
Lazy Narrowing with Simpli�
ation

�

Mi
hael Hanus

Informatik II, RWTH Aa
hen

D-52056 Aa
hen, Germany

hanus�informatik.rwth-aa
hen.de

Preliminary version. Final version in Journal of Computer Languages (Elsevier),

Vol. 23, No. 2{4, pp. 61{85, 1997

Abstra
t

Languages that integrate fun
tional and logi
 programming styles with a
omplete opera-

tional semanti
s are based on narrowing. In order to avoid useless
omputations, lazy narrowing

strategies have been proposed in the past. This paper presents an improvement of lazy narrowing

by in
orporating deterministi
 simpli�
ation steps into lazy narrowing derivations. These simpli-

�
ation steps redu
e the sear
h spa
e so that in some
ases in�nite sear
h spa
es are redu
ed to

�nite ones. We
onsider two
lasses of programs where this strategy
an be applied. Firstly, we

show soundness and
ompleteness of our strategy for fun
tional logi
 programs based on ground

on
uent and terminating rewrite systems. Then, we show similar results for
onstru
tor-based

weakly orthogonal (not ne
essarily terminating) rewrite systems. Finally, we demonstrate the

improved operational behavior by means of several examples. Sin
e most fun
tional logi
 lan-

guages are based on programs belonging to one of these
lasses, our result is a signi�
ant step

to improve the operational semanti
s of existing fun
tional logi
 languages.

1 Introdu
tion

In re
ent years, a lot of proposals have been made to amalgamate fun
tional and logi
 programming

languages [22℄. Fun
tional logi
 languages with a sound and
omplete operational semanti
s are

based on narrowing, a
ombination of the redu
tion prin
iple of fun
tional languages and the

resolution prin
iple of logi
 languages. Narrowing, originally introdu
ed in automated theorem

proving [43℄, is used to solve equations by �nding appropriate values for variables o

urring in

arguments of fun
tions. This is done by unifying (rather than mat
hing) an input term with the

left-hand side of some rule and then repla
ing the instantiated input term by the instantiated

right-hand side of the rule.

Example 1.1 Consider the following rules de�ning the addition of two natural numbers whi
h are

represented by terms built from 0 and s:

0 + y ! y (R

1

)

s(x) + y ! s(x+ y) (R

2

)

�

This paper is a revised version of papers appeared in the pro
eedings of ESOP'94 and PLILP'94.

1

The equation z + s(0) � s(s(0))
an be solved by a narrowing step with rule R

2

followed by a

narrowing step with rule R

1

so that z is instantiated to s(0) and the instantiated equation is

redu
ed to the trivial equation s(s(0)) � s(s(0)):

z + s(0) � s(s(0)) ;

fz 7!s(x)g

s(x+ s(0)) � s(s(0)) ;

fx7!0g

s(s(0)) � s(s(0))

Hen
e we have found the solution z 7! s(0) to the given equation. 2

In order to ensure
ompleteness in general, the left-hand side of ea
h rule must be uni�ed with

ea
h nonvariable subterm of the given equation. Clearly, this yields a huge sear
h spa
e. The

situation
an be improved by parti
ular narrowing strategies whi
h restri
t the possible positions

for the appli
ation of the next narrowing step, e.g., basi
 [26℄, innermost [14℄, outermost [11℄,

lazy [41℄, or needed narrowing [2℄. In this paper we
onsider lazy narrowing strategies where

narrowing steps are applied at outermost positions in general and at an inner position only if

it is demanded and
ontributes to some later narrowing step at an outer position. Similarly to

pure fun
tional programming, su
h a lazy strategy avoids useless steps in
omparison to an eager

strategy. However, in the
ontext of fun
tional logi
 programming, a lazy narrowing strategy
an

also have an unpleasant behavior if a demanded argument term has in�nitely many head normal

forms (i.e., if it
an be derived to in�nitely many terms with a variable or
onstru
tor at the top).

Example 1.2 Consider the following rules whi
h may be part of a program for arithmeti
 opera-

tions:

0 � x ! 0 (R

3

) one(0) ! s(0) (R

5

)

x � 0 ! 0 (R

4

) one(s(x)) ! one(x) (R

6

)

If we want to
ompute a solution to the equation one(z) � 0 � 0 by lazy narrowing, we
ould try

to apply rule R

3

to evaluate the left-hand side. In this
ase the �rst argument one(z) is demanded

and must be evaluated to a term with a
onstru
tor at the top. Unfortunately, there are in�nitely

many possibilities to
ompute a head normal form s(0) of the term one(z) by instantiating z with

s(� � � s

| {z }

n

(0) � � �) for arbitrary n. Hen
e lazy narrowing has an in�nite sear
h spa
e in this example and

does not
ompute a solution in a sequential implementation (see [18℄ for a dis
ussion of problems

with sequential implementations of lazy narrowing). However, we
ould avoid this in�nite sear
h

spa
e by
omputing the normal form of both sides of the equation before applying a narrowing

step. The normal form of the initial equation is 0 � 0 (redu
tion of the left-hand side with rule

R

4

) whi
h is trivially true. 2

The idea of redu
tion to normal form before applying a narrowing step has been mainly proposed

with respe
t to eager narrowing strategies [13, 14, 25, 38, 42℄. It has been shown that eager nar-

rowing with normalization is a more eÆ
ient
ontrol strategy than left-to-right SLD-resolution for

equivalent logi
 programs [14, 21℄. On the other hand, only little work has been done to improve

the eÆ
ien
y of outermost or lazy strategies. E
hahed [12℄ has shown the
ompleteness of any

narrowing strategy with simpli�
ation under strong requirements (uniformity of spe
i�
ations).

Dershowitz et al. [9℄ have proposed to
ombine lazy narrowing with simpli�
ation and demon-

strated the usefulness of indu
tive
onsequen
es for simpli�
ation. However, they have not proved

2

ompleteness of their lazy uni�
ation
al
ulus if all terms are simpli�ed to their normal form after

ea
h uni�
ation step.

1

The main
ontribution of this paper is the
ombination of lazy narrowing with intermediate

simpli�
ation steps. We show that this
ombination does not destroy the
ompleteness of lazy

narrowing. We prove this result for the following two
lasses of fun
tional logi
 programs.

2

1. Ground
on
uent and terminating rewrite systems: All existing proposals for
ombining nar-

rowing with simpli�
ation require terminating rewrite systems [13, 14, 25, 38, 42℄. For this

ase, narrowing is a method to
ompute uni�ers in the presen
e of an equational theory

(known as E-uni�
ation, see [3℄ for a survey). We will develop a
al
ulus for this
lass,
alled

lazy uni�
ation with simpli�
ation, and provide a rigorous
ompleteness proof. This
al
ulus

has a lazy behavior w.r.t. uni�
ation, i.e., fun
tions are only evaluated if their value is re-

quired to de
ide the uni�ability of terms. Moreover, we allow to use program rules as well as

additional indu
tive
onsequen
es for simpli�
ation between narrowing steps. This has been

proved to be useful in other (eager)
al
uli [12, 14, 38℄.

2. Weakly orthogonal (not ne
essarily terminating) rewrite systems: If the fun
tional logi
 pro-

gram is not based on a terminating rewrite system, a lazy narrowing strategy is needed

[6, 35, 41℄. Sin
e normal forms may not exist in the presen
e of nonterminating fun
tions,

equality between two expressions is interpreted as stri
t equality in su
h languages (e.g.,

BABEL [37℄, K-LEAF [17℄), i.e., two expressions are equal i� they are redu
ible to a same

ground
onstru
tor term. The
on
uen
e of the rewrite system is ensured by synta
ti

riteria

(left-linearity and nonambiguity). Lazy narrowing is a
omplete method to
ompute uni�ers

w.r.t. stri
t equality for su
h programs. However, no attempt has been made to use program

rules for simpli�
ation between narrowing steps. Due to the absen
e of normal forms for

some expressions, full normalization between narrowing steps would be in
omplete. There-

fore, we propose the integration of lazy simpli�
ation into lazy narrowing derivations for su
h

programs.

As far as we know, all fun
tional logi
 languages with a
omplete operational semanti
s are based

on programs belonging to one of these
lasses. For instan
e, programs with the requirements of

ALF [19℄, LPG [4℄ or SLOG [14℄ are ground
omplete and terminating, whereas programs with the

requirements of BABEL [37℄ or K-LEAF [17℄ are weakly orthogonal. Thus our result is a signi�
ant

step to improve the operational semanti
s of existing fun
tional logi
 languages. We will emphasize

this point by dis
ussing the advantage of lazy narrowing with simpli�
ation for various
lasses of

fun
tional logi
 programs.

In the next se
tion we re
all basi
 notions from term rewriting and fun
tional logi
 programming.

In Se
tion 3 we present the lazy uni�
ation
al
ulus with simpli�
ation and prove its soundness

and
ompleteness for ground
on
uent and terminating rewrite systems. In Se
tion 4 we show

1

In fa
t, their
ompleteness proof for lazy narrowing does not hold if eager rewriting is in
luded sin
e rewriting in

their sense does not redu
e the
omplexity measure used in their
ompleteness proof and may lead to in�nite instead

of su

essful derivations.

2

For the sake of simpli
ity, we
onsider only programs based on un
onditional rewrite systems. However, it does

not seem diÆ
ult to extend the results of Se
tion 4 to
onditional rules with extra variables in
onditions using the

transformation te
hniques presented in [24℄.

3

how to in
lude a deterministi
 simpli�
ation pro
ess into lazy narrowing derivations w.r.t. weakly

orthogonal rewrite systems. In Se
tion 5 we dis
uss the usefulness of this simpli�
ation pro
ess

for di�erent
lasses of fun
tional logi
 programs. Finally, we
on
lude with a dis
ussion of related

work.

2 Preliminaries

In this se
tion we re
all basi
 notions of term rewriting [8℄ and fun
tional logi
 programming [22℄.

A signature is a set F of fun
tion symbols.

3

Every f 2 F is asso
iated with an arity n, denoted

f=n. Let X be a
ountably in�nite set of variables. Then the set T (F ;X) of terms built from F

and X is the smallest set
ontaining X su
h that f(t

1

; : : : ; t

n

) 2 T (F ;X) whenever f 2 F has arity

n and t

1

; : : : ; t

n

2 T (F ;X). We write f instead of f() whenever f has arity 0. The set of variables

o

urring in a term t is denoted by Var(t) (similarly for the other synta
ti

onstru
tions de�ned

below, like equation, rewriting rule et
.). A term t is
alled ground if Var(t) = ;. In the following

we assume that F is a signature with at least one
onstant.

The exe
ution of fun
tional logi
 programs requires notions like substitution, uni�er and sub-

term whi
h will be de�ned next. A substitution � is a mapping from X into T (F ;X) su
h that

its domain Dom(�) = fx 2 X j �(x) 6= xg is �nite. We frequently identify a substitution �

with the set fx 7! �(x) j x 2 Dom(�)g. Substitutions are extended to morphisms on T (�;X) by

�(f(t

1

; : : : ; t

n

)) = f(�(t

1

); : : : ; �(t

n

)) for every term f(t

1

; : : : ; t

n

). A substitution � is
alled ground

if �(x) is a ground term for all x 2 Dom(�). The
omposition of two substitutions � and � is

de�ned by � Æ �(x) = �(�(x)) for all x 2 X . The union of two substitutions � and � is de�ned by

(� [�)(x) =

8

<

:

�(x) if x 2 Dom(�)

�(x) if x 2 Dom(�)

x otherwise

only if Dom(�) \ Dom(�) = ;. The restri
tion �

jV

of a substitution � to a set V of variables is

de�ned by �

jV

(x) = �(x) if x 2 V and �

jV

(x) = x if x 62 V . A term s is
alled instan
e of a term

t if there is a substitution � with s = �(t) (similarly for the other synta
ti

onstru
tions de�ned

below).

A uni�er of two terms s and t is a substitution � with �(s) = �(t). A uni�er � is
alled most

general (mgu) if for every other uni�er �

0

there is a substitution � with �

0

= � Æ �. Most general

uni�ers are unique up to variable renaming. By introdu
ing a total ordering on variables we
an

uniquely
hoose the most general uni�er of two terms. A position p in a term t is represented by a

sequen
e of natural numbers, tj

p

denotes the subterm of t at position p, and t[s℄

p

denotes the result

of repla
ing the subterm tj

p

by the term s (see [8℄ for details).

Let ! be a binary relation on a set S. Then !

�

denotes the transitive and re
exive
losure of

the relation !, and $

�

denotes the transitive, re
exive and symmetri

losure of !. ! is
alled

terminating if there are no in�nite
hains e

1

! e

2

! e

3

! � � �. ! is
alled
on
uent if for all

e; e

1

; e

2

2 S with e!

�

e

1

and e!

