(l1,...,0lp) —
r is a variant of a rewrite rule and E' = t; =~ [1,...,t, = l,,r =~ t,Ey. Since o is a
solution of E', o(t;) <% o(l;) (for i =1,...,n) and o(r) <% o(t). These equivalences imply
o(f(ti,...,tn)) <% o(f(l1,...,1,)) by the congruence property of <+%. Since f(l1,...,l) —
r is a variant of a rewrite rule, o(f(l1,...,1l,)) = o(r) <% o(t). Hence o(f(t1,...,tn)) <%
o(t), i.e., o is a solution of F.

2. The decomposition rule has been applied. Then E = f(t1,...,t,) = f(t},...,t,), Fyp and
E' =t ~t),...,t, = t,, Ey. Since o is a solution of E', o(t;) <5 o(t;) (for i = 1,
Hence o(f(t1,...,tn)) <% o(f(t,...,t,)) by the congruence property of <.

ceey).

3. The partial binding rule has been applied. Then E = z ~ f(t1,...,t,),Ey and E' = z =~

flzy, .. xn),x1 = P(t1), ..., 20 = d(tn), ¢(Ey) where ¢ = {z — f(x1,...,2,)}. Since o is a
solution of F', we have

(a) o(z) % o(f(z,...,2n))
(b) o(z;) <% o(¢(t;)) (fori=1,...,n)
(¢) o solution of ¢(Fy)

By definition of ¢, (a) and the congruence property of <73,
o(¢(t)) <% o(t) for all terms ¢ (%)

Hence o is also a solution of Ey. Moreover,

o(z) <x olf(zi,...,20)) (by (a))
ok o(f(d(tr),...,9(tn))) (by (b))
ok o(f(t,.. 1)) (by (+))
Hence o is a solution of x & f(t1,...,t).

11

The following soundness theorem can be proved by a simple induction on the transformation steps
using the previous lemma.

Theorem 3.8 Let E and E' be equation systems with E*E' Then each solution o of E' is a
solution of E.

The completeness proof is more difficult since we have to consider all possible transformation
sequences. Therefore, we show that for each solution of an equation system there is a derivation
into a quasi-solved form that has the same solution. Note that the solution of the quasi-solved
form cannot be identical to the required solution, because new additional variables are generated
during the derivation (by lazy narrowing and partial binding transformations). However, this is
not a problem since we are interested in solutions w.r.t. the variables of the initial equation system.

Theorem 3.9 Let E be a solvable equation system with solution o. Then there exists a derivation
E-2*E'" with E' in quasi-solved form such that E' has a solution o' with o'(z) =g o(z) for all
z € Var(E).

Proof: We show the existence of a derivation from E into a quasi-solved equation system by the
following steps:

1. We define a reduction relation = on pairs of the form (o,), where F is an equation system
and o is a solution of F, with the property that (o, F) = (¢, E') implies EL B and
o'(z) = o(z) for all z € Var(E).

2. We define a terminating ordering > on these pairs.

3. We show: If F has a solution ¢ but E is not in quasi-solved form, then there exists a pair
(o', E") with (0, F) = (¢',E') and (0, E) > (¢/, E').

2 and 3 implies that each solvable equation system can be transformed into a quasi-solved form.
By 1, the solution of this quasi-solved form is the required solution of the initial equation system.
In the sequel we will show 1 and 3 in parallel. First we define the terminating ordering .
For this purpose we use the strict subterm ordering =ss on terms defined by ¢ =4 s iff there is a
position p in ¢ with ¢, = s # ¢. Since R is a terminating rewrite system, the relation —% on terms
is also terminating. Let $ be the transitive closure of the relation - U 4. Then » is also
terminating [28].!1° Now we define the following ordering on pairs (o, E): (0, E) = (o', E') iff

~ . .) e I 4! ! . /
) mu bl
{o(s),0(t) | s=t € Eis unsolved in E} %, {0'(s'),0'(t') | s’ =t € E' is unsolved in E'} (x)

where %, is the multiset extension!! of the ordering % (all sets in this definition are multisets).
% mul 18 terminating (note that all multisets considered here are finite) since » is terminating [7].

'"Note that the use of the relation —% instead of % (as done in [9]) is not sufficient for the completeness proof
since - has not the subterm property [7] in general.

" The multiset ordering .. is the transitive closure of the replacement of an element by a finite number of
elements that are smaller w.r.t. » [7].

12

Now we will show that we can apply a transformation step to a solvable but unsolved equation

system such that its complexity is reduced. Let E be an equation system not in quasi-solved form

and o be a solution of E. Since FE is not quasi-solved, there must be an equation which has one of

the following forms:

1. There is an equation E = s ~ t, By with s,¢t ¢ X: Let s = f(s1,...,8,) with n > 0 (the other
case is symmetric). Consider an innermost derivation of the normal forms of o(s) and o(¢):

()

No rewrite step is performed at the root of o(s) and o(¢): Then ¢ has the form ¢ =
f(t1,...,tn) and o(s)dr = o(t)Ir = f(u1,...,uyn). Since o(s) and o(¢) are not reduced
at the root, o(s;)dr = u; = o(t;)dr for i = 1,...,n. Now we apply the decomposition
transformation and obtain the equation system

!
E = Slztl,...,sn%tn,Eo

Obviously, o is a solution of E’'. Moreover, the complexity of the new equation system
is reduced because the equation s & ¢ is unsolved in E and each o(s;) and o(t;) is
smaller than o(s) and o(t), respectively, since » contains the strict subterm ordering
=sst- Hence (o, F) = (o, E'").

A rewrite step is performed at the root of o(s), i.e., the innermost rewriting sequence of
o(s) has the form

o(s) = f(s1,.--,81) =R 0(r) =% o(s)lr
where f(l1,...,l,) — r is a new variant of a rewrite rule, 8(l;) = s; and o(s;) =% s; for
i =1,...,n. An application of the lazy narrowing transformation yields the equation
system
E = S1 %ll,...,sn zln,r %t,EO

We combine ¢ and € to a new substitution o/ = o U @ (this is always possible since
0 does only work on the variables of the new variant of the rewrite rule). Note that
Var(E'") C Dom(o'). ¢' is a solution of E’ since

O’I(Si) = U(SZ’) —)}kz 8; = 0([2) = O’I(li)

and
o'(r) = 0(r) =% o(s)ir R o(t) = o'(t)

Since the transitive closure of —5 is contained in 3, o(s;) » o'(l;) (if o(s;) # o'(1;))
and o(s) » o'(r). Since s &~ t is unsolved in E, the term o(s) is contained in the left
multiset of the ordering definition (x), and it is replaced by a selection of the smaller
terms o(s1),...,0(sn),0'(l1),...,0'(In),0'(r) (o(s) » o(s;) since » contains the strict
subterm ordering). Therefore, the new equation system is smaller w.r.t. >, i.e., (o, F) >
(o', E").

2. There is an equation F = z ~ t,Fy with t = f(¢1,...,t,) and z unsolved in E: Hence

x € Var(t) U Var(Fp). Again, we consider an innermost derivation of the normal form of

ol(t):

13

(a) A rewrite step is performed at the root of o(¢). Then we apply a lazy narrowing step
and proceed as in the previous case.