�

e

2

there exists an element e

3

2 S with e

1

!

�

e

3

and e

2

!

�

e

3

.

3

In this paper we
onsider only single-sorted programs. The extension to many-sorted signatures is straightforward

[39℄. Sin
e sorts are not relevant to the subje
t of this paper, we omit them for the sake of simpli
ity.

4

An equation s � t is a multiset
ontaining two terms s and t. Thus equations to be uni�ed

are symmetri
. In order to
ompute with fun
tional logi
 programs, we will use the equations

spe
ifying fun
tions only in one dire
tion. Hen
e we de�ne a rewrite rule l ! r as a pair of terms

l; r satisfying l 62 X and Var(r) � Var(l) where l and r are
alled left-hand side and right-hand

side, respe
tively. A rewrite rule is
alled a variant of another rule if it is obtained by a unique

repla
ement of variables by other variables. In the following we assume that R is a set of rewrite

rules, whi
h is also
alled term rewriting system.

A rewrite step is an appli
ation of a rewrite rule to a term, i.e., t!

R

s if there exist a position

p in t, a rewrite rule l ! r and a substitution � with tj

p

= �(l) and s = t[�(r)℄

p

. In this
ase we

say t is redu
ible (at position p). A term t is
alled irredu
ible or in normal form if there is no term

s with t!

R

s. A substitution � is
alled irredu
ible or normalized if �(x) is in normal form for all

variables x 2 X . A term rewriting system is (ground)
on
uent if the restri
tion of !

R

to the set

of all (ground) terms is
on
uent. If R is (ground)
on
uent and terminating, then ea
h (ground)

term t has a unique normal form whi
h is denoted by t#

R

.

We are interested in proving the validity of equations. An equation s � t is
alled valid (w.r.t.

R) if s$

�

R

t. By Birkho�'s Completeness Theorem, this is equivalent to the validity of s � t in all

models of R. In this
ase we also write s =

R

t. If R is (ground)
on
uent and terminating, we
an

de
ide the validity of a (ground) equation s � t by
omputing the normal form of both sides using

an arbitrary sequen
e of rewrite steps, sin
e s $

�

R

t i� s#

R

= t#

R

. In order to
ompute solutions

to a nonground equation s � t, we have to �nd appropriate instantiations for the variables in s and

t. This
an be done by narrowing. A term t is narrowable into a term t

0

if there exist a nonvariable

position p (i.e., tj

p

62 X), a variant l ! r of a rewrite rule with Var(t) \ Var(l) = ;, a substitution

� su
h that � is a mgu of tj

p

and l, and t

0

= �(t[r℄

p

). In this
ase we write t;

[p;l!r;�℄

t

0

or simply

t ;

�

t

0

.

4

If there is a narrowing sequen
e t

1

;

�

1

t

2

;

�

2

� � � ;

�

n�1

t

n

, we write t

1

;

�

�

t

n

with

� = �

n�1

Æ � � � Æ �

2

Æ �

1

.

Narrowing is able to solve equations w.r.t. R. For this purpose we introdu
e two new fun
tion

symbols =

?

and true and add the rewrite rule x =

?

x! true to R. Then narrowing is sound and

omplete in the following sense.

Theorem 2.1 ([26℄) Let R be a term rewriting system so that !

R

is
on
uent and terminating.

1. If s =

?

t;

�

�

true, then �(s) =

R

�(t).

2. If �

0

(s) =

R

�

0

(t), then there exist a narrowing derivation s =

?

t;

�

�

true and a substitution

� with �(�(x)) =

R

�

0

(x) for all x 2 Var(s) [Var(t).

Sin
e this simple narrowing pro
edure (enumerating all narrowing derivations) is very ineÆ
ient,

several authors have proposed restri
tions on the admissible narrowing derivations (see [22℄ for

a detailed survey). For instan
e, Hullot [26℄ has introdu
ed basi
 narrowing where narrowing

steps in positions introdu
ed by substitutions are forbidden. Fribourg [14℄ has proposed innermost

narrowing where narrowing is applied only at innermost positions, and H�olldobler [25℄ has
ombined

innermost and basi
 narrowing. Kris
her and Bo
kmayr [29℄ have proposed additional tests during

narrowing derivations to eliminate redundant derivations. Narrowing at outermost positions is

4

Sin
e the instantiation of the variables in the rule l ! r by � is not relevant for the
omputed solution of a

narrowing derivation, we omit this part of � in the example derivations in this paper.

5

omplete only if the term rewrite system satis�es strong restri
tions [11℄. Lazy narrowing [6, 35, 41℄

is in
uen
ed by the idea of lazy evaluation in fun
tional programming languages. Lazy narrowing

steps are only applied at outermost positions with the ex
eption that arguments are evaluated by

narrowing to their head normal form if their values are required for an outermost narrowing step

(see [37℄ for an exa
t de�nition of a lazy narrowing position). Sin
e lazy strategies are relevant

in the
ontext of nonterminating rewrite rules, these strategies have been proved to be
omplete

w.r.t. domain-based interpretations of rewrite rules [17, 37℄. Lazy uni�
ation is very similar to lazy

narrowing but manipulates sets of equations rather than terms. It has been proved to be
omplete

for
on
uent and terminating term rewriting systems w.r.t. standard semanti
s [9, 34℄. Therefore,

lazy uni�
ation
al
uli are more appropriate in the
ontext of terminating rewrite systems and

standard semanti
s of equality, whereas lazy narrowing
al
uli are appropriate in the presen
e of

nonterminating rules. Thus, we follow this distin
tion.

5

Another improvement of simple narrowing is normalizing narrowing [13℄ where the term is

rewritten to its normal form before a narrowing step is applied. This optimization is important

sin
e it prefers deterministi

omputations: rewriting a term to normal form
an be done in a

deterministi
 way sin
e every rewriting sequen
e yields the same result (if R is
on
uent and

terminating) whereas di�erent narrowing steps may lead to di�erent solutions and, therefore, all

admissible narrowing steps must be
onsidered. In a sequential implementation, rewriting
an

be eÆ
iently implemented like redu
tions in fun
tional languages whereas narrowing steps need

ostly ba
ktra
king management like in Prolog. For instan
e, if s =

R

t, normalizing narrowing will

prove the validity by a pure deterministi

omputation (redu
ing s and t to the same normal form)

whereas simple narrowing would
ompute the normal form of s and t by
ostly narrowing steps.

As shown in [14, 21℄, normalizing narrowing has the desirable e�e
t that fun
tional logi
 programs

are more eÆ
iently exe
utable than pure logi
 programs.

The idea of normalizing narrowing
an also be
ombined with other narrowing restri
tions.

R�ety [42℄ has proved
ompleteness of normalizing basi
 narrowing, Fribourg [14℄ has proposed nor-

malizing innermost narrowing and H�olldobler [25℄ has
ombined innermost basi
 narrowing with

normalization. Be
ause of these advantages, normalizing narrowing is the foundation of several

programming languages whi
h
ombines fun
tional and logi
 programming, like ALF [19℄, LPG [4℄,

or SLOG [14℄. However, normalization has not been in
luded in lazy narrowing strategies.

6

There-

fore, we will show that deterministi
 simpli�
ation steps
an be performed before nondeterministi

lazy narrowing steps without destroying the
ompleteness of lazy narrowing. The problems of

integrating normalization into basi
 narrowing [42℄ shows that su
h a result is not obvious.

3 Ground Con
uent and Terminating Programs

In this se
tion we assume that R is a ground
on
uent and terminating term rewriting system.

First, we present our basi
 lazy uni�
ation
al
ulus to solve a system of equations. The in
lusion

of a normalization pro
ess will be shown in Se
tion 3.2. The \laziness" of our
al
ulus is in the

spirit of lazy evaluation in fun
tional programming languages, i.e., terms are evaluated only if their

values are needed.

5

Note that this distin
tion be
omes essential if one
onsiders higher-order rewrite rules [40℄.

6

Ex
ept for [9, 12℄, but see the remarks in Se
tion 1.

6

Lazy narrowing

f(t

1

; : : : ; t

n

) � t; E

lu

=) t

1

� l

1

; : : : ; t

n

� l

n

; r � t; E

if t 62 X or t 2 Var(f(t

1

; : : : ; t

n

)) [Var(E) and f(l

1

; : : : ; l

n

)! r new variant of a rewrite rule

De
omposition of equations

f(t

1

; : : : ; t

n

) � f(t

0

1

; : : : ; t

0

n

); E

lu

=) t

1

� t

0

1

; : : : ; t

n

� t

0

n

; E

Partial binding of variables

x � f(t

1

; : : : ; t

n

); E

lu

=) x � f(x

1

; : : : ; x

n

); x

1

� �(t

1

); : : : ; x

n

� �(t

n

); �(E)

if x 2 Var(f(t

1

; : : : ; t

n

)) [Var(E) and � = fx 7! f(x

1

; : : : ; x

n

)g (where x

i

new variable)

Figure 1: The lazy uni�
ation
al
ulus

3.1 A Cal
ulus for Lazy Uni�
ation

Lazy narrowing as introdu
ed in Se
tion 2 is de�ned only for
onstru
tor-based programs (see

also Se
tion 4). Sin
e we do not require
onstru
tor-based programs in this se
tion, we present a

lazy uni�
ation
al
ulus whi
h is slightly more general than lazy narrowing. This lazy uni�
ation

al
ulus manipulates sets of equations in the style of Martelli and Montanari [33℄ rather than terms

as in narrowing
al
uli. Hen
e we de�ne an equation system E to be a multiset of equations (in

the following we write su
h sets without
urly bra
kets if it is
lear from the
ontext). A solution

of an equation system E is a ground substitution � su
h that Var(E) � Dom(�) and �(s) =

R

�(t)

for all equations s � t 2 E.

7

An equation system E is solvable if it has at least one solution. A set

S of substitutions is a
omplete set of solutions for E i�

1. for all � 2 S, � is a solution of E;

2. for every solution � of E, there exists some � 2 S with �(x) =

R

�(x) for all x 2 Var(E).

In order to
ompute solutions of an equation system, we transform it by the rules in Figure 1

until no more rules
an be applied. The lazy narrowing transformation applies a rewrite rule to a

fun
tion o

urring outermost in an equation.

8

A
tually, this is not a narrowing step as de�ned in

Se
tion 2 sin
e the argument terms may not be uni�able. Narrowing steps
an be simulated by a

sequen
e of transformations in the lazy uni�
ation
al
ulus but not vi
e versa sin
e our
al
ulus also

allows the appli
ation of rewrite rules to the arguments of the left-hand sides. The de
omposition

transformation generates equations between the argument terms of an equation if both sides have

the same outermost symbol. The partial binding of variables
an be applied if the variable x o

urs

at di�erent positions in the equation system. In this
ase we instantiate the variable only with

the outermost fun
tion symbol. A full instantiation by the substitution � = fx 7! f(t

1

; : : : ; t

n

)g

may in
rease the
omputational work if x o

urs several times and the evaluation of f(t

1

; : : : ; t

n

)

7

We are interested in ground solutions sin
e later we will in
lude indu
tive
onsequen
es whi
h are valid in the

ground models of R. As pointed out in [38℄, this ground approa
h subsumes the
onventional narrowing approa
hes

where also nonground solutions are taken into a

ount (as in Theorem 2.1).

8

Similarly to logi
 programming, we have to apply rewrite rules with fresh variables in order to ensure
ompleteness.

7

is
ostly. In order to avoid this problem of eager variable elimination (see [15℄), we perform only a

partial binding whi
h is also
alled \root imitation" in [15℄.

It is possible to add further rules to simplify equation systems like the elimination of trivial

equations:

t � t; E

lu

=) E

However, these rules are not really ne
essary and we omit them in our �rst approa
h. Later we

will see how to add deterministi
 (failure) rules to redu
e the sear
h spa
e of the
al
ulus.

At �rst sight our lazy uni�
ation
al
ulus has many similarities with the lazy uni�
ation rules

presented in [9, 15, 34, 39℄. This is not a

idental sin
e these systems have inspired us. However,

there are also essential di�eren
es. Sin
e we are interested in redu
ing the
omputational
osts in

the E-uni�
ation pro
edure, our rules behave \more lazily". In our
al
ulus it is allowed to evaluate

a term only if its value is needed

9

(in several positions). Otherwise, the term is left unevaluated.

Example 3.1 Consider the rewrite rule 0 � x! 0. Then the only transformation sequen
e of the

equation 0 � t � 0 (where t may be a
ostly fun
tion) is

0 � t � 0

lu

=) 0 � 0; t � x; 0 � 0 (lazy narrowing)

lu

=) t � x; 0 � 0 (de
omposition)

lu

=) t � x (de
omposition)

Thus the term t is not evaluated sin
e its
on
rete value is not needed. Consequently, we may

ompute solutions whi
h are not normalized. That is a desirable property in the presen
e of a lazy

evaluation me
hanism. 2

The
onventional transformation rules for uni�
ation w.r.t. an empty equational theory [33℄ bind

a variable x to a term t only if x does not o

ur in t. This o

ur
he
k must be omitted in the

presen
e of evaluable fun
tion symbols. Moreover, we must also instantiate o

urren
es of x in the

term t whi
h is done in our partial binding rule. The following example shows the ne
essity of

these extensions.

Example 3.2 Consider the rewrite rule f(
(a))! a. Then we
an solve the equation x �
(f(x))

by the following transformation sequen
e:

x �
(f(x))

lu

=) x �
(x

1

); x

1

� f(
(x

1

)) (partial binding)

lu

=) x �
(x

1

);
(x

1

) �
(a); x

1

� a (lazy narrowing)

lu

=) x �
(x

1

); x

1

� a; x

1

� a (de
omposition)

lu

=) x �
(a); x

1

� a; a � a (partial binding)

lu

=) x �
(a); x

1

� a (de
omposition)

In fa
t, the initial equation is solvable and fx 7!
(a)g is a solution of this equation. This solution

is also an obvious solution of the �nal equation system if we disregard the auxiliary variable x

1

. 2

9

Although our lazy narrowing rule is more restri
ted than in other lazy uni�
ation
al
uli, it is not optimal in the

sense of [2℄ sin
e we do not require strongly sequential rewrite systems.

8

Coales
e

x � y;E

var

=) x � y; �(E)

if x; y 2 Var(E), x 6= y, and � = fx 7! yg

Trivial

x � x;E

var

=) E

Figure 2: The variable elimination rules

In the rest of this se
tion, we will prove soundness and
ompleteness of our lazy uni�
ation

al
ulus. Soundness simply means that ea
h solution of the transformed equation system is also a

solution of the initial equation system. Completeness is more diÆ
ult sin
e we have to take into

a

ount all possible transformations. Therefore, we will show that a solvable equation system
an

be transformed into another very simple equation system whi
h has \an obvious solution". Su
h

a �nal equation system is said to be in \solved form". A

ording to [15, 33℄, we
all an equation

x � t of an equation system E solved (in E) if x is a variable whi
h o

urs neither in t nor anywhere

else in E. In this
ase variable x is also
alled solved (in E). An equation system is solved or in

solved form if all its equations are solved. A variable or equation is unsolved in E if it o

urs in E

but is not solved.

The lazy uni�
ation
al
ulus in the present form
annot transform ea
h solvable equation system

into a solved form sin
e equations between variables are not simpli�ed. For instan
e, the equation

system

x � f(y); y � z

1

; y � z

2

; z

1

� z

2

is irredu
ible w.r.t.

lu

=) but not in solved form sin
e the variables y; z

1

; z

2

have multiple o

urren
es.

Fortunately, this is not a problem sin
e a solution
an be extra
ted by merging the variables

o

urring in unsolved equations. Therefore, we
all this system quasi-solved. An equation system

is quasi-solved if ea
h equation s � t is solved or has the property s; t 2 X . In the following

we will show that a quasi-solved equation system has solutions whi
h
an be easily
omputed by

applying the rules in Figure 2 to it. The separation between the lazy uni�
ation rules in Figure 1

and the variable elimination rules in Figure 2 has te
hni
al reasons that will be
ome apparent later

(e.g., applying variable elimination to the equation y � z

1

may not redu
e the
omplexity measure

used in our
ompleteness proofs). However, it is obvious to extra
t the solutions of a quasi-solved

equation system E. For this purpose we transform E by the rules in Figure 2 into a solved equation

system whi
h has a dire
t solution. This is justi�ed by the following propositions.

Proposition 3.3 Let E and E

0

be equation systems with E

var

=)E

0

. Then E and E

0

have the same

solutions.

Proof: It is obvious that E and E

0

have the same solutions if the transformation rule \Trivial" is

applied. In
ase of the rule \Coales
e", E has the form x � y;E

0

, and E

0

has the form x � y; �(E

0

)

with � = fx 7! yg. Let � be a solution of E. Then �(x) $

�

R

�(y) = �(�(x)). By de�nition of

� and the
ongruen
e property of $

�

R

, �(t) $

�

R

�(�(t)) for all terms t. Let s � t 2 E

0

. Sin
e �

9

is a solution of E, �(s) $

�

R

�(t). Moreover, �(s) $

�

R

�(�(s)) and �(t) $

�

R

�(�(t)) whi
h implies

�(�(s))$

�

R

�(�(t)). Therefore, � is also a solution of �(E

0

).

If � is a solution of E

0

, it
an be shown in a similar way that � is also a solution of E

0

.

Due to this proposition, the transformation

var

=) preserves solutions. Moreover, it is a terminating

relation:

Proposition 3.4 The relation

var

=) on equation systems is terminating.

Proof: De�ne the
omplexity of an equation system as the total number of o

urren
es of unsolved

variables in this system. Obviously, both transformation rules of

var

=) redu
e this number.

If an equation system is quasi-solved, we
an always transform it into a solved system:

Proposition 3.5 Let E be a quasi-solved equation system. Then there exists a solved equation

system E

0

with E

var

=)

�

E

0

.

Proof: Let E be a quasi-solved equation system whi
h is not solved. Then there exists an equation

x � y 2 E whi
h is unsolved. Hen
e x = y or x; y 2 Var(E � fx � yg). In the �rst
ase we apply

the rule \Trivial" and in the se
ond
ase we apply the rule \Coales
e". The result of both
ases

is a new equation system in quasi-solved form. Sin
e there are no in�nite derivations w.r.t.

var

=)

(Proposition 3.4), su

essive transformation steps w.r.t.

var

=) will end in a solved equation system.

The solutions of an equation system in solved form
an be obtained as follows:

Proposition 3.6 Let E be an equation system in solved form, i.e.,

E = fx

1

� t

1

; : : : ; x

n

� t

n

g

where x

1

; : : : ; x

n

are di�erent variables with x

i

62 Var(t

j

) for i; j 2 f1; : : : ; ng (re
all that equations

are multisets, thus we
an write solved systems always in this form). Then the substitution set

f
 Æ fx

1

7! t

1

; : : : ; x

n

7! t

n

g j
 is a ground substitution with Dom(
) =

n

[

i=1

Var(t

i

)g

is a
omplete set of solutions for E.

Proof: First we show that � : =
Æfx

1

7! t

1

; : : : ; x

n

7! t

n

g is a solution of E for an arbitrary ground

substitution
 with Dom(
) =

S

n

i=1

Var(t

i

). Clearly, Dom(�) = fx

1

; : : : ; x

n

g [Dom(
) = Var(E).

Consider the equation x

i

� t

i

2 E. Sin
e x

1

; : : : ; x

n

do not o

ur in any t

i

, �(x

i

) =
(t

i

) = �(t

i

),

i.e., � is a solution of x

i

� t

i

. Hen
e � is a solution of E.

Next we show that every solution of E is
overed by some substitution from the substitution

set de�ned above. Let � be a solution of E. Then �(x

i

) =

R

�(t

i

) for i = 1; : : : ; n. Sin
e � is a

ground substitution with Var(E) � Dom(�), the substitution

� : = �

j

S

n

i=1

Var(t

i

)

Æ fx

1

7! t

1

; : : : ; x

n

7! t

n

g

is
ontained in the above substitution set. We have to show �(x) =

R

�(x) for all x 2 Var(E):

10

� By de�nition of � and �, �(x

i

) = �(t

i

) =

R

�(x

i

) for i = 1; : : : ; n.

� If x 2 Var(t

j

) for some j 2 f1; : : : ; ng, then �(x) = �(x) by de�nition of � (note that x is

di�erent from any x

i

sin
e no x

i

o

urs in t

j

).

Altogether, �(x) =

R

�(x) for all x 2 Var(E).

Due to Propositions 3.3, 3.5 and 3.6, it is suÆ
ient to transform an equation system into a quasi-

solved form in order to
ompute its solutions. Hen
e we
an state soundness and
ompleteness

results by
on
entrating on quasi-solved forms. The next lemma shows the soundness if a trans-

formation rule of the lazy uni�
ation
al
ulus is applied.

Lemma 3.7 Let E and E

0

be equation systems with E

lu

=)E

0

. Then ea
h solution � of E

0

is also

a solution of E.

Proof: Assume that E

lu

=)E

0

and � is a solution of E

0

. Clearly, Var(E) � Dom(�) sin
e Var(E) �

Var(E

0

) � Dom(�). There are three
ases
orresponding to the applied transformation rule:

1. The lazy narrowing rule has been applied. Then E = f(t

1

; : : : ; t

n

) � t; E

0

, f(l

1

; : : : ; l

n

) !

r is a variant of a rewrite rule and E

0

= t

1

� l

1

; : : : ; t

n

� l

n

; r � t; E

0

. Sin
e � is a

solution of E

0

, �(t

i

)$

�

R

�(l

i

) (for i = 1; : : : ; n) and �(r)$

�

R

�(t). These equivalen
es imply

�(f(t

1

; : : : ; t

n

))$

�

R

�(f(l

1

; : : : ; l

n

)) by the
ongruen
e property of$

�

R

. Sin
e f(l

1

; : : : ; l

n

)!

r is a variant of a rewrite rule, �(f(l

1

; : : : ; l

n

))!

R

�(r)$

�

R

�(t). Hen
e �(f(t

1

; : : : ; t

n

))$

�

R

�(t), i.e., � is a solution of E.

2. The de
omposition rule has been applied. Then E = f(t

1

; : : : ; t

n

) � f(t

0

1

; : : : ; t

0

n

); E

0

and

E

0

= t

1

� t

0

1

; : : : ; t

n

� t

0

n

; E

0

. Sin
e � is a solution of E

0

, �(t

i

) $

�

R

�(t

0

i

) (for i = 1; : : : ; n).

Hen
e �(f(t

1

; : : : ; t

n

))$

�

R

�(f(t

0

1

; : : : ; t

0

n

)) by the
ongruen
e property of $

�

R

.

3. The partial binding rule has been applied. Then E = x � f(t

1

; : : : ; t

n

); E

0

and E

0

= x �

f(x

1

; : : : ; x

n

); x

1

� �(t

1

); : : : ; x

n

� �(t

n

); �(E

0

) where � = fx 7! f(x

1

; : : : ; x

n

)g. Sin
e � is a

solution of E

0

, we have

(a) �(x)$

�

R

�(f(x

1

; : : : ; x

n

))

(b) �(x

i

)$

�

R

�(�(t

i

)) (for i = 1; : : : ; n)

(
) � solution of �(E

0

)

By de�nition of �, (a) and the
ongruen
e property of $

�

R

,

�(�(t))$

�

R

�(t) for all terms t (�)

Hen
e � is also a solution of E

0

. Moreover,

�(x) $

�

R

�(f(x

1

; : : : ; x

n

)) (by (a))

$

�

R

�(f(�(t

1

); : : : ; �(t

n

))) (by (b))

$

�

R

�(f(t

1

; : : : ; t

n

)) (by (�))

Hen
e � is a solution of x � f(t

1

; : : : ; t

n

).

11

The following soundness theorem
an be proved by a simple indu
tion on the transformation steps

using the previous lemma.

Theorem 3.8 Let E and E

0

be equation systems with E

lu

=)

�

E

0

. Then ea
h solution � of E

0

is a

solution of E.

The
ompleteness proof is more diÆ
ult sin
e we have to
onsider all possible transformation

sequen
es. Therefore, we show that for ea
h solution of an equation system there is a derivation

into a quasi-solved form that has the same solution. Note that the solution of the quasi-solved

form
annot be identi
al to the required solution, be
ause new additional variables are generated

during the derivation (by lazy narrowing and partial binding transformations). However, this is

not a problem sin
e we are interested in solutions w.r.t. the variables of the initial equation system.

Theorem 3.9 Let E be a solvable equation system with solution �. Then there exists a derivation

E

lu

=)

�

E

0

with E

0

in quasi-solved form su
h that E

0

has a solution �

0

with �

0

(x) =

R

�(x) for all

x 2 Var(E).

Proof: We show the existen
e of a derivation from E into a quasi-solved equation system by the

following steps:

1. We de�ne a redu
tion relation) on pairs of the form (�;E), where E is an equation system

and � is a solution of E, with the property that (�;E)) (�

0

; E

0

) implies E

lu

=)E

0

and

�

0

(x) = �(x) for all x 2 Var(E).