(b) No rewrite step is performed at the root of o'(t), i.e., o(t)dr = f(t),...,t,) and o(t;)Ir =
ti fori=1,...,n. We apply the partial binding transformation and obtain the equation
system

E = a,‘%f(xl,...,fn),l’lz(ﬁ(tl),---amnz(ﬁ(tn%(ﬁ(EO)

where ¢ = {z — f(z1,...,7,)} and z; are new variables. We extend o to a substitution
o' by adding the bindings o'(z;) =t for i =1,...,n, i.e., Var(E') C Dom(c'). Then

(@1 n)) = f(Ehsr) = 0(t)lr <% o(t) % o(z) = o (z)

Moreover, o' (¢(z)) = o'(z)}r which implies ¢'(s) <% o'(¢(s)) for all terms s. Hence
o' (¢(ti)) <% o' (ti) <5 ti = o' (x;). Altogether, o’ is a solution of E’.
It remains to show that this transformation reduces the complexity of the equation
system. Since o'(¢(z)) = o(z)Ir, we have o(z) =% o'(¢(z)). Hence o(E)p) is equal to
o' (p(Eyp)) (if o(z) = o' (¢(z))) or o’ (#(Ep)) is smaller w.r.t. % ,,;. Therefore, it remains
to check that o(t) is greater than each o'(z1),...,0'(zpn), o' (6(t1)), ..., 0" (d(tn)) w.r.t.
» (note that the equation z = ¢ is unsolved in F, but the equation z ~ f(z1,...,x,)
is solved in E'). First of all, o(t) » o(t;) since » includes the strict subterm ordering.
Moreover, o(t;) =% o'(z;), i.e., 0'(z;) is equal or smaller than o(t;) w.r.t. » for i =
1,...,n. This implies o(t) » o'(z;). Similarly, o’(¢(t;)) is equal or smaller than o(t;)
w.r.t. % since o' (¢(z)) = o(x)lr. Thus o(t) » o'(#(t:)). Altogether, (o, E) = (o, E").
|

We want to point out that there exist also other orderings on substitution/equation system pairs to
prove the completeness of our calculus. However, the ordering chosen above is tailored to a simple
proof for the completeness of lazy unification with simplification as we will see in the next section.

Propositions 3.3, 3.5, 3.6 and Theorems 3.8 and 3.9 imply that a complete set of solutions for
a given equation system E can be computed by enumerating all derivations in the lazy unification
calculus from E into a quasi-solved equation system. Due to the nondeterminism in the lazy
unification calculus, there are many unsuccessful and often infinite derivations. Therefore, we
will show in the next section how to reduce this nondeterminism by integrating a deterministic
simplification process into the lazy unification calculus. More determinism can be achieved by
dividing the set of function symbols into constructors and defined functions. This will be the
subject of Section 3.3.

3.2 Integrating Simplification Into Lazy Unification

The lazy unification calculus admits a high degree of nondeterminism even if there is only one
reasonable derivation. This is due to the fact that functional expressions are processed “too lazy”.

Example 3.10 Consider the rewrite rules

fla) — ¢ gla) — a
f) — d gb) — b

14

and the equation f(g(b)) =~ d. Then there are the following four different derivations in our lazy
unification calculus:

flg(b)) = d SN gb) =a, cx=d L bra, ama, cxnd 2 baa, crd
flgb) ~d 2 gb)~a, ced 2% bab bra, cnd =5 baa, cxd
Flgb) ~d 2 gb)~b ded 25 bra axb ded =% baa, axb
Flagb) ~d 2 gb)~b, ded =% bab bab ded =5 ()

The first three derivations do not end in a quasi-solved form, only the last derivation is successful.
However, if we first compute the normal form of f(g(b)), which is d, then there is only one possible
derivation: d ~ d =% (. Hence we will show that the lazy unification calculus remains to be sound
and complete if the (deterministic!) normalization of terms is included. 0

It is well-known [14, 21] that the inclusion of inductive consequences for normalization may have
an essential effect on the search space reduction in normalizing narrowing strategies. Therefore,
we will also allow the use of additional inductive consequences for normalization. A rewrite rule
[— r is called inductive consequence (of R) if o(l) =g o(r) for all ground substitutions o with
Dom(o) = Var(l). For instance, the rule z + 0 — z is an inductive consequence of the term
rewriting system
0O+y — vy
s()+y — s(z+y)

If we want to solve the equation s(z)+0 = s(z), our basic lazy unification calculus would enumerate
the solutions {z — 0}, {z — s(0)}, {z — s(s(0))}, and so on, i.e., this equation has an infinite
search space. Using the inductive consequence z +0 — x for normalization, the equation s(z)+0 =~
s(z) is reduced to s(z) =~ s(x) and then transformed into the quasi-solved form z ~ x representing

the solution set where z is replaced by any ground term.!?

In the following, we assume that Z is a set of inductive consequences of R (the set of simpli-
fication rules) so that the rewrite relation —7 is terminating. We will use rules from R for lazy
narrowing and rules from Z for simplification. Note that each rule from R is also an inductive
consequence and can be included in Z. However, we do not require that all rules from R must be
used for normalization. This is reasonable if there are duplicating rules where one variable of the
left-hand side occurs several times on the right-hand side, like f(z) — g(z,z). If we normalize the
equation f(s) =~ ¢ with this rule, then the term s is duplicated. This may increase the computa-
tional costs if the evaluation of s is necessary and costly. In such a case it would be better to use
this rule only in lazy narrowing steps.

In order to include simplification into the lazy unification calculus, we define a relation =7
on systems of equations. s ~ t =7 s’ ~ t' iff s/ and t' are normal forms of s and t w.r.t. —7,
respectively. £ =7 E' iff E =ey,...,e, and E' =¢],... ¢}, where e; =7 ¢} for i =1,...,n. Note

2In larger single-sorted term rewriting systems, it can be difficult to find inductive consequences. E.g., z +0 —
is not an inductive consequence if there is a constant a since a + 0 =% a is not valid. However, in practice specific-
ations are many-sorted and then inductive consequences must be valid only for all well-sorted ground substitutions.
Therefore, we want to point out that all results in this paper can also be extended to many-sorted term rewriting
systems in a straightforward way.

15

that =7 describes a deterministic computation process.'? EXL B is a derivation step in the lazy
unification calculus with simplification if E =71 EL% ' for some E.

The following lemma shows the soundness of one rewrite step with a simplification rule. The
formulation of soundness differs from Lemma 3.7 since we have to consider the fact that goal
variables may be deleted by normalization.

Lemma 3.11 Let s ~ t be an equation, s —7 s’ be a rewrite step, and o' be a solution of
s' = t. Then any ground substitution o with Var(s ~ t) C Dom(o) and o(z) =g o'(z) for all
x € Var(s' = t) is a solution of s ~ t.

Proof: Let s —7 s’ and o' be a solution of s’ =~ ¢, i.e., o(s’) =g o(t). We consider a ground
substitution o with Var(s ~ t) C Dom/(o) and o(z) =g o'(z) for all z € Var(s' ~ t). Obviously,
o(s) —7 o(s') using the same rewrite rule from Z. Hence o(s) =r o(s') since Z consists of
inductive consequences of R and o(s) and o(s’) are ground terms. By o(s’) =% o(t), this implies
o(s) =g o(t), i.e., o is a solution of s = t. [

Now we can state the soundness of the calculus g:

Theorem 3.12 Let E and E' be equation systems with EX8 B! where E' is in quasi-solved
form, and o' be a solution of E'. Then any ground substitution o with Var(E) C Dom(c) and
o(z) =g o'(z) for all z € Var(FE') is a solution of E.