2. We de�ne a terminating ordering � on these pairs.

3. We show: If E has a solution � but E is not in quasi-solved form, then there exists a pair

(�

0

; E

0

) with (�;E)) (�

0

; E

0

) and (�;E) � (�

0

; E

0

).

2 and 3 implies that ea
h solvable equation system
an be transformed into a quasi-solved form.

By 1, the solution of this quasi-solved form is the required solution of the initial equation system.

In the sequel we will show 1 and 3 in parallel. First we de�ne the terminating ordering �.

For this purpose we use the stri
t subterm ordering �

sst

on terms de�ned by t �

sst

s i� there is a

position p in t with tj

p

= s 6= t. Sin
e R is a terminating rewrite system, the relation!

R

on terms

is also terminating. Let �� be the transitive
losure of the relation !

R

[�

sst

. Then �� is also

terminating [28℄.

10

Now we de�ne the following ordering on pairs (�;E): (�;E) � (�

0

; E

0

) i�

f�(s); �(t) j s � t 2 E is unsolved in Eg ��

mul

f�

0

(s

0

); �

0

(t

0

) j s

0

� t

0

2 E

0

is unsolved in E

0

g (�)

where ��

mul

is the multiset extension

11

of the ordering �� (all sets in this de�nition are multisets).

��

mul

is terminating (note that all multisets
onsidered here are �nite) sin
e �� is terminating [7℄.

10

Note that the use of the relation !

R

instead of �� (as done in [9℄) is not suÆ
ient for the
ompleteness proof

sin
e !

R

has not the subterm property [7℄ in general.

11

The multiset ordering ��

mul

is the transitive
losure of the repla
ement of an element by a �nite number of

elements that are smaller w.r.t. �� [7℄.

12

Now we will show that we
an apply a transformation step to a solvable but unsolved equation

system su
h that its
omplexity is redu
ed. Let E be an equation system not in quasi-solved form

and � be a solution of E. Sin
e E is not quasi-solved, there must be an equation whi
h has one of

the following forms:

1. There is an equation E = s � t; E

0

with s; t 62 X : Let s = f(s

1

; : : : ; s

n

) with n � 0 (the other

ase is symmetri
). Consider an innermost derivation of the normal forms of �(s) and �(t):

(a) No rewrite step is performed at the root of �(s) and �(t): Then t has the form t =

f(t

1

; : : : ; t

n

) and �(s)#

R

= �(t)#

R

= f(u

1

; : : : ; u

n

). Sin
e �(s) and �(t) are not redu
ed

at the root, �(s

i

)#

R

= u

i

= �(t

i

)#

R

for i = 1; : : : ; n. Now we apply the de
omposition

transformation and obtain the equation system

E

0

= s

1

� t

1

; : : : ; s

n

� t

n

; E

0

Obviously, � is a solution of E

0

. Moreover, the
omplexity of the new equation system

is redu
ed be
ause the equation s � t is unsolved in E and ea
h �(s

i

) and �(t

i

) is

smaller than �(s) and �(t), respe
tively, sin
e ��
ontains the stri
t subterm ordering

�

sst

. Hen
e (�;E) � (�;E

0

).

(b) A rewrite step is performed at the root of �(s), i.e., the innermost rewriting sequen
e of

�(s) has the form

�(s)!

�

R

f(s

0

1

; : : : ; s

0

1

)!

R

�(r)!

�

R

�(s)#

R

where f(l

1

; : : : ; l

n

)! r is a new variant of a rewrite rule, �(l

i

) = s

0

i

and �(s

i

)!

�

R

s

0

i

for

i = 1; : : : ; n. An appli
ation of the lazy narrowing transformation yields the equation

system

E

0

= s

1

� l

1

; : : : ; s

n

� l

n

; r � t; E

0

We
ombine � and � to a new substitution �

0

= � [� (this is always possible sin
e

� does only work on the variables of the new variant of the rewrite rule). Note that

Var(E

0

) � Dom(�

0

). �

0

is a solution of E

0

sin
e

�

0

(s

i

) = �(s

i

)!

�

R

s

0

i

= �(l

i

) = �

0

(l

i

)

and

�

0

(r) = �(r)!

�

R

�(s)#

R

$

�

R

�(t) = �

0

(t)

Sin
e the transitive
losure of !

R

is
ontained in ��, �(s

i

) �� �

0

(l

i

) (if �(s

i

) 6= �

0

(l

i

))

and �(s) �� �

0

(r). Sin
e s � t is unsolved in E, the term �(s) is
ontained in the left

multiset of the ordering de�nition (�), and it is repla
ed by a sele
tion of the smaller

terms �(s

1

); : : : ; �(s

n

); �

0

(l

1

); : : : ; �

0

(l

n

); �

0

(r) (�(s) �� �(s

i

) sin
e ��
ontains the stri
t

subterm ordering). Therefore, the new equation system is smaller w.r.t. �, i.e., (�;E) �

(�

0

; E

0

).

2. There is an equation E = x � t; E

0

with t = f(t

1

; : : : ; t

n

) and x unsolved in E: Hen
e

x 2 Var(t) [Var(E

0

). Again, we
onsider an innermost derivation of the normal form of

�(t):

13

(a) A rewrite step is performed at the root of �(t). Then we apply a lazy narrowing step

and pro
eed as in the previous
ase.

(b) No rewrite step is performed at the root of �(t), i.e., �(t)#

R

= f(t

0

1

; : : : ; t

0

n

) and �(t

i

)#

R

=

t

0

i

for i = 1; : : : ; n. We apply the partial binding transformation and obtain the equation

system

E

0

= x � f(x

1

; : : : ; x

n

); x

1

� �(t

1

); : : : ; x

n

� �(t

n

); �(E

0

)

where � = fx 7! f(x

1

; : : : ; x

n

)g and x

i

are new variables. We extend � to a substitution

�

0

by adding the bindings �

0

(x

i

) = t

0

i

for i = 1; : : : ; n, i.e., Var(E

0

) � Dom(�

0

). Then

�

0

(f(x

1

; : : : ; x

n

)) = f(t

0

1

; : : : ; t

0

n

) = �(t)#

R

$

�

R

�(t)$

�

R

�(x) = �

0

(x)

Moreover, �

0

(�(x)) = �

0

(x)#

R

whi
h implies �

0

(s) $

�

R

�

0

(�(s)) for all terms s. Hen
e

�

0

(�(t

i

))$

�

R

�

0

(t

i

)$

�

R

t

0

i

= �

0

(x

i

). Altogether, �

0

is a solution of E

0

.

It remains to show that this transformation redu
es the
omplexity of the equation

system. Sin
e �

0

(�(x)) = �(x)#

R

, we have �(x) !

�

R

�

0

(�(x)). Hen
e �(E

0

) is equal to

�

0

(�(E

0

)) (if �(x) = �

0

(�(x))) or �

0

(�(E

0

)) is smaller w.r.t. ��

mul

. Therefore, it remains

to
he
k that �(t) is greater than ea
h �

0

(x

1

); : : : ; �

0

(x

n

); �

0

(�(t

1

)); : : : ; �

0

(�(t

n

)) w.r.t.

�� (note that the equation x � t is unsolved in E, but the equation x � f(x

1

; : : : ; x

n

)

is solved in E

0

). First of all, �(t) �� �(t

i

) sin
e �� in
ludes the stri
t subterm ordering.

Moreover, �(t

i

) !

�

R

�

0

(x

i

), i.e., �

0

(x

i

) is equal or smaller than �(t

i

) w.r.t. �� for i =

1; : : : ; n. This implies �(t) �� �

0

(x

i

). Similarly, �

0

(�(t

i

)) is equal or smaller than �(t

i

)

w.r.t. �� sin
e �

0

(�(x)) = �(x)#

R

. Thus �(t) �� �

0

(�(t

i

)). Altogether, (�;E) � (�

0

; E

0

).

We want to point out that there exist also other orderings on substitution/equation system pairs to

prove the
ompleteness of our
al
ulus. However, the ordering
hosen above is tailored to a simple

proof for the
ompleteness of lazy uni�
ation with simpli�
ation as we will see in the next se
tion.

Propositions 3.3, 3.5, 3.6 and Theorems 3.8 and 3.9 imply that a
omplete set of solutions for

a given equation system E
an be
omputed by enumerating all derivations in the lazy uni�
ation

al
ulus from E into a quasi-solved equation system. Due to the nondeterminism in the lazy

uni�
ation
al
ulus, there are many unsu

essful and often in�nite derivations. Therefore, we

will show in the next se
tion how to redu
e this nondeterminism by integrating a deterministi

simpli�
ation pro
ess into the lazy uni�
ation
al
ulus. More determinism
an be a
hieved by

dividing the set of fun
tion symbols into
onstru
tors and de�ned fun
tions. This will be the

subje
t of Se
tion 3.3.

3.2 Integrating Simpli�
ation Into Lazy Uni�
ation

The lazy uni�
ation
al
ulus admits a high degree of nondeterminism even if there is only one

reasonable derivation. This is due to the fa
t that fun
tional expressions are pro
essed \too lazy".

Example 3.10 Consider the rewrite rules

f(a) !
 g(a) ! a

f(b) ! d g(b) ! b

14

and the equation f(g(b)) � d. Then there are the following four di�erent derivations in our lazy

uni�
ation
al
ulus:

f(g(b)) � d

lu

=) g(b) � a;
 � d

lu

=) b � a; a � a;
 � d

lu

=) b � a;
 � d

f(g(b)) � d

lu

=) g(b) � a;
 � d

lu

=) b � b; b � a;
 � d

lu

=) b � a;
 � d

f(g(b)) � d

lu

=) g(b) � b; d � d

lu

=) b � a; a � b; d � d

lu

=) b � a; a � b

f(g(b)) � d

lu

=) g(b) � b; d � d

lu

=) b � b; b � b; d � d

lu

=)

�

;

The �rst three derivations do not end in a quasi-solved form, only the last derivation is su

essful.

However, if we �rst
ompute the normal form of f(g(b)), whi
h is d, then there is only one possible

derivation: d � d

lu

=) ;. Hen
e we will show that the lazy uni�
ation
al
ulus remains to be sound

and
omplete if the (deterministi
!) normalization of terms is in
luded. 2

It is well-known [14, 21℄ that the in
lusion of indu
tive
onsequen
es for normalization may have

an essential e�e
t on the sear
h spa
e redu
tion in normalizing narrowing strategies. Therefore,

we will also allow the use of additional indu
tive
onsequen
es for normalization. A rewrite rule

l ! r is
alled indu
tive
onsequen
e (of R) if �(l) =

R

�(r) for all ground substitutions � with

Dom(�) = Var(l). For instan
e, the rule x + 0 ! x is an indu
tive
onsequen
e of the term

rewriting system

0 + y ! y

s(x) + y ! s(x+ y)

If we want to solve the equation s(x)+0 � s(x), our basi
 lazy uni�
ation
al
ulus would enumerate

the solutions fx 7! 0g, fx 7! s(0)g, fx 7! s(s(0))g, and so on, i.e., this equation has an in�nite

sear
h spa
e. Using the indu
tive
onsequen
e x+0! x for normalization, the equation s(x)+0 �

s(x) is redu
ed to s(x) � s(x) and then transformed into the quasi-solved form x � x representing

the solution set where x is repla
ed by any ground term.

12

In the following, we assume that I is a set of indu
tive
onsequen
es of R (the set of simpli-

�
ation rules) so that the rewrite relation !

I

is terminating. We will use rules from R for lazy

narrowing and rules from I for simpli�
ation. Note that ea
h rule from R is also an indu
tive

onsequen
e and
an be in
luded in I. However, we do not require that all rules from R must be

used for normalization. This is reasonable if there are dupli
ating rules where one variable of the

left-hand side o

urs several times on the right-hand side, like f(x)! g(x; x). If we normalize the

equation f(s) � t with this rule, then the term s is dupli
ated. This may in
rease the
omputa-

tional
osts if the evaluation of s is ne
essary and
ostly. In su
h a
ase it would be better to use

this rule only in lazy narrowing steps.

In order to in
lude simpli�
ation into the lazy uni�
ation
al
ulus, we de�ne a relation)

I

on systems of equations. s � t)

I

s

0

� t

0

i� s

0

and t

0

are normal forms of s and t w.r.t. !

I

,

respe
tively. E)

I

E

0

i� E = e

1

; : : : ; e

n

and E

0

= e

0

1

; : : : ; e

0

n

where e

i

)

I

e

0

i

for i = 1; : : : ; n. Note

12

In larger single-sorted term rewriting systems, it
an be diÆ
ult to �nd indu
tive
onsequen
es. E.g., x+ 0! x

is not an indu
tive
onsequen
e if there is a
onstant a sin
e a + 0 =

R

a is not valid. However, in pra
ti
e spe
i�
-

ations are many-sorted and then indu
tive
onsequen
es must be valid only for all well-sorted ground substitutions.

Therefore, we want to point out that all results in this paper
an also be extended to many-sorted term rewriting

systems in a straightforward way.

15

that)

I

des
ribes a deterministi

omputation pro
ess.

13

E

lus

=)E

0

is a derivation step in the lazy

uni�
ation
al
ulus with simpli�
ation if E)

I

E

lu

=)E

0

for some E.

The following lemma shows the soundness of one rewrite step with a simpli�
ation rule. The

formulation of soundness di�ers from Lemma 3.7 sin
e we have to
onsider the fa
t that goal

variables may be deleted by normalization.

Lemma 3.11 Let s � t be an equation, s !

I

s

0

be a rewrite step, and �

0

be a solution of

s

0

� t. Then any ground substitution � with Var(s � t) � Dom(�) and �(x) =

R

�

0

(x) for all

x 2 Var(s

0

� t) is a solution of s � t.

Proof: Let s !

I

s

0

and �

0

be a solution of s

0

� t, i.e., �(s

0

) =

R

�(t). We
onsider a ground

substitution � with Var(s � t) � Dom(�) and �(x) =

R

�

0

(x) for all x 2 Var(s

0

� t). Obviously,

�(s) !

I

�(s

0

) using the same rewrite rule from I. Hen
e �(s) =

R

�(s

0

) sin
e I
onsists of

indu
tive
onsequen
es of R and �(s) and �(s

0

) are ground terms. By �(s

0

) =

R

�(t), this implies

�(s) =

R

�(t), i.e., � is a solution of s � t.

Now we
an state the soundness of the
al
ulus

lus

=):

Theorem 3.12 Let E and E

0

be equation systems with E

lus

=)

�

E

0

where E

0

is in quasi-solved

form, and �

0

be a solution of E

0

. Then any ground substitution � with Var(E) � Dom(�) and

�(x) =

R

�

0

(x) for all x 2 Var(E

0

) is a solution of E.

Proof: By Lemma 3.11, we
an show the soundness of)

I

with a simple indu
tion on the sequen
e

of rewrite steps. Combining this result with Lemma 3.7 shows the soundness of one

lus

=) step. Then

the theorem follows by another simple indu
tion on the number of

lus

=) steps.

For the
ompleteness proof we have to show that solutions are not lost by the appli
ation of

simpli�
ation rules:

Lemma 3.13 Let E be an equation system and � be a solution of E. If E)

I

E

0

, then � is a

solution of E

0

.

Proof: By de�nition of rewrite rules, Var(E

0

) � Var(E). Let s � t 2 E, �(s) =

R

�(t) and

s � t)

I

s

0

� t

0

. Hen
e s!

�

I

s

0

and t!

�

I

t

0

whi
h implies �(s)!

�

I

�(s

0

) and �(t)!

�

I

�(t

0

). Sin
e

� is a ground substitution with Var(E) � Dom(�) and I are indu
tive
onsequen
es, �(s) =

R

�(s

0

)

and �(t) =

R

�(t

0

). Hen
e �(s

0

) =

R

�(t

0

), i.e., � is a solution of all equations in E

0

.

The last lemma would imply the
ompleteness of the
al
ulus

lus

=) if a derivation step with)

I

does not in
rease the ordering used in the proof of Theorem 3.9. Unfortunately, this is not the

ase in general sin
e the termination of !

R

and !

I

may be based on di�erent orderings (e.g.,

R = fa ! bg and I = fb ! ag). In order to avoid su
h problems, we require that the relation

!

R[I

is terminating whi
h is not a real restri
tion in pra
ti
e.

13

If there exist more than one normal form w.r.t. !

I

, it is suÆ
ient to sele
t don't
are one of these normal forms.

16

Theorem 3.14 Let I be a set of indu
tive
onsequen
es of the ground
on
uent and terminating

rewrite systemR su
h that!

R[I

is terminating. Let E be a solvable equation system with solution

�. Then there exists a derivation E

lus

=)

�

E

0

su
h that E

0

is in quasi-solved form and has a solution

�

0

with �

0

(x) =

R

�(x) for all x 2 Var(E).

Proof: In the proof of Theorem 3.9, we have shown how to apply a transformation step to an

equation system not in quasi-solved form su
h that the solution is preserved. We
an use the

same proof for the transformation

lus

=) sin
e Lemma 3.13 shows that normalization steps preserve

solutions. The only di�eren
e
on
erns the ordering where we use !

R[I

instead of !

R

, i.e., �� is

now de�ned to be the transitive
losure of the relation!

R[I

[�

sst

. Clearly, this does not
hange

anything in the proof of Theorem 3.9. Moreover, the relation)

I

does not in
rease the
omplexity

w.r.t. this ordering but redu
es it if simpli�
ation rules are applied sin
e!

I

is
ontained in ��.

Theorems 3.12 and 3.14 show that we
an integrate the deterministi
 simpli�
ation pro
ess into the

lazy uni�
ation
al
ulus without loosing soundness and
ompleteness. Note that the rules from I

an only be applied if their left-hand sides
an be mat
hed with a subterm of the
urrent equation

system. If these subterms are not suÆ
iently instantiated, the rewrite rules are not appli
able and

hen
e we loose potential determinism in the uni�
ation pro
ess.

Example 3.15 Consider the rules

zero(s(x)) ! zero(x)

zero(0) ! 0

(assume that these rules are
ontained in R as well as in I) and the equation system zero(x) �

0; x � 0. Then there exists the following derivation in our
al
ulus (this derivation is also possible

in the uni�
ation
al
uli in [15, 34℄):

zero(x) � 0; x � 0

lus

=) x � s(x

1

); zero(x

1

) � 0; x � 0 (lazy narrowing with �rst rule)

lus

=) x � s(x

1

); x

1

� s(x

2

); zero(x

2

) � 0; x � 0 (lazy narrowing with �rst rule)

lus

=) x � s(x

1

); x

1

� s(x

2

); x

2

� s(x

3

); zero(x

3

) � 0; x � 0 (lazy narrowing with �rst rule)

lus

=) � � �

This in�nite derivation
ould be avoided if we apply the partial binding rule in the �rst step:

zero(x) � 0; x � 0

lus

=) zero(0) � 0; x � 0 (partial binding)

)

I

0 � 0; x � 0 (rewriting with se
ond rule)

lus

=) x � 0 (de
omposition)

In the next se
tion we will present an optimization whi
h prefers the latter derivation and avoids

the �rst in�nite derivation. 2

3.3 Constru
tor-based Systems

In most existing fun
tional logi
 programming languages, a distin
tion is made between operation

symbols to
onstru
t data terms,
alled
onstru
tors, and operation symbols to operate on data

17

De
omposition of
onstru
tor equations

(t

1

; : : : ; t

n

) �
(t

0

1

; : : : ; t

0

n

); E

lu

=) t

1

� t

0

1

; : : : ; t

n

� t

0

n

; E

if
 2 C

Full binding of variables to ground
onstru
tor terms

x � t; E

lu

=) x � t; �(E)

if x 2 Var(E), t 2 T (C; ;) and � = fx 7! tg

Partial binding of variables to
onstru
tor terms

x �
(t

1

; : : : ; t

n

); E

lu

=) x �
(x

1

; : : : ; x

n

); x

1

� �(t

1

); : : : ; x

n

� �(t

n

); �(E)

if
 2 C, x 2 Var(
(t

1

; : : : ; t

n

)) [Var(E), x 62
var(
(t

1

; : : : ; t

n

)) and � = fx 7!
(x

1

; : : : ; x

n

)g

(x

i

new variable)

Figure 3: Deterministi
 transformations for
onstru
tor-based rewrite systems

terms,
alled de�ned fun
tions or operations (see, for instan
e, the fun
tional logi
 languages ALF

[19℄, BABEL [37℄, K-LEAF [17℄, SLOG [14℄, or the RAP system [16℄). Su
h a distin
tion allows

to optimize our uni�
ation
al
ulus. Therefore, we assume in this se
tion that the signature F

is divided into two sets F = C [D,
alled
onstru
tors and de�ned fun
tions, with C \ D = ;.

A
onstru
tor term t is built from
onstru
tors and variables, i.e., t 2 T (C;X). The distin
tion

between
onstru
tors and de�ned fun
tions
omes with the restri
tion that for all rewrite rules

l ! r the outermost symbol of l is always a de�ned fun
tion.

14

A basi
 property of su
h
onstru
tor-based term rewriting systems is the irredu
ibility of
on-

stru
tor terms. Due to this fa
t, we
an spe
ialize the rules of our basi
 lazy uni�
ation
al
ulus.

Therefore, we de�ne the deterministi
 transformations in Figure 3. Deterministi
 transformations

are intended to be applied as long as possible before any transformation

lu

=) is used. Hen
e they

an be integrated into the deterministi
 normalization pro
ess)

I

. It is obvious that this modi-

�
ation preserves soundness and
ompleteness. The de
omposition transformation for
onstru
tor

equations must be applied in any
ase in order to obtain a quasi-solved equation system sin
e a

lazy narrowing step R
annot be applied to
onstru
tor equations. The full binding of variables

to ground
onstru
tor terms is an optimization whi
h
ombines subsequent appli
ations of partial

binding transformations. This transformation de
reases the
omplexity used in the proof of The-

orem 3.14 sin
e a
onstru
tor term is always in normal form. The partial binding transformation for

onstru
tor terms performs an eager (partial) binding of variables to
onstru
tor terms sin
e a lazy

narrowing step
annot be applied to the
onstru
tor term. Moreover, this binding transformation

is
ombined with an o

ur
he
k sin
e it
annot be applied if x 2
var(
(t

1

; : : : ; t

n

)) where
var

14

In
onstru
tor-based systems, it is often required that all rules have the form f(t

1

; : : : ; t

n

)! r with f 2 D and

t

1

; : : : ; t

n

2 T (C;X). However, this stronger requirement is not ne
essary for the results in this se
tion.

18

Clash of
onstru
tor equations

(t

1

; : : : ; t

n

) � d(t

0

1

; : : : ; t

0

m

); E

lu

=) fail

if
; d 2 C and
 6= d

O

ur
he
k

x �
(t

1

; : : : ; t

n

); E

lu

=) fail

if x 2
var(
(t

1

; : : : ; t

n

))

Figure 4: Failure rules for
onstru
tor-based rewrite systems

denotes the set of all variables o

urring outside terms headed by de�ned fun
tion symbols:

var(x) = fxg

var(
(t

1

; : : : ; t

n

)) =

S

n

i=1

var(t

i

) if
 2 C

var(f(t

1

; : : : ; t

n

)) = ; if f 2 D

This restri
tion avoids in�nite derivations of the following kind:

x �
(x)

lu

=) x �
(x

1

); x

1

�
(x

1

) (partial binding)

lu

=) x �
(x

1

); x

1

�
(x

2

); x

2

�
(x

2

) (partial binding)

lu

=) � � �

It is obvious that an equation of the form x �
(t

1

; : : : ; t

n

) with x 2
var(
(t

1

; : : : ; t

n

)) is unsolvable.

A further optimization
an be added if all fun
tions are redu
ible on ground
onstru
tor terms,

i.e., for all f 2 D and t

1

; : : : ; t

n

2 T (C; ;) there exists a term t with f(t

1

; : : : ; t

n

)!

R

t. In this
ase

all ground terms have a ground
onstru
tor normal form and the partial binding transformation of

lu

=)
an be
ompletely omitted whi
h in
reases the determinism in the lazy uni�
ation
al
ulus.

If we invert the deterministi
 transformation rules, we obtain a set of failure rules shown in

Figure 4. Failure rules are intended to be tried during the deterministi
 transformations. If a

failure rule is appli
able, the derivation
an be safely terminated sin
e the equation system
annot

be transformed into a quasi-solved system.

3.4 Using Indu
tive Consequen
es

In Se
tion 5 we will dis
uss the advantages of using program rules for simpli�
ation between lazy

narrowing or uni�
ation steps for various
lasses of fun
tional logi
 programs. Therefore, we provide

in this se
tion only an example whi
h demonstrates the advantages of using indu
tive
onsequen
es

for simpli�
ation in our lazy uni�
ation
al
ulus. Sin
e indu
tive
onsequen
es are only used for

simpli�
ation, they do not in
rease the sear
h spa
e. Formally, this is
on�rmed by the fa
t that

lazy uni�
ation derivations
orrespond to rewrite derivations (Lemma 3.7) and the appli
ation of

indu
tive
onsequen
es redu
es the
omplexity of goals (Theorem 3.14).