Proof: By Lemma 3.11, we can show the soundness of =7 with a simple induction on the sequence
of rewrite steps. Combining this result with Lemma 3.7 shows the soundness of one Lus step. Then
the theorem follows by another simple induction on the number of Lug steps. |

For the completeness proof we have to show that solutions are not lost by the application of
simplification rules:

Lemma 3.13 Let E be an equation system and o be a solution of E. If E =7 E’', then o is a
solution of E'.

Proof: By definition of rewrite rules, Var(E') C Var(E). Let s = t € E, o(s) =gr o(t) and
s~ t=7s ~t. Hence s »% s’ and ¢ =% ¢’ which implies o(s) =% o(s') and o(t) =% o(t'). Since
o is a ground substitution with Var(E) C Dom(o) and Z are inductive consequences, o(s) =r o(s')
and o(t) =g o(t'). Hence o(s") =g o(t'), i.e., o is a solution of all equations in F'. [

The last lemma would imply the completeness of the calculus 4% i a derivation step with =7
does not increase the ordering used in the proof of Theorem 3.9. Unfortunately, this is not the
case in general since the termination of —% and —7 may be based on different orderings (e.g.,
R ={a — b} and Z = {b — a}). In order to avoid such problems, we require that the relation
—gruz is terminating which is not a real restriction in practice.

I31f there exist more than one normal form w.r.t. —1, it is sufficient to select don’t care one of these normal forms.

16

Theorem 3.14 Let Z be a set of inductive consequences of the ground confluent and terminating
rewrite system R such that —r 7 is terminating. Let E be a solvable equation system with solution
o. Then there exists a derivation E 22%* E' such that E' is in quasi-solved form and has a solution
o' with o'(z) =g o(z) for all z € Var(FE).

Proof: In the proof of Theorem 3.9, we have shown how to apply a transformation step to an
equation system not in quasi-solved form such that the solution is preserved. We can use the
same proof for the transformation L8 since Lemma 3.13 shows that normalization steps preserve
solutions. The only difference concerns the ordering where we use -z instead of =5, i.e., » is
now defined to be the transitive closure of the relation -z U =4s. Clearly, this does not change
anything in the proof of Theorem 3.9. Moreover, the relation =7 does not increase the complexity
w.r.t. this ordering but reduces it if simplification rules are applied since —7 is contained in ». H

Theorems 3.12 and 3.14 show that we can integrate the deterministic simplification process into the
lazy unification calculus without loosing soundness and completeness. Note that the rules from 7
can only be applied if their left-hand sides can be matched with a subterm of the current equation
system. If these subterms are not sufficiently instantiated, the rewrite rules are not applicable and
hence we loose potential determinism in the unification process.

Example 3.15 Consider the rules

zero(s(z)) — zero(x)
zero(0) — 0

(assume that these rules are contained in R as well as in Z) and the equation system zero(zr) =
0,2 =~ 0. Then there exists the following derivation in our calculus (this derivation is also possible
in the unification calculi in [15, 34]):

LY s(z1), zero(z1) =0, z =0 (lazy narrowing with first rule)
L s(z1), x1 = s(z2), zero(xs) =0, z ~0 (lazy narrowing with first rule)
L s(z1), Ty ~ s(x3), xo ~ s(x3), zero(zz) =0, x ~0 (lazy narrowing with first rule)
i
This infinite derivation could be avoided if we apply the partial binding rule in the first step:
pply b g P
zero(z) =0, z~0 Lug, zero(0) =0, z =0 (partial binding)
=7 0~0, z~0 (rewriting with second rule)
ME p a0 (decomposition)

In the next section we will present an optimization which prefers the latter derivation and avoids
the first infinite derivation. O

3.3 Constructor-based Systems

In most existing functional logic programming languages, a distinction is made between operation
symbols to construct data terms, called constructors, and operation symbols to operate on data

17

Decomposition of constructor equations

luc

ety o) mclt),..), E 25 tnt),. . ty~t E
ifeeC

Full binding of variables to ground constructor terms

luc

rret,E = =t ¢(F)
if zx € Var(E), t € T(C,0) and ¢ = {z — t}

Partial binding of variables to constructor terms

luc

Tz c(ty,...,tn), E = z=c(z,...,zn), 21 = $(t1),..., 20 = d(tn), d(E)
ifc e C, z € Var(c(ty,...,tn)) UVar(E), z € cvar(c(ty,...,t,)) and ¢ = {z — c(z1,...,75)}

(z; new variable)

Figure 3: Deterministic transformations for constructor-based rewrite systems

terms, called defined functions or operations (see, for instance, the functional logic languages ALF
[19], BABEL [37], K-LEAF [17], SLOG [14], or the RAP system [16]). Such a distinction allows
to optimize our unification calculus. Therefore, we assume in this section that the signature F
is divided into two sets F = C U D, called constructors and defined functions, with C N D = 0.
A constructor term t is built from constructors and variables, i.e., ¢ € T(C,X). The distinction
between constructors and defined functions comes with the restriction that for all rewrite rules

| — r the outermost symbol of [is always a defined function.'*

A basic property of such constructor-based term rewriting systems is the irreducibility of con-
structor terms. Due to this fact, we can specialize the rules of our basic lazy unification calculus.
Therefore, we define the deterministic transformations in Figure 3. Deterministic transformations
are intended to be applied as long as possible before any transformation % is used. Hence they
can be integrated into the deterministic normalization process =7. It is obvious that this modi-
fication preserves soundness and completeness. The decomposition transformation for constructor
equations must be applied in any case in order to obtain a quasi-solved equation system since a
lazy narrowing step R cannot be applied to constructor equations. The full binding of variables
to ground constructor terms is an optimization which combines subsequent applications of partial
binding transformations. This transformation decreases the complexity used in the proof of The-
orem 3.14 since a constructor term is always in normal form. The partial binding transformation for
constructor terms performs an eager (partial) binding of variables to constructor terms since a lazy
narrowing step cannot be applied to the constructor term. Moreover, this binding transformation
is combined with an occur check since it cannot be applied if z € cvar(c(ty,...,t,)) where cvar

YTn constructor-based systems, it is often required that all rules have the form f(¢1,...,t,) = r with f € D and
ti,...,tn € T(C,X). However, this stronger requirement is not necessary for the results in this section.

18

Clash of constructor equations

luc

c(tyy ... tp) =d(t),...,t), E = FAIL
ifc,d€eCandc#d

Occur check

luc

zc(ty,...,ty), E = FAIL

if z € cvar(c(ty, ..., tn))

Figure 4: Failure rules for constructor-based rewrite systems

denotes the set of all variables occurring outside terms headed by defined function symbols:

cvar(z) = {z}
cvar(c(ty, ..., tn)) = Uiz, cvar(t;) ifcelC
cvar(f(try... ty)) = 0 if feD

This restriction avoids infinite derivations of the following kind:

z = c(r) L o c(r1), T1 = c(x) (partial binding)
L o c(r1), T1 = c(xz), T2 = c(x3) (partial binding)
i,
It is obvious that an equation of the form z ~ c(t1,...,t,) with z € cvar(c(t1,...,t,)) is unsolvable.

A further optimization can be added if all functions are reducible on ground constructor terms,
i.e., forall f € Dandty,...,t, € T(C,0) there exists a term ¢ with f(t1,...,¢,) —x t. In this case
all ground terms have a ground constructor normal form and the partial binding transformation of
LY can be completely omitted which increases the determinism in the lazy unification calculus.

If we invert the deterministic transformation rules, we obtain a set of failure rules shown in
Figure 4. Failure rules are intended to be tried during the deterministic transformations. If a
failure rule is applicable, the derivation can be safely terminated since the equation system cannot
be transformed into a quasi-solved system.