19

Example 3.16 Consider the following rewrite rules for addition and multipli
ation on natural

numbers where C = f0; sg are
onstru
tors and D = f+; �g are de�ned fun
tions:

0 + y ! y (R

1

) 0 � y ! 0 (R

3

)

s(x) + y ! s(x+ y) (R

2

) s(x) � y ! y + x � y (R

4

)

If we use this
on
uent and terminating set of rewrite rules for lazy narrowing (R) as well as for

normalization (I) and add the indu
tive
onsequen
e x � 0 ! 0 to I, then our lazy uni�
ation

al
ulus with simpli�
ation has a �nite sear
h spa
e for the equation x � y � s(0). This is due to

the fa
t that the following derivation
an be terminated using the indu
tive
onsequen
e and the

lash rule:

x � y = s(0)

lu

=) x � s(x

1

); y � y

1

; y

1

+ x

1

� y

1

� s(0) (lazy narrowing, R

4

)

lu

=) x � s(x

1

); y � y

1

; y

1

� 0; x

1

� y

1

� y

2

; y

2

� s(0) (lazy narrowing, R

1

)

lu

=) x � s(x

1

); y � 0; y

1

� 0; x

1

� 0 � y

2

; y

2

� s(0) (bind variable y

1

)

lu

=) x � s(x

1

); y � 0; y

1

� 0; x

1

� 0 � s(0); y

2

� s(0) (bind variable y

2

)

)

I

x � s(x

1

); y � 0; y

1

� 0; 0 � s(0); y

2

� s(0) (redu
e x

1

� 0)

lu

=) fail (
lash between 0 and s)

The equation x

1

� 0 � s(0)
ould not be transformed into the equation 0 � s(0) without the

indu
tive
onsequen
e. Consequently, an in�nite derivation would o

ur in our basi
 uni�
ation

al
ulus of Se
tion 3.1.

Note that other lazy uni�
ation
al
uli [15, 34℄ or lazy narrowing
al
uli [37, 41℄ have an in�nite

sear
h spa
e for this equation. It is also interesting to note that a normalizing innermost narrowing

strategy as in [14, 20℄ has also an in�nite sear
h spa
e even if the same simpli�
ation rules are

available. This shows the advantage of
ombining a lazy strategy with simpli�
ation. 2

4 Rewrite Systems with Nonterminating Rules

In this se
tion we
onsider rewrite systems whi
h are not ne
essarily terminating. Similarly to lazy

evaluation in fun
tional languages, lazy narrowing has at least two advantages in
omparison to

other (eager) narrowing strategies:

1. Sin
e lazy narrowing applies narrowing steps at inner positions only if it is demanded by some

rule, useless narrowing steps (steps at inner positions whi
h do not
ontribute to the result)

are avoided.

15

2. Sin
e lazy narrowing evaluates fun
tions only if their results are demanded, it
an deal with

nonterminating fun
tions and in�nite data stru
tures. Other narrowing strategies (like basi
,

innermost, or outermost narrowing) require a terminating set of rewrite rules and
annot deal

with in�nite data stru
tures.

The next example should emphasize the latter point.

15

To be pre
ise, the avoidan
e of useless narrowing steps depends on the lazy narrowing strategy. Although this

is one of the motivations of all lazy strategies, the only strategy for whi
h this property has been formally proved is

needed narrowing [2℄.

20

Example 4.1 The following rules de�ne a fun
tion from(n), whi
h
omputes an in�nite list of

naturals starting from n, and a fun
tion first(n; l), whi
h
omputes the �rst n elements of the list

l ([℄ denotes the empty list and [ejl℄ denotes a nonempty list with �rst element e and tail l):

from(n) ! [njfrom(s(n))℄

first(0; l) ! [℄

first(s(n); [ejl℄) ! [ejfirst(n; l)℄

The �rst rule of this rewrite system is nonterminating. Lazy evaluation of the expression

first(s(s(0)); from(0)) yields the result [0; s(0)℄, whereas an eager evaluation does not termin-

ate due to the nonterminating eager evaluation of from(0). Similarly, lazy narrowing applied to

the equation first(x; from(y)) � [0; s(0)℄
omputes the solution fx 7! s(s(0)); y 7! 0g, whereas an

eager narrowing strategy runs into an in�nite loop. 2

Sin
e narrowing applies rules only in one dire
tion from left to right, the
on
uen
e of the rewrite

relation is an essential requirement for the
ompleteness of all narrowing strategies. However,

on
uen
e is an unde
idable property of a rewrite system if it is not terminating. Therefore,

fun
tional logi
 languages with nonterminating rewrite systems have the following requirements on

rewrite rules:

1. Constru
tor-based: The signature F is divided into two disjoint sets C and D,
alled
on-

stru
tors and de�ned fun
tions. Moreover, if l ! r is a rewrite rule, then l has the form

f(t

1

; : : : ; t

n

) with f 2 D and t

1

; : : : ; t

n

2 T (C;X).

2. Left-linearity: All rules are left-linear, i.e., no variable appears more than on
e in the left-hand

side of any rule.

3. Nonambiguity: If l

1

! r

1

and l

2

! r

2

are two di�erent rules, then l

1

and l

2

are not uni�able

(strong nonambiguity), or if l

1

and l

2

have a most general uni�er �, then �(r

1

) and �(r

2

) are

identi
al (weak nonambiguity).

Rewrite systems with these properties are
alled
onstru
tor-based (weakly) orthogonal systems.

These
onditions ensure the uniqueness of normal forms if they exist. Due to the presen
e of

nonterminating fun
tions, the
ompleteness results for lazy strategies are stated with respe
t to

domain-based interpretations of rewrite rules [17, 37℄. In parti
ular, the equality of two expressions

holds only if both sides are redu
ible to the same ground
onstru
tor term. The
ompleteness of

lazy narrowing w.r.t. this semanti
s is formally stated in [37℄. We will show that deterministi

simpli�
ation steps
an be in
luded in lazy narrowing derivations without destroying
ompleteness

for su
h rewrite systems, i.e., we assume that R is a
onstru
tor-based weakly orthogonal term

rewriting system.

Loogen and Winkler [32℄ have shown how to in
rease deterministi

omputations in the im-

plementation of su
h programs: if no goal variable has been bound in a narrowing step, then all

attempts to apply alternative rules at the same position
an be ignored due to the nonambiguity

of the rules. In this
ase a \
ut"
an be exe
uted to eliminate the
hoi
e point for alternative rules.

Sin
e the exe
ution of this \
ut" depends on the run-time behavior of the program (whether or not

a goal variable has been bound during uni�
ation), it is
alled dynami

ut in [32℄. The dynami

21

ut
an be implemented by a spe
ial POP instru
tion whi
h
he
ks whether a goal variable has been

bound during uni�
ation and, if this did not happen, removes the last
hoi
e point. The advantage

of this method is its simple implementation, but it has also two disadvantages:

1. The dynami

ut removes
hoi
e points whi
h have been
reated but are not needed in the

further
omputation pro
ess. Hen
e it does not avoid the
reation of
hoi
e points (one of the

most expensive operations in the implementation of logi
 languages): if a
hoi
e point is not

needed in a deterministi

omputation, it is
reated and then deleted after the uni�
ation of

the rule's left-hand side.

2. The dete
tion of deterministi

omputations depends on the order of the rules. If a rule whi
h

enables a deterministi

omputation step is not at the beginning, nondeterministi
 steps may

be performed even if a deterministi
 step is possible.

The following example dis
usses the se
ond disadvantage in more detail.

Example 4.2 Consider the rules of Example 1.2 and the goal equation 0 � one(x) � 0. Using the

dynami

ut te
hnique, �rst a
hoi
e point for the rules R

3

and R

4

is
reated, rule R

3

is applied

to narrow the left-hand side yielding the trivial equation 0 � 0, and then the
hoi
e point is

removed sin
e no goal variable (x) has been bound in the narrowing step (dynami

ut). Hen
e the

attempt to apply rule R

4

is avoided by the dynami

ut. However, if we try to solve the equation

one(x) � 0 � 0, the dynami

ut has no e�e
t. As before, �rst a
hoi
e point for the rules R

3

and

R

4

is
reated, then an attempt to apply rule R

3

is made.

16

Sin
e it is ne
essary to evaluate the �rst

argument in order to de
ide the appli
ability of this rule, one(x) is a lazy narrowing redex whi
h

is evaluated by applying rules R

5

or R

6

(this evaluation has an in�nite sear
h spa
e and does not

terminate in a sequential implementation,
f. Example 1.2). In any
ase the goal variable x will be

bound and therefore the dynami

ut has no e�e
t. 2

Although the dynami

ut has some disadvantages sin
e it is applied after a narrowing attempt,

the nonambiguity of the rules is the key to exploit deterministi

omputations in fun
tional logi

programs. In the following we will show that we
an apply deterministi
 rewrite steps before a

narrowing step. This te
hnique avoids the
reation of super
uous
hoi
e points and is independent

on the order of rules (if we use all rules also for rewrite steps).

The next lemma is due to Loogen and Winkler [32℄ and shows that it is not ne
essary to
onsider

alternative rules for narrowing if one rule is appli
able without binding goal variables. This is a

onsequen
e of the nonambiguity
ondition on rewrite rules.

Lemma 4.3 Let R

1

= l

1

! r

1

and R

2

= l

2

! r

2

be two di�erent program rules and t be a term

whi
h has no variables in
ommon with R

1

and R

2

. If �(l

1

) = t, i.e., t is narrowable by rule R

1

without instantiating any goal variable, then rule R

2

need not be
onsidered, be
ause either R

2

is

not appli
able or the result of applying R

2

yields an instan
e of the appli
ation of R

1

.

This means that lazy narrowing is
omplete in the sense of [37℄ even if the lazy narrowing derivation

starting with an appli
ation of rule R

2

to t is ignored. Hen
e we
ould try to mat
h the left-hand

16

Note that we
onsider a sequential implementation where the rules are applied in the given textual order.

22

side of some rule with the
urrent goal before applying a narrowing step. If this is possible, we

an perform the
orresponding rewrite step and, by the previous lemma, ignore all other rules, i.e.,

we perform a deterministi

omputation step. Although this solves the problems exempli�ed in

Example 4.2, it is not suÆ
ient to exploit many possible deterministi

omputations. In general,

rewrite steps must also be performed at inner positions in order to enable rewrite steps at outer

positions. For instan
e,
onsider the rules of Examples 1.1 and 1.2 and the goal equation (0+0)�z �

0. A rewrite step by applying rules R

3

or R

4

to the left-hand side of the equation is not possible.

Hen
e we try to perform a narrowing step, i.e., generate a
hoi
e point for the rules R

3

or R

4

, and

so on. However, if we apply a rewrite step to the subterm (0+0) before the narrowing attempt, the

equation is simpli�ed to 0 � z � 0 using rule R

1

, and we
ould further simplify the equation to the

trivial one 0 � 0 using rule R

3

. Therefore, we
ould solve the equation without any nondeterministi

narrowing step. The following lemma shows that deterministi
 rewrite steps at inner positions does

not in
uen
e the appli
ability of narrowing steps at outer positions.

Lemma 4.4 Let t; t

0

be terms su
h that t!

R

t

0

is a rewrite step at position p. Then all narrowing

rules whi
h are appli
able to t at a position p

0

, where p

0

6= p is a position not below p, are also

appli
able to t

0

with the same substitution of variables o

urring in t.

Proof: This lemma is a
onsequen
e of the requirement for
onstru
tor-based rules: the subterm

tj

p

must have a de�ned fun
tion symbol at the top sin
e t!

R

t

0

is a rewrite step at position p. If a

narrowing rule is appli
able to t at position p

0

, i.e., there is a rule l ! r and a mgu � of tj

p

0

and l,

and p

0

is a position above p (the
ase of independent positions is trivial sin
e variables in t are not

instantiated by the rewrite step), then there must be a variable position p

00

in l (i.e., lj

p

00

2 X) su
h

that �(l)j

p

00

ontains the subterm tj

p

(sin
e all proper subterms of l
ontain only
onstru
tors and

variables). But then there is also a uni�er �

0

of t

0

j

p

0

and l whi
h
an be obtained by modifying �

for the variable lj

p

00

(note that l has no multiple o

urren
es of variables, hen
e �

0

jVar(t)

= �

jVar(t)

).

Hen
e we
an apply rule l ! r to t

0

at position p

0

.

The following theorem justi�es deterministi
 rewrite steps at arbitrary lazy narrowing positions

(see [37℄ for a detailed de�nition of lazy narrowing positions).

Theorem 4.5 Let t; t

0

be terms su
h that t !

R

t

0

is a rewrite step at lazy narrowing position p.

Then lazy narrowing is
omplete even if we ignore all alternative narrowing rules appli
able to t.