3.4 Using Inductive Consequences

In Section 5 we will discuss the advantages of using program rules for simplification between lazy
narrowing or unification steps for various classes of functional logic programs. Therefore, we provide
in this section only an example which demonstrates the advantages of using inductive consequences
for simplification in our lazy unification calculus. Since inductive consequences are only used for
simplification, they do not increase the search space. Formally, this is confirmed by the fact that
lazy unification derivations correspond to rewrite derivations (Lemma 3.7) and the application of
inductive consequences reduces the complexity of goals (Theorem 3.14).

19

Example 3.16 Consider the following rewrite rules for addition and multiplication on natural
numbers where C = {0, s} are constructors and D = {+, x} are defined functions:

O+y — y (Ry1) Oxy — 0 (R3)
s(z)+y — slz+ty) (Ro) s(z)xy — y+z*xy (Ra)

If we use this confluent and terminating set of rewrite rules for lazy narrowing (R) as well as for
normalization (Z) and add the inductive consequence xz * 0 — 0 to Z, then our lazy unification
calculus with simplification has a finite search space for the equation x * y &~ s(0). This is due to
the fact that the following derivation can be terminated using the inductive consequence and the

clash rule:
zxy = s(0) 2 p s(r1), y = y1, y1 +x1 *y1 =~ s(0) (lazy narrowing, Ry)
L pas(n), yRyn, yi R0, o1k y Y2, g2~ s(0) (lazy narrowing, Ry)
L s(z1), y=0, y1 =0, 1 %0 = ya, y2 =~ s(0) (bind variable y)
L s(z1), y=0, y1 =0, 1 %0 = s(0), yo = s(0) (bind variable ys)
=7 z~s(71), y=0, y1 =0, 0=:5(0), y2 = 5(0) (reduce z1 % 0)
L paLL (clash between 0 and s)

The equation z; * 0 ~ s(0) could not be transformed into the equation 0 ~ s(0) without the
inductive consequence. Consequently, an infinite derivation would occur in our basic unification
calculus of Section 3.1.

Note that other lazy unification calculi [15, 34] or lazy narrowing calculi [37, 41] have an infinite
search space for this equation. It is also interesting to note that a normalizing innermost narrowing
strategy as in [14, 20] has also an infinite search space even if the same simplification rules are
available. This shows the advantage of combining a lazy strategy with simplification. O

4 Rewrite Systems with Nonterminating Rules

In this section we consider rewrite systems which are not necessarily terminating. Similarly to lazy
evaluation in functional languages, lazy narrowing has at least two advantages in comparison to
other (eager) narrowing strategies:

1. Since lazy narrowing applies narrowing steps at inner positions only if it is demanded by some
rule, useless narrowing steps (steps at inner positions which do not contribute to the result)
are avoided.'?

2. Since lazy narrowing evaluates functions only if their results are demanded, it can deal with
nonterminating functions and infinite data structures. Other narrowing strategies (like basic,
innermost, or outermost narrowing) require a terminating set of rewrite rules and cannot deal
with infinite data structures.

The next example should emphasize the latter point.

15T be precise, the avoidance of useless narrowing steps depends on the lazy narrowing strategy. Although this
is one of the motivations of all lazy strategies, the only strategy for which this property has been formally proved is
needed narrowing [2].

20

Example 4.1 The following rules define a function from(n), which computes an infinite list of
naturals starting from n, and a function first(n,l), which computes the first n elements of the list
[(] denotes the empty list and [e|l] denotes a nonempty list with first element e and tail [):

from(n) [n|from(s(n))]

N
first(0,1) —]
N

first(s(n),[e|l]) le| first(n,1)]

The first rule of this rewrite system is nonterminating. Lazy evaluation of the expression
first(s(s(0)), from(0)) yields the result [0,s(0)], whereas an eager evaluation does not termin-
ate due to the nonterminating eager evaluation of from(0). Similarly, lazy narrowing applied to
the equation first(z, from(y)) =~ [0, s(0)] computes the solution {z — s(s(0)),y + 0}, whereas an
eager narrowing strategy runs into an infinite loop. O

Since narrowing applies rules only in one direction from left to right, the confluence of the rewrite
relation is an essential requirement for the completeness of all narrowing strategies. However,
confluence is an undecidable property of a rewrite system if it is not terminating. Therefore,
functional logic languages with nonterminating rewrite systems have the following requirements on

rewrite rules:

1. Constructor-based: The signature F is divided into two disjoint sets C and D, called con-
structors and defined functions. Moreover, if [— r is a rewrite rule, then [has the form
f(t1,y... ty) with f € D and ty,...,t, € T(C,X).

2. Left-linearity: All rules are left-linear, i.e., no variable appears more than once in the left-hand
side of any rule.

3. Nonambiguity: If [y — r1 and [y — ry are two different rules, then [y and [s are not unifiable
(strong nonambiguity), or if [y and Iy have a most general unifier o, then o(r;) and o(rs) are
identical (weak nonambiguity).

Rewrite systems with these properties are called constructor-based (weakly) orthogonal systems.
These conditions ensure the uniqueness of normal forms if they exist. Due to the presence of
nonterminating functions, the completeness results for lazy strategies are stated with respect to
domain-based interpretations of rewrite rules [17, 37]. In particular, the equality of two expressions
holds only if both sides are reducible to the same ground constructor term. The completeness of
lazy narrowing w.r.t. this semantics is formally stated in [37]. We will show that deterministic
simplification steps can be included in lazy narrowing derivations without destroying completeness
for such rewrite systems, i.e., we assume that R is a constructor-based weakly orthogonal term
rewriting system.

Loogen and Winkler [32] have shown how to increase deterministic computations in the im-
plementation of such programs: if no goal variable has been bound in a narrowing step, then all
attempts to apply alternative rules at the same position can be ignored due to the nonambiguity
of the rules. In this case a “cut” can be executed to eliminate the choice point for alternative rules.
Since the execution of this “cut” depends on the run-time behavior of the program (whether or not
a goal variable has been bound during unification), it is called dynamic cut in [32]. The dynamic

21

cut can be implemented by a special POP instruction which checks whether a goal variable has been
bound during unification and, if this did not happen, removes the last choice point. The advantage
of this method is its simple implementation, but it has also two disadvantages:

1. The dynamic cut removes choice points which have been created but are not needed in the
further computation process. Hence it does not avoid the creation of choice points (one of the
most expensive operations in the implementation of logic languages): if a choice point is not
needed in a deterministic computation, it is created and then deleted after the unification of
the rule’s left-hand side.

2. The detection of deterministic computations depends on the order of the rules. If a rule which
enables a deterministic computation step is not at the beginning, nondeterministic steps may
be performed even if a deterministic step is possible.

The following example discusses the second disadvantage in more detail.

Example 4.2 Consider the rules of Example 1.2 and the goal equation 0 * one(z) =~ 0. Using the
dynamic cut technique, first a choice point for the rules R3 and Ry is created, rule R3 is applied
to narrow the left-hand side yielding the trivial equation 0 ~ 0, and then the choice point is
removed since no goal variable (z) has been bound in the narrowing step (dynamic cut). Hence the
attempt to apply rule Ry is avoided by the dynamic cut. However, if we try to solve the equation
one(z) * 0 ~ 0, the dynamic cut has no effect. As before, first a choice point for the rules R3 and
Ry is created, then an attempt to apply rule R3 is made.'® Since it is necessary to evaluate the first
argument in order to decide the applicability of this rule, one(z) is a lazy narrowing redex which
is evaluated by applying rules R or Rg (this evaluation has an infinite search space and does not
terminate in a sequential implementation, cf. Example 1.2). In any case the goal variable z will be
bound and therefore the dynamic cut has no effect. O

Although the dynamic cut has some disadvantages since it is applied after a narrowing attempt,
the nonambiguity of the rules is the key to exploit deterministic computations in functional logic
programs. In the following we will show that we can apply deterministic rewrite steps before a
narrowing step. This technique avoids the creation of superfluous choice points and is independent
on the order of rules (if we use all rules also for rewrite steps).