Proof: Let t;

[p

0

;R;�℄

t

00

be an alternative lazy narrowing step. We show that we do not loose any

solutions by ignoring this step and
ontinuing with t

0

instead of t

00

.

p

0

= p: By Lemma 4.3 applied to position p, t

00

is an instan
e of t

0

. Hen
e all solutions
omputed by

narrowing derivations starting from t

00

are also
omputed by narrowing derivations starting

from t

0

.

p

0

is a position below p: Sin
e p

0

is a lazy narrowing position, the narrowing step at p

0

is demanded

by some rule whi
h may be appli
able at position p at some later point. However, similarly

to the previous
ase, this alternative step at position p
an be ignored without destroying

ompleteness. Consequently, this narrowing step at position p

0

an also be ignored.

23

p

0

is a position not below p and p

0

6= p: By Lemma 4.4, this alternative narrowing step is also ap-

pli
able to t

0

with the same substitution of variables o

urring in t. Hen
e we
an ignore this

step without destroying
ompleteness.

As a
onsequen
e of this theorem, we
an deterministi
ally apply rewrite rules at any lazy narrowing

position before a narrowing step. A simple indu
tion shows that we
an also deterministi
ally apply

a �nite sequen
e of rewrite steps at lazy narrowing positions. I.e., we
an
ombine lazy narrowing

with lazy simpli�
ation (where lazy simpli�
ation positions are de�ned similarly to lazy narrowing

positions [37℄) without destroying
ompleteness. However, this is only true for �nite sequen
es

of simpli�
ation steps (due to the proof by indu
tion). Nevertheless, an in�nite loop
aused by

simpli�
ation o

urs in lazy narrowing derivations without simpli�
ation, too, sin
e rewrite steps

are also parti
ular narrowing steps. The only di�eren
e is that the order of rule appli
ations in

simpli�
ation steps may be di�erent from the order of rule appli
ations in narrowing steps. Hen
e

it may be the
ase that the simpli�
ation pro
ess runs into an in�nite loop, whereas lazy narrowing

without simpli�
ation �rst
omputes an answer and then runs into an in�nite loop.

Example 4.6 Consider the rules of Example 1.2 and the following rule de�ning a nonterminating

fun
tion:

inf ! inf

If the goal equation x � inf � 0 should be solved, a lazy simpli�
ation strategy tries to evaluate

the subterm inf to the
onstru
tor 0 in order to apply rule R

4

to the left-hand side of the equation

(i.e., the se
ond argument of � is a lazy narrowing position). Sin
e the evaluation of inf loops,

the simpli�
ation pro
ess does not terminate and no solution is
omputed. On the other hand,

lazy narrowing without simpli�
ation narrows the left-hand side of the equation by applying rule

R

3

. This binds goal variable x to 0 and yields the trivial equation 0 � 0. However, after the

omputation of this solution an attempt to apply the alternative rule R

4

to the left-hand side is

made whi
h yields the same in�nite loop as in the simpli�
ation pro
ess. 2

Note that this di�erent behavior is due to a parti
ular sequential implementation of the strategy.

In an implementation whi
h
olle
ts all answers until the entire sear
h spa
e has been examined,

we obtain no answer in both
ases due to the in�nite sear
h spa
e.

In order to ensure the termination of the simpli�
ation pro
ess even if we blindly apply all

possible lazy simpli�
ation steps, we in
lude only a terminating subset of the program rules for

simpli�
ation. Sin
e lazy narrowing is already
omplete without simpli�
ation, it is not ne
essary

to perform rewrite steps with all possible program rules, but we
an arbitrarily restri
t the set

of rules used for rewrite steps. In the light of the previous example, it is a reasonable de
ision to

in
lude a rule set with a terminating rewrite relation for simpli�
ation. This ensures the termination

of the simpli�
ation pro
ess. The sele
tion of this subset of rewrite rules
ould be done by the

programmer or by the system (e.g., in
lude only those rewrite rules for whi
h a termination proof

an be
onstru
ted). We have made the experien
e that, for most pra
ti
al examples, termination

proofs
an be automati
ally
onstru
ted using synta
ti
 termination orderings from term rewriting

[7℄. This is the
ase for all rules presented so far (of
ourse, ex
ept for the first-rule of Example 4.1

and the inf-rule of Example 4.6). An example where a terminating subset of all program rules is

used for simpli�
ation will be given in Se
tion 5.3.

24

5 Appli
ation to Fun
tional Logi
 Programs

In this se
tion we dis
uss the usefulness of integrating simpli�
ation into lazy narrowing derivations

with respe
t to di�erent
lasses of fun
tional logi
 programs. In general, we
onsider
onstru
tor-

based
on
uent rewrite systems. However, there are various sub
lasses of su
h rewrite systems with

di�erent impli
ations on the usefulness of integrating simpli�
ation. We will dis
uss the following

three sub
lasses in more detail: indu
tively sequential systems [1℄ where the rules for ea
h fun
tion

an be organized in a hierar
hi
al stru
ture, orthogonal systems satisfying the strong nonambiguity

ondition (no overlapping in the left-hand sides of the rules), and weakly orthogonal systems with

overlapping left-hand sides.

5.1 Indu
tively Sequential Programs

In many fun
tional as well as fun
tional logi
 programs, fun
tions are de�ned by a
ase distin
tion on

the di�erent
onstru
tors o

urring in the data type of the arguments. For instan
e, the de�nition

of the addition fun
tion on natural numbers (
f. Example 1.1) is based on a
ase distin
tion for the

�rst argument with respe
t to the
onstru
tors 0 and s. As another example
onsider the following

rules de�ning a less-or-equal fun
tion on naturals:

0 � x ! true (R

1

)

s(x) � 0 ! false (R

2

)

s(x) � s(y) ! x � y (R

3

)

Here is the main
ase distin
tion on the
onstru
tors of the �rst argument: if this argument is

0, then only rule R

1

is appli
able. If this argument has the
onstru
tor s at the top, then a

further
ase distin
tion on the se
ond argument is ne
essary to distinguish between rules R

2

and

R

3

. Altogether, the rules
an be organized in a hierar
hi
al stru
ture representing the various

ase distin
tions. Su
h hierar
hi
al stru
tures have been introdu
ed by Antoy [1℄ under the name

de�nitional trees. A program for whi
h the rules of ea
h fun
tion symbol
an be organized in a

de�nitional tree is
alled indu
tively sequential. Antoy, E
hahed and Hanus [2℄ have de�ned for

indu
tively sequential programs a narrowing strategy,
alled needed narrowing, whi
h is optimal in

the following sense: (1) it redu
es only needed subterms in a narrowing step, i.e., subterms whi
h

must be redu
ed in any possible su

essful narrowing derivation, (2) it
omputes the shortest

narrowing derivations if
ommon subterms are shared, and (3) the solutions
omputed by two

di�erent narrowing derivations are independent. The needed narrowing steps are
omputed using

the stru
ture of de�nitional trees. Thus it
an be eÆ
iently implemented by pattern mat
hing, and

the strategy has an outermost (lazy) behavior.

Due to the optimality of needed narrowing the natural question arises whether the in
lusion

of simpli�
ation has an e�e
t for this
lass of programs. To answer this question, we re
all the

appli
ability
onditions for a rewrite step. A fun
tional expression
an be redu
ed by a rewrite

step if the arguments of the fun
tion
all are suÆ
iently instantiated su
h that the left-hand side

of some rule
an be mat
hed with the
urrent
all. Sin
e the program is indu
tively sequential,

there is always at most one rule mat
hing the
urrent
all and this rule will be sele
ted in the

next narrowing step without instantiating any goal variables (see [2℄ for a detailed des
ription of

the strategy). Therefore, a possible lazy redu
tion step is also
omputed by the needed narrowing

25

strategy as a narrowing step, i.e., the in
lusion of simpli�
ation steps has no e�e
t. This is formally

justi�ed by the following proposition.

Proposition 5.1 Let R be a set of indu
tively sequential rules. Then the integration of simpli�
-

ation does not shorten any needed narrowing derivation.

Proof: By de�nition, rewrite steps are also parti
ular narrowing steps. Thus any narrowing de-

rivation with intermediate simpli�
ation steps is also a pure narrowing derivation. Sin
e needed

narrowing
omputes the shortest narrowing derivations [2℄, simpli�
ation
annot shorten any needed

narrowing derivation.

Hen
e it is unne
essary to integrate simpli�
ation with program rules in narrowing derivations for

the
lass of indu
tively sequential programs. Therefore, narrowing derivations
an be optimized

for su
h programs only if indu
tive
onsequen
es are added as simpli�
ation rules. A
tually, Ex-

ample 3.16 is an indu
tively sequential program and we have shown that simpli�
ation with the

additional indu
tive
onsequen
e x � 0! 0
an redu
e the sear
h spa
e.

5.2 Orthogonal Programs

The main example where we have demonstrated the improvements of simpli�
ation with respe
t

to lazy narrowing (Example 1.2) has the property that two rules have overlapping left-hand sides.

In the following we will show that the in
lusion of simpli�
ation is useful even if there are no

overlapping rules.

Example 5.2 Consider the following rewrite rules:

f(0; s(x); y) ! 0 (R

1

)

f(s(x); y; 0) ! 0 (R

2

)

f(y; 0; s(x)) ! 0 (R

3

)

one(0) ! s(0) (R

4

)

one(s(x)) ! one(x) (R

5

)

This is an orthogonal term rewriting system sin
e all rules are left-linear and do not overlap in

the left-hand sides. However, it is not indu
tively sequential sin
e there is no argument whi
h

represents a
ase distin
tion on the
onstru
tors 0 and s. In fa
t, simpli�
ation has an e�e
t if we

onsider the goal equation f(one(z); 0; s(0)) � 0. Naive lazy narrowing �rst tries to apply rule R

1

to the left-hand side of this equation. Sin
e the �rst argument of the rule's left-hand side is 0, the

evaluation of the a
tual argument one(z) is required in order to de
ide the uni�ability of the �rst

argument.

17

Similarly to Example 1.2, the evaluation of one(z) has an in�nite sear
h spa
e and a

sequential implementation does not
ompute any result sin
e all evaluations of one(z) yields s(0)

as the result whi
h is not uni�able with the demanded value 0. However, if we simplify the goal

equation before the attempt to apply a narrowing step, we use rule R

3

for a rewrite step whi
h

yields the trivial equation 0 � 0. Hen
e the in�nite sear
h spa
e is avoided. 2

17

We assume that arguments are uni�ed from left to right, otherwise a similar example
an be
onstru
ted.

26

5.3 Weakly Orthogonal Programs

In Se
tions 5.1 and 5.2 we have shown that the boundary of the usefulness of simpli�
ation in

lazy narrowing derivations is between indu
tively sequential and orthogonal systems. If we do not

in
lude indu
tive
onsequen
es for simpli�
ation, we
onje
ture that, for pra
ti
al appli
ations, the

most interesting
lass, where simpli�
ation is useful, is the
lass of weakly orthogonal programs

whi
h have rules with overlapping left-hand sides. Example 1.2
ontains su
h a simple program,

but the re
ursively de�ned
onstant fun
tion one may not
onvin
e the reader. Therefore, we will

demonstrate the positive e�e
ts of simpli�
ation by a more natural example.

Example 5.3 Consider the following rules de�ning the Boolean operator _ and the predi
ate even

on natural numbers:

true _ b ! true (R

1

) even(0) ! true (R

4

)

b _ true ! true (R

2

) even(s(0)) ! false (R

5

)

false _ false ! false (R

3

) even(s(s(x))) ! even(x) (R

6

)

This rewrite system is weakly orthogonal sin
e rules R

1

and R

2

overlap. Now
onsider the goal

equation even(z) _ true � true (note that this goal equation
ould also be the result of the more

general equation even(z) _ b � true where the Boolean variable b has been bound to true in the

pre
eding
omputation). Naive lazy narrowing without simpli�
ation tries to apply a narrowing step

with rule R

1

. Sin
e the value of the �rst _-argument is demanded by this rule, the subterm even(z)

is evaluated to a
onstru
tor-headed term by narrowing. There are in�nitely many possibilities to do

this, in parti
ular, the
onstru
tor true is derived by instantiating variable z with the values s

2�i

(0),

i � 0. Therefore, lazy narrowing without simpli�
ation has an in�nite sear
h spa
e and
omputes

the additional spe
ialized solutions fz 7! s

2�i

(0)g. Moreover, in a sequential implementation of lazy

narrowing by ba
ktra
king [18℄, only the in�nite set of spe
ialized solutions would be
omputed

without ever trying the se
ond _-rule. On the other hand, if the equation is �rst simpli�ed by

applying rule R

2

to the left-hand side, we immediately obtain the trivial equation true � true and

avoid the in�nite sear
h spa
e. 2

We have mentioned that our method is
omplete even in the presen
e of nonterminating fun
tions

if a terminating subset of the program rules is used for simpli�
ation. This is demonstrated by a

modi�
ation of the previous example.