The next lemma is due to Loogen and Winkler [32] and shows that it is not necessary to consider
alternative rules for narrowing if one rule is applicable without binding goal variables. This is a
consequence of the nonambiguity condition on rewrite rules.

Lemma 4.3 Let Ry =1y — r1 and Ry = lo — 19 be two different program rules and t be a term
which has no variables in common with Ry and Rs. If o(ly) = t, i.e., t is narrowable by rule Ry
without instantiating any goal variable, then rule R, need not be considered, because either Ry is
not applicable or the result of applying Ry yields an instance of the application of R;.

This means that lazy narrowing is complete in the sense of [37] even if the lazy narrowing derivation
starting with an application of rule Ry to ¢ is ignored. Hence we could try to match the left-hand

6Note that we consider a sequential implementation where the rules are applied in the given textual order.

22

side of some rule with the current goal before applying a narrowing step. If this is possible, we
can perform the corresponding rewrite step and, by the previous lemma, ignore all other rules, i.e.,
we perform a deterministic computation step. Although this solves the problems exemplified in
Example 4.2, it is not sufficient to exploit many possible deterministic computations. In general,
rewrite steps must also be performed at inner positions in order to enable rewrite steps at outer
positions. For instance, consider the rules of Examples 1.1 and 1.2 and the goal equation (0+0)*z =
0. A rewrite step by applying rules R3 or R4 to the left-hand side of the equation is not possible.
Hence we try to perform a narrowing step, i.e., generate a choice point for the rules R3 or R4, and
so on. However, if we apply a rewrite step to the subterm (04 0) before the narrowing attempt, the
equation is simplified to 0 * z &~ 0 using rule Ry, and we could further simplify the equation to the
trivial one 0 = 0 using rule R3. Therefore, we could solve the equation without any nondeterministic
narrowing step. The following lemma shows that deterministic rewrite steps at inner positions does
not influence the applicability of narrowing steps at outer positions.

Lemma 4.4 Let t,t' be terms such that t —x t' is a rewrite step at position p. Then all narrowing
rules which are applicable to t at a position p', where p' # p is a position not below p, are also
applicable to t' with the same substitution of variables occurring in t.

Proof: This lemma is a consequence of the requirement for constructor-based rules: the subterm
t|, must have a defined function symbol at the top since ¢ —x ¢’ is a rewrite step at position p. If a
narrowing rule is applicable to ¢ at position p', i.e., there is a rule [— r and a mgu o of t|, and [,
and p' is a position above p (the case of independent positions is trivial since variables in ¢ are not
instantiated by the rewrite step), then there must be a variable position p” in ! (i.e., I|,» € X) such
that o(l)[,» contains the subterm ¢|, (since all proper subterms of / contain only constructors and
variables). But then there is also a unifier o’ of #|,; and [which can be obtained by modifying o
for the variable I|,» (note that [has no multiple occurrences of variables, hence a"v ar(t) = TVar(t))-
Hence we can apply rule [— r to t' at position p'. [|

The following theorem justifies deterministic rewrite steps at arbitrary lazy narrowing positions
(see [37] for a detailed definition of lazy narrowing positions).

Theorem 4.5 Let t,t' be terms such that t —5 t' is a rewrite step at lazy narrowing position p.
Then lazy narrowing is complete even if we ignore all alternative narrowing rules applicable to t.

Proof: Let t ~y g, t" be an alternative lazy narrowing step. We show that we do not loose any
solutions by ignoring this step and continuing with ¢’ instead of ¢”.

p' = p: By Lemma 4.3 applied to position p, ¢ is an instance of #'. Hence all solutions computed by
narrowing derivations starting from ¢” are also computed by narrowing derivations starting
from ¢'.

p’ is a position below p: Since p’ is a lazy narrowing position, the narrowing step at p’ is demanded
by some rule which may be applicable at position p at some later point. However, similarly
to the previous case, this alternative step at position p can be ignored without destroying
completeness. Consequently, this narrowing step at position p’ can also be ignored.

23

p’ is a position not below p and p’ # p: By Lemma 4.4, this alternative narrowing step is also ap-
plicable to ¢ with the same substitution of variables occurring in t. Hence we can ignore this
step without destroying completeness.]

As a consequence of this theorem, we can deterministically apply rewrite rules at any lazy narrowing
position before a narrowing step. A simple induction shows that we can also deterministically apply
a finite sequence of rewrite steps at lazy narrowing positions. L.e., we can combine lazy narrowing
with lazy simplification (where lazy simplification positions are defined similarly to lazy narrowing
positions [37]) without destroying completeness. However, this is only true for finite sequences
of simplification steps (due to the proof by induction). Nevertheless, an infinite loop caused by
simplification occurs in lazy narrowing derivations without simplification, too, since rewrite steps
are also particular narrowing steps. The only difference is that the order of rule applications in
simplification steps may be different from the order of rule applications in narrowing steps. Hence
it may be the case that the simplification process runs into an infinite loop, whereas lazy narrowing
without simplification first computes an answer and then runs into an infinite loop.

Example 4.6 Consider the rules of Example 1.2 and the following rule defining a nonterminating
function:

If the goal equation x * inf = 0 should be solved, a lazy simplification strategy tries to evaluate
the subterm inf to the constructor 0 in order to apply rule Ry to the left-hand side of the equation
(i.e., the second argument of * is a lazy narrowing position). Since the evaluation of inf loops,
the simplification process does not terminate and no solution is computed. On the other hand,
lazy narrowing without simplification narrows the left-hand side of the equation by applying rule
R3. This binds goal variable x to 0 and yields the trivial equation 0 ~ 0. However, after the
computation of this solution an attempt to apply the alternative rule R4 to the left-hand side is
made which yields the same infinite loop as in the simplification process. O

Note that this different behavior is due to a particular sequential implementation of the strategy.
In an implementation which collects all answers until the entire search space has been examined,
we obtain no answer in both cases due to the infinite search space.

In order to ensure the termination of the simplification process even if we blindly apply all
possible lazy simplification steps, we include only a terminating subset of the program rules for
simplification. Since lazy narrowing is already complete without simplification, it is not necessary
to perform rewrite steps with all possible program rules, but we can arbitrarily restrict the set
of rules used for rewrite steps. In the light of the previous example, it is a reasonable decision to
include a rule set with a terminating rewrite relation for simplification. This ensures the termination
of the simplification process. The selection of this subset of rewrite rules could be done by the
programmer or by the system (e.g., include only those rewrite rules for which a termination proof
can be constructed). We have made the experience that, for most practical examples, termination
proofs can be automatically constructed using syntactic termination orderings from term rewriting
[7]. This is the case for all rules presented so far (of course, except for the first-rule of Example 4.1
and the infrule of Example 4.6). An example where a terminating subset of all program rules is
used for simplification will be given in Section 5.3.

24

5 Application to Functional Logic Programs

In this section we discuss the usefulness of integrating simplification into lazy narrowing derivations
with respect to different classes of functional logic programs. In general, we consider constructor-
based confluent rewrite systems. However, there are various subclasses of such rewrite systems with
different implications on the usefulness of integrating simplification. We will discuss the following
three subclasses in more detail: inductively sequential systems [1] where the rules for each function
can be organized in a hierarchical structure, orthogonal systems satisfying the strong nonambiguity
condition (no overlapping in the left-hand sides of the rules), and weakly orthogonal systems with
overlapping left-hand sides.

5.1 Inductively Sequential Programs

In many functional as well as functional logic programs, functions are defined by a case distinction on
the different constructors occurring in the data type of the arguments. For instance, the definition
of the addition function on natural numbers (cf. Example 1.1) is based on a case distinction for the
first argument with respect to the constructors 0 and s. As another example consider the following
rules defining a less-or-equal function on naturals:

0 < =z — true (Ry)
s(z) <0 — false (Ry)
s(z) < sly) — z<y (Ry)

Here is the main case distinction on the constructors of the first argument: if this argument is
0, then only rule R; is applicable. If this argument has the constructor s at the top, then a
further case distinction on the second argument is necessary to distinguish between rules Ry and
Rs3. Altogether, the rules can be organized in a hierarchical structure representing the various
case distinctions. Such hierarchical structures have been introduced by Antoy [1] under the name
definitional trees. A program for which the rules of each function symbol can be organized in a
definitional tree is called inductively sequential. Antoy, Echahed and Hanus [2] have defined for
inductively sequential programs a narrowing strategy, called needed narrowing, which is optimal in
the following sense: (1) it reduces only needed subterms in a narrowing step, i.e., subterms which
must be reduced in any possible successful narrowing derivation, (2) it computes the shortest
narrowing derivations if common subterms are shared, and (3) the solutions computed by two
different narrowing derivations are independent. The needed narrowing steps are computed using
the structure of definitional trees. Thus it can be efficiently implemented by pattern matching, and
the strategy has an outermost (lazy) behavior.

Due to the optimality of needed narrowing the natural question arises whether the inclusion
of simplification has an effect for this class of programs. To answer this question, we recall the
applicability conditions for a rewrite step. A functional expression can be reduced by a rewrite
step if the arguments of the function call are sufficiently instantiated such that the left-hand side
of some rule can be matched with the current call. Since the program is inductively sequential,
there is always at most one rule matching the current call and this rule will be selected in the
next narrowing step without instantiating any goal variables (see [2] for a detailed description of
the strategy). Therefore, a possible lazy reduction step is also computed by the needed narrowing

25

strategy as a narrowing step, i.e., the inclusion of simplification steps has no effect. This is formally
justified by the following proposition.

Proposition 5.1 Let R be a set of inductively sequential rules. Then the integration of simplific-

ation does not shorten any needed narrowing derivation.

Proof: By definition, rewrite steps are also particular narrowing steps. Thus any narrowing de-
rivation with intermediate simplification steps is also a pure narrowing derivation. Since needed
narrowing computes the shortest narrowing derivations [2], simplification cannot shorten any needed

narrowing derivation. []

Hence it is unnecessary to integrate simplification with program rules in narrowing derivations for
the class of inductively sequential programs. Therefore, narrowing derivations can be optimized
for such programs only if inductive consequences are added as simplification rules. Actually, Ex-
ample 3.16 is an inductively sequential program and we have shown that simplification with the
additional inductive consequence = * 0 — 0 can reduce the search space.

5.2 Orthogonal Programs

The main example where we have demonstrated the improvements of simplification with respect
to lazy narrowing (Example 1.2) has the property that two rules have overlapping left-hand sides.
In the following we will show that the inclusion of simplification is useful even if there are no
overlapping rules.

Example 5.2 Consider the following rewrite rules:

f0,5(z),) — 0 (Ry) one(0) = s(0) (Ry)
fs(x),y,0) — 0 (Rp) one(s(z)) — one(x) (Rs)
f(y,0,s(z)) — 0 (Rs) ’

This is an orthogonal term rewriting system since all rules are left-linear and do not overlap in
the left-hand sides. However, it is not inductively sequential since there is no argument which
represents a case distinction on the constructors 0 and s. In fact, simplification has an effect if we
consider the goal equation f(one(z),0,s(0)) =~ 0. Naive lazy narrowing first tries to apply rule Ry
to the left-hand side of this equation. Since the first argument of the rule’s left-hand side is 0, the
evaluation of the actual argument one(z) is required in order to decide the unifiability of the first
argument.'” Similarly to Example 1.2, the evaluation of one(z) has an infinite search space and a
sequential implementation does not compute any result since all evaluations of one(z) yields s(0)
as the result which is not unifiable with the demanded value 0. However, if we simplify the goal
equation before the attempt to apply a narrowing step, we use rule R3 for a rewrite step which
yields the trivial equation 0 = 0. Hence the infinite search space is avoided. O

'"We assume that arguments are unified from left to right, otherwise a similar example can be constructed.

26

5.3 Weakly Orthogonal Programs

In Sections 5.1 and 5.2 we have shown that the boundary of the usefulness of simplification in
lazy narrowing derivations is between inductively sequential and orthogonal systems. If we do not
include inductive consequences for simplification, we conjecture that, for practical applications, the
most interesting class, where simplification is useful, is the class of weakly orthogonal programs
which have rules with overlapping left-hand sides. Example 1.2 contains such a simple program,
but the recursively defined constant function one may not convince the reader. Therefore, we will
demonstrate the positive effects of simplification by a more natural example.

Example 5.3 Consider the following rules defining the Boolean operator V and the predicate even
on natural numbers:

trueVb — true (Ry) even(0) — true (Ry4)
bVitrue — true (Rs) even(s(0)) — false (R5)
falseV false — false (R3) even(s(s(z))) — even(z) (Rs)

This rewrite system is weakly orthogonal since rules R; and Ry overlap. Now consider the goal
equation even(z) V true = true (note that this goal equation could also be the result of the more
general equation even(z) V b = true where the Boolean variable b has been bound to true in the
preceding computation). Naive lazy narrowing without simplification tries to apply a narrowing step
with rule R;. Since the value of the first V-argument is demanded by this rule, the subterm even(z)
is evaluated to a constructor-headed term by narrowing. There are infinitely many possibilities to do
this, in particular, the constructor true is derived by instantiating variable z with the values s2**(0),
1 > 0. Therefore, lazy narrowing without simplification has an infinite search space and computes
the additional specialized solutions {z ~— s2**(0)}. Moreover, in a sequential implementation of lazy
narrowing by backtracking [18], only the infinite set of specialized solutions would be computed
without ever trying the second V-rule. On the other hand, if the equation is first simplified by
applying rule Rs to the left-hand side, we immediately obtain the trivial equation true ~ true and
avoid the infinite search space. O

We have mentioned that our method is complete even in the presence of nonterminating functions
if a terminating subset of the program rules is used for simplification. This is demonstrated by a
modification of the previous example.

Example 5.4 Consider the rules for V of Example 5.3 (R;, Rz, R3) and the following new rules
for not, even and odd:

not(true) — false (R4) even(r) — mnot(odd(x)) (Rg)
not(false) — true (Rj) odd(z) — not(even(x)) (Rr7)

Although even and odd are nonterminating functions, it is an admissible program. We use the
terminating subset of the rules { Ry, Ry, R3, R4, R5} for simplification.!® Consider the goal equation
even(z) V not(false) =~ true. Lazy narrowing without simplification tries to compute the head
normal form of the subterm even(z) since its value is demanded by rule R;. Since this computation
is nonterminating, naive lazy narrowing has an infinite search space. The same holds for lazy

'8Note that the termination property of this subset can be automatically checked.

27

narrowing with the dynamic cut operator [32]. However, lazy narrowing with simplification tries
to apply rewrite steps first. No simplification rule is applicable to the entire left-hand side of the
goal equation since the arguments are not in head normal form. Due to the lazy simplification
strategy, we try to evaluate the arguments by simplification steps. The subterm even(z) cannot
be further simplified since rule Rg is not included in the set of simplification rules. The second
argument not(false) can be simplified to true by Rs which causes the simplification of the complete
left-hand side to true by Rs. Hence we obtain the trivial equation true = true and the infinite
search space is avoided. O

5.4 A Benchmark

In order to test our new execution strategy on larger programs, we have implemented an interpreter
for lazy narrowing with simplification in Prolog [23]. An interesting class of programs, where
simplification has a relevant effect on the search space, are “generate-and-test” programs. A typical
example for such programs is the “permutation sort” program, where a list is sorted by enumerating
all permutations and checking whether they are sorted. In the Prolog version of this program ([44],
p. 55), all permutations are enumerated and checked. However, if we execute the same program
by lazy narrowing with simplification (in this case predicates are considered as Boolean functions,
see [14], p. 182), then the simplification process cuts some parts of the search space so that not all
permutations are completely enumerated. Therefore, we obtain the following execution times in
seconds (Sicstus-Prolog 2.1 on a Sparcl0) to sort the list [n,...,2,1] for different values of n:

Length n | Prolog | Lazy | Lazy+Simp
4 0.01 0.02 0.04
5 0.01 0.1 0.1
6 0.05 0.8 0.2
7 0.3 5.4 0.5
8 2.6 45.9 1.1
9 23.6 | 420.1 2.5
10 240.9 | 4389.2 5.5

The column “Lazy+Simp” contains the execution times for lazy narrowing with simplification, the
column “Lazy” the times for pure lazy narrowing without simplification, and the column “Prolog”
the times for the direct implementation of permutation sort in Prolog. The search spaces of “Prolog”
and “Lazy” are essentially the same. The slow timings of “Lazy” is due to the overhead of the lazy
narrowing interpreter (which is also written in Prolog). However, the last column shows that this
overhead can be compensated by the search space reduction due to the simplification process.

6 Conclusions and Related Work

In this paper we have shown how to improve the execution mechanism of functional logic lan-
guages, where we have considered the most important classes of programs: ground confluent and
terminating rewrite systems, and weakly orthogonal and possibly nonterminating rewrite systems.
The basic idea of our improvement is the integration of a deterministic simplification process into

28

lazy narrowing derivations. This can be done in a simple way by using the program rules (or a
terminating subset of the program rules in the presence of nonterminating rules) as simplification
rules. The simplification strategy must be identical to the narrowing strategy in order to avoid
additional computation steps caused by the simplification process. For particular and practically
relevant classes of functional logic programs (orthogonal and weakly orthogonal programs) this has
the positive effect that the search space is reduced without destroying completeness. Although
we have emphasized the effect of simplification to the search space, the inclusion of simplification
can also have an effect on the run time even if the search space is not reduced. For instance, if
all program rules are used for simplification, ground goals are evaluated by simplification without
generating any choice point, whereas a lazy narrowing implementation would generate (and after-
wards delete) choice points. Hence lazy narrowing with simplification combines the features from
functional and logic programming also from an implementation point of view.

We have mentioned in the introduction and in Section 2 that the idea of exploiting deterministic
computations by including simplification in functional logic languages has been proposed mainly
for eager narrowing strategies like basic [38, 42], innermost [14] or innermost basic narrowing [25].
Echahed [12] has shown how to integrate normalization (with inductive consequences) in any nar-
rowing strategy, but he requires strong restrictions on the set of rules (termination and uniformity,
which is stronger than inductive sequentiality). As far as we know, the present paper is the first
attempt to include simplification into narrowing derivations even in the presence of nonterminating
functions.!” The only related work for this class of programs is the paper of Loogen and Winkler
[32] which proposes the dynamic cut to detect deterministic narrowing steps after the unification
phase. As discussed in Section 4, this does not avoid the generation of choice points, and the cut of
infinite derivation paths depends on the order of rules. The basic difference of our method is that
we check the applicability of a deterministic computation step before we apply a nondeterministic
step. Hence we prefer deterministic computations to nondeterministic computations. This qualifies
our execution method as the operational principle of efficient functional logic languages.

Loogen et al. [31] have proposed to improve lazy narrowing strategies by reordering the unifica-
tion steps in rule applications. For this purpose they use a version of definitional trees [1] extended
to weakly orthogonal rewrite systems. In order to handle overlapping left-hand sides, they intro-
duce nondeterministic choice nodes in definitional trees. However, these choice nodes have the
effect that possible deterministic computations are not detected. For instance, the infinite search
spaces of naive lazy narrowing in Examples 1.2, 5.2 and 5.3 would also occur with respect to their
improved strategy.

Another alternative to improve lazy narrowing has been proposed by Moreno-Navarro et al.
[36]. They use information about demanded arguments to avoid reevaluations of expressions during
unification with different rules. Since they do not change the order of argument evaluations and
rules, the infinite search spaces avoided by simplification still occur in their approach.

The integration of simplification into lazy narrowing derivations requires new implementation
techniques for functional logic languages. Current efficient implementations of lazy narrowing are
mainly based on extensions of reduction machines used for the implementation of functional lan-

9The combination of lazy narrowing with deterministic reduction steps has been also considered by Josephson and
Dershowitz [27]. However, they provide no completeness proof but refer to [10] where only the completeness of naive
narrowing without simplification and without a particular lazy strategy is proved for terminating conditional rules.

29

guages [5, 18, 30, 35]. The inclusion of simplification requires the implementation of an intermediate
reduction process. This could be done by techniques proposed for the efficient implementation of
normalizing narrowing [19, 20] or by the implementation of demons waiting for the sufficient in-
stantiation of function arguments [27].

Acknowledgements. The author is grateful to the anonymous referees for their suggestions to
improve the paper. The research described in this paper was mainly made during the author’s
stay at the Max-Planck-Institut fiir Informatik in Saarbriicken, Germany. It was supported in
part by the German Ministry for Research and Technology (BMFT) under grant ITS 9103 and by
the ESPRIT Basic Research Working Group 6028 (Construction of Computational Logics). The
responsibility for the contents of this publication lies with the author.

References

[1] S. Antoy. Definitional Trees. In Proc. of the 3rd International Conference on Algebraic and Logic
Programming, pp. 143-157. Springer LNCS 632, 1992.

[2] S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Proc. 21st ACM Symposium
on Principles of Programming Languages, pp. 268279, Portland, 1994.

[3] F. Baader and J.H. Siekmann. Unification Theory. In D.M. Gabbay, C.J. Hogger, and J.A. Robin-
son, editors, Handbook of Logic in Artificial Intelligence and Logic Programming, pp. 41-125. Oxford
University Press, 1994.

[4] D. Bert and R. Echahed. Design and Implementation of a Generic, Logic and Functional Programming
Language. In Proc. Furopean Symposium on Programming, pp. 119-132. Springer LNCS 213, 1986.

[5] M.M.T. Chakravarty and H.C.R. Lock. The Implementation of Lazy Narrowing. In Proc. of the 8rd Int.
Symposium on Programming Language Implementation and Logic Programming, pp. 123-134. Springer
LNCS 528, 1991.

[6] J. Darlington and Y. Guo. Narrowing and unification in functional programming - an evaluation mech-
anism for absolute set abstraction. In Proc. of the Conference on Rewriting Techniques and Applications,
pp. 92-108. Springer LNCS 355, 1989.

[7] N. Dershowitz. Termination of Rewriting. J. Symbolic Computation, Vol. 3, pp. 69-116, 1987.

[8] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook of Theor-
etical Computer Science, Vol. B, pp. 243-320. Elsevier, 1990.

[9] N. Dershowitz, S. Mitra, and G. Sivakumar. Equation Solving in Conditional AC-Theories. In Proc. of
the 2nd International Conference on Algebraic and Logic Programming, pp. 283-297. Springer LNCS
463, 1990.

[10] N. Dershowitz and D.A. Plaisted. Equational Programming. In J.E. Hayes, D. Michie, and J. Richards,
editors, Machine Intelligence 11, pp. 21-56. Oxford Press, 1988.

[11] R. Echahed. On Completeness of Narrowing Strategies. In Proc. CAAP’88, pp. 89-101. Springer LNCS
299, 1988.

[12] R. Echahed. Uniform Narrowing Strategies. In Proc. of the 8rd International Conference on Algebraic
and Logic Programming, pp. 259-275. Springer LNCS 632, 1992.

30

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

31]

M.J. Fay. First-Order Unification in an Equational Theory. In Proc. Jth Workshop on Automated
Deduction, pp. 161-167, Austin (Texas), 1979. Academic Press.

L. Fribourg. SLOG: A Logic Programming Language Interpreter Based on Clausal Superposition and
Rewriting. In Proc. IEEE Internat. Symposium on Logic Programming, pp. 172-184, Boston, 1985.

J.H. Gallier and W. Snyder. Complete Sets of Transformations for General E-Unification. Theoretical
Computer Science, Vol. 67, pp. 203-260, 1989.

A. Geser and H. Hussmann. Experiences with the RAP system — a specification interpreter combining
term rewriting and resolution. In Proc. of ESOP 86, pp. 339-350. Springer LNCS 213, 1986.

E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logic plus Functional Language.
Journal of Computer and System Sciences, Vol. 42, No. 2, pp. 139-185, 1991.

W. Hans, R. Loogen, and S. Winkler. On the Interaction of Lazy Evaluation and Backtracking. In Proc.
of the 4th International Symposium on Programming Language Implementation and Logic Programming,
pp- 355-369. Springer LNCS 631, 1992.

M. Hanus. Compiling Logic Programs with Equality. In Proc. of the 2nd Int. Workshop on Programming
Language Implementation and Logic Programming, pp. 387—401. Springer LNCS 456, 1990.

M. Hanus. Efficient Implementation of Narrowing and Rewriting. In Proc. Int. Workshop on Processing
Declarative Knowledge, pp. 344-365. Springer LNAT 567, 1991.

M. Hanus. Improving Control of Logic Programs by Using Functional Logic Languages. In Proc. of the
4th International Symposium on Programming Language Implementation and Logic Programming, pp.
1-23. Springer LNCS 631, 1992.

M. Hanus. The Integration of Functions into Logic Programming: From Theory to Practice. Journal
of Logic Programming, Vol. 19&20, pp. 583-628, 1994.

M. Hanus. Efficient Translation of Lazy Functional Logic Programs into Prolog. In Proc. Fifth Interna-
tional Workshop on Logic Program Synthesis and Transformation, pp. 252—-266. Springer LNCS 1048,
1995.

M. Hanus. On Extra Variables in (Equational) Logic Programming. In Proc. International Conference
on Logic Programming, pp. 665—679. MIT Press, 1995.

S. Holldobler. Foundations of Equational Logic Programming. Springer LNCS 353, 1989.

J.-M. Hullot. Canonical Forms and Unification. In Proc. 5th Conference on Automated Deduction, pp.
318-334. Springer LNCS 87, 1980.

A. Josephson and N. Dershowitz. An Implementation of Narrowing. Journal of Logic Programming (6),
pp. 5777, 1989.

J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM Journal
on Computing, Vol. 15, No. 4, pp. 1155-1194, 1986.

S. Krischer and A. Bockmayr. Detecting Redundant Narrowing Derivations by the LSE-SL Reducibility
Test. In Proc. RTA’91. Springer LNCS 488, 1991.

R. Loogen. Relating the Implementation Techniques of Functional and Functional Logic Languages.
New Generation Computing, Vol. 11, pp. 179-215, 1993.

R. Loogen, F. Lopez Fraguas, and M. Rodriguez Artalejo. A Demand Driven Computation Strategy for
Lazy Narrowing. In Proc. of the 5th International Symposium on Programming Language Implementa-
tion and Logic Programming, pp. 184—200. Springer LNCS 714, 1993.

31

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

R. Loogen and S. Winkler. Dynamic Detection of Determinism in Functional Logic Languages. In
Proc. of the 3rd Int. Symposium on Programming Language Implementation and Logic Programming,
pp. 335-346. Springer LNCS 528, 1991. Extended version to appear in Theoretical Computer Science,
1995.

A. Martelli and U. Montanari. An Efficient Unification Algorithm. ACM Transactions on Programming
Languages and Systems, Vol. 4, No. 2, pp. 258282, 1982.

A. Martelli, G.F. Rossi, and C. Moiso. Lazy Unification Algorithms for Canonical Rewrite Systems. In
Hassan Afit-Kaci and Maurice Nivat, editors, Resolution of Equations in Algebraic Structures, Volume
2, Rewriting Techniques, chapter 8, pp. 245-274. Academic Press, New York, 1989.

J.J. Moreno-Navarro, H. Kuchen, R. Loogen, and M. Rodriguez-Artalejo. Lazy Narrowing in a Graph
Machine. In Proc. Second International Conference on Algebraic and Logic Programming, pp. 298-317.
Springer LNCS 463, 1990.

J.J. Moreno-Navarro, H. Kuchen, J. Marino-Carballo, S. Winkler, and W. Hans. Efficient Lazy Nar-
rowing Using Demandedness Analysis. In Proc. of the 5th International Symposium on Programming
Language Implementation and Logic Programming, pp. 167-183. Springer LNCS 714, 1993.

J.J. Moreno-Navarro and M. Rodriguez-Artalejo. Logic Programming with Functions and Predicates:
The Language BABEL. Journal of Logic Programming, Vol. 12, pp. 191-223, 1992.

W. Nutt, P. Réty, and G. Smolka. Basic Narrowing Revisited. Journal of Symbolic Computation, Vol. 7,
pp- 295-317, 1989.

P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Monographs on Theoretical
Computer Science. Springer, 1988.

C. Prehofer. Higher-Order Narrowing. In Proc. Ninth Annual IEEE Symposium on Logic in Computer
Science, pp. 507-516, 1994.

U.S. Reddy. Narrowing as the Operational Semantics of Functional Languages. In Proc. IEEE Internat.
Symposium on Logic Programming, pp. 138-151, Boston, 1985.

P. Réty. Improving basic narrowing techniques. In Proc. of the Conference on Rewriting Techniques
and Applications, pp. 228-241. Springer LNCS 256, 1987.

J.R. Slagle. Automated Theorem-Proving for Theories with Simplifiers, Commutativity, and Associ-
ativity. Journal of the ACM, Vol. 21, No. 4, pp. 622-642, 1974.

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

32