Example 5.4 Consider the rules for _ of Example 5.3 (R

1

; R

2

; R

3

) and the following new rules

for not, even and odd:

not(true) ! false (R

4

) even(x) ! not(odd(x)) (R

6

)

not(false) ! true (R

5

) odd(x) ! not(even(x)) (R

7

)

Although even and odd are nonterminating fun
tions, it is an admissible program. We use the

terminating subset of the rules fR

1

; R

2

; R

3

; R

4

; R

5

g for simpli�
ation.

18

Consider the goal equation

even(z) _ not(false) � true. Lazy narrowing without simpli�
ation tries to
ompute the head

normal form of the subterm even(z) sin
e its value is demanded by rule R

1

. Sin
e this
omputation

is nonterminating, naive lazy narrowing has an in�nite sear
h spa
e. The same holds for lazy

18

Note that the termination property of this subset
an be automati
ally
he
ked.

27

narrowing with the dynami

ut operator [32℄. However, lazy narrowing with simpli�
ation tries

to apply rewrite steps �rst. No simpli�
ation rule is appli
able to the entire left-hand side of the

goal equation sin
e the arguments are not in head normal form. Due to the lazy simpli�
ation

strategy, we try to evaluate the arguments by simpli�
ation steps. The subterm even(z)
annot

be further simpli�ed sin
e rule R

6

is not in
luded in the set of simpli�
ation rules. The se
ond

argument not(false)
an be simpli�ed to true by R

5

whi
h
auses the simpli�
ation of the
omplete

left-hand side to true by R

2

. Hen
e we obtain the trivial equation true � true and the in�nite

sear
h spa
e is avoided. 2

5.4 A Ben
hmark

In order to test our new exe
ution strategy on larger programs, we have implemented an interpreter

for lazy narrowing with simpli�
ation in Prolog [23℄. An interesting
lass of programs, where

simpli�
ation has a relevant e�e
t on the sear
h spa
e, are \generate-and-test" programs. A typi
al

example for su
h programs is the \permutation sort" program, where a list is sorted by enumerating

all permutations and
he
king whether they are sorted. In the Prolog version of this program ([44℄,

p. 55), all permutations are enumerated and
he
ked. However, if we exe
ute the same program

by lazy narrowing with simpli�
ation (in this
ase predi
ates are
onsidered as Boolean fun
tions,

see [14℄, p. 182), then the simpli�
ation pro
ess
uts some parts of the sear
h spa
e so that not all

permutations are
ompletely enumerated. Therefore, we obtain the following exe
ution times in

se
onds (Si
stus-Prolog 2.1 on a Spar
10) to sort the list [n,...,2,1℄ for di�erent values of n:

Length n Prolog Lazy Lazy+Simp

4 0.01 0.02 0.04

5 0.01 0.1 0.1

6 0.05 0.8 0.2

7 0.3 5.4 0.5

8 2.6 45.9 1.1

9 23.6 420.1 2.5

10 240.9 4389.2 5.5

The
olumn \Lazy+Simp"
ontains the exe
ution times for lazy narrowing with simpli�
ation, the

olumn \Lazy" the times for pure lazy narrowing without simpli�
ation, and the
olumn \Prolog"

the times for the dire
t implementation of permutation sort in Prolog. The sear
h spa
es of \Prolog"

and \Lazy" are essentially the same. The slow timings of \Lazy" is due to the overhead of the lazy

narrowing interpreter (whi
h is also written in Prolog). However, the last
olumn shows that this

overhead
an be
ompensated by the sear
h spa
e redu
tion due to the simpli�
ation pro
ess.

6 Con
lusions and Related Work

In this paper we have shown how to improve the exe
ution me
hanism of fun
tional logi
 lan-

guages, where we have
onsidered the most important
lasses of programs: ground
on
uent and

terminating rewrite systems, and weakly orthogonal and possibly nonterminating rewrite systems.

The basi
 idea of our improvement is the integration of a deterministi
 simpli�
ation pro
ess into

28

lazy narrowing derivations. This
an be done in a simple way by using the program rules (or a

terminating subset of the program rules in the presen
e of nonterminating rules) as simpli�
ation

rules. The simpli�
ation strategy must be identi
al to the narrowing strategy in order to avoid

additional
omputation steps
aused by the simpli�
ation pro
ess. For parti
ular and pra
ti
ally

relevant
lasses of fun
tional logi
 programs (orthogonal and weakly orthogonal programs) this has

the positive e�e
t that the sear
h spa
e is redu
ed without destroying
ompleteness. Although

we have emphasized the e�e
t of simpli�
ation to the sear
h spa
e, the in
lusion of simpli�
ation

an also have an e�e
t on the run time even if the sear
h spa
e is not redu
ed. For instan
e, if

all program rules are used for simpli�
ation, ground goals are evaluated by simpli�
ation without

generating any
hoi
e point, whereas a lazy narrowing implementation would generate (and after-

wards delete)
hoi
e points. Hen
e lazy narrowing with simpli�
ation
ombines the features from

fun
tional and logi
 programming also from an implementation point of view.

We have mentioned in the introdu
tion and in Se
tion 2 that the idea of exploiting deterministi

omputations by in
luding simpli�
ation in fun
tional logi
 languages has been proposed mainly

for eager narrowing strategies like basi
 [38, 42℄, innermost [14℄ or innermost basi
 narrowing [25℄.

E
hahed [12℄ has shown how to integrate normalization (with indu
tive
onsequen
es) in any nar-

rowing strategy, but he requires strong restri
tions on the set of rules (termination and uniformity,

whi
h is stronger than indu
tive sequentiality). As far as we know, the present paper is the �rst

attempt to in
lude simpli�
ation into narrowing derivations even in the presen
e of nonterminating

fun
tions.

19

The only related work for this
lass of programs is the paper of Loogen and Winkler

[32℄ whi
h proposes the dynami

ut to dete
t deterministi
 narrowing steps after the uni�
ation

phase. As dis
ussed in Se
tion 4, this does not avoid the generation of
hoi
e points, and the
ut of

in�nite derivation paths depends on the order of rules. The basi
 di�eren
e of our method is that

we
he
k the appli
ability of a deterministi

omputation step before we apply a nondeterministi

step. Hen
e we prefer deterministi

omputations to nondeterministi

omputations. This quali�es

our exe
ution method as the operational prin
iple of eÆ
ient fun
tional logi
 languages.

Loogen et al. [31℄ have proposed to improve lazy narrowing strategies by reordering the uni�
a-

tion steps in rule appli
ations. For this purpose they use a version of de�nitional trees [1℄ extended

to weakly orthogonal rewrite systems. In order to handle overlapping left-hand sides, they intro-

du
e nondeterministi

hoi
e nodes in de�nitional trees. However, these
hoi
e nodes have the

e�e
t that possible deterministi

omputations are not dete
ted. For instan
e, the in�nite sear
h

spa
es of naive lazy narrowing in Examples 1.2, 5.2 and 5.3 would also o

ur with respe
t to their

improved strategy.

Another alternative to improve lazy narrowing has been proposed by Moreno-Navarro et al.

[36℄. They use information about demanded arguments to avoid reevaluations of expressions during

uni�
ation with di�erent rules. Sin
e they do not
hange the order of argument evaluations and

rules, the in�nite sear
h spa
es avoided by simpli�
ation still o

ur in their approa
h.

The integration of simpli�
ation into lazy narrowing derivations requires new implementation

te
hniques for fun
tional logi
 languages. Current eÆ
ient implementations of lazy narrowing are

mainly based on extensions of redu
tion ma
hines used for the implementation of fun
tional lan-

19

The
ombination of lazy narrowing with deterministi
 redu
tion steps has been also
onsidered by Josephson and

Dershowitz [27℄. However, they provide no
ompleteness proof but refer to [10℄ where only the
ompleteness of naive

narrowing without simpli�
ation and without a parti
ular lazy strategy is proved for terminating
onditional rules.

29

guages [5, 18, 30, 35℄. The in
lusion of simpli�
ation requires the implementation of an intermediate

redu
tion pro
ess. This
ould be done by te
hniques proposed for the eÆ
ient implementation of

normalizing narrowing [19, 20℄ or by the implementation of demons waiting for the suÆ
ient in-

stantiation of fun
tion arguments [27℄.

A
knowledgements. The author is grateful to the anonymous referees for their suggestions to

improve the paper. The resear
h des
ribed in this paper was mainly made during the author's

stay at the Max-Plan
k-Institut f�ur Informatik in Saarbr�u
ken, Germany. It was supported in

part by the German Ministry for Resear
h and Te
hnology (BMFT) under grant ITS 9103 and by

the ESPRIT Basi
 Resear
h Working Group 6028 (Constru
tion of Computational Logi
s). The

responsibility for the
ontents of this publi
ation lies with the author.

Referen
es

[1℄ S. Antoy. De�nitional Trees. In Pro
. of the 3rd International Conferen
e on Algebrai
 and Logi

Programming, pp. 143{157. Springer LNCS 632, 1992.

[2℄ S. Antoy, R. E
hahed, and M. Hanus. A Needed Narrowing Strategy. In Pro
. 21st ACM Symposium

on Prin
iples of Programming Languages, pp. 268{279, Portland, 1994.

[3℄ F. Baader and J.H. Siekmann. Uni�
ation Theory. In D.M. Gabbay, C.J. Hogger, and J.A. Robin-

son, editors, Handbook of Logi
 in Arti�
ial Intelligen
e and Logi
 Programming, pp. 41{125. Oxford

University Press, 1994.

[4℄ D. Bert and R. E
hahed. Design and Implementation of a Generi
, Logi
 and Fun
tional Programming

Language. In Pro
. European Symposium on Programming, pp. 119{132. Springer LNCS 213, 1986.

[5℄ M.M.T. Chakravarty and H.C.R. Lo
k. The Implementation of Lazy Narrowing. In Pro
. of the 3rd Int.

Symposium on Programming Language Implementation and Logi
 Programming, pp. 123{134. Springer

LNCS 528, 1991.

[6℄ J. Darlington and Y. Guo. Narrowing and uni�
ation in fun
tional programming - an evaluation me
h-

anism for absolute set abstra
tion. In Pro
. of the Conferen
e on Rewriting Te
hniques and Appli
ations,

pp. 92{108. Springer LNCS 355, 1989.

[7℄ N. Dershowitz. Termination of Rewriting. J. Symboli
 Computation, Vol. 3, pp. 69{116, 1987.

[8℄ N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook of Theor-

eti
al Computer S
ien
e, Vol. B, pp. 243{320. Elsevier, 1990.

[9℄ N. Dershowitz, S. Mitra, and G. Sivakumar. Equation Solving in Conditional AC-Theories. In Pro
. of

the 2nd International Conferen
e on Algebrai
 and Logi
 Programming, pp. 283{297. Springer LNCS

463, 1990.

[10℄ N. Dershowitz and D.A. Plaisted. Equational Programming. In J.E. Hayes, D. Mi
hie, and J. Ri
hards,

editors, Ma
hine Intelligen
e 11, pp. 21{56. Oxford Press, 1988.

[11℄ R. E
hahed. On Completeness of Narrowing Strategies. In Pro
. CAAP'88, pp. 89{101. Springer LNCS

299, 1988.

[12℄ R. E
hahed. Uniform Narrowing Strategies. In Pro
. of the 3rd International Conferen
e on Algebrai

and Logi
 Programming, pp. 259{275. Springer LNCS 632, 1992.

30

[13℄ M.J. Fay. First-Order Uni�
ation in an Equational Theory. In Pro
. 4th Workshop on Automated

Dedu
tion, pp. 161{167, Austin (Texas), 1979. A
ademi
 Press.

[14℄ L. Fribourg. SLOG: A Logi
 Programming Language Interpreter Based on Clausal Superposition and

Rewriting. In Pro
. IEEE Internat. Symposium on Logi
 Programming, pp. 172{184, Boston, 1985.

[15℄ J.H. Gallier and W. Snyder. Complete Sets of Transformations for General E-Uni�
ation. Theoreti
al

Computer S
ien
e, Vol. 67, pp. 203{260, 1989.

[16℄ A. Geser and H. Hussmann. Experien
es with the RAP system { a spe
i�
ation interpreter
ombining

term rewriting and resolution. In Pro
. of ESOP 86, pp. 339{350. Springer LNCS 213, 1986.

[17℄ E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logi
 plus Fun
tional Language.

Journal of Computer and System S
ien
es, Vol. 42, No. 2, pp. 139{185, 1991.

[18℄ W. Hans, R. Loogen, and S. Winkler. On the Intera
tion of Lazy Evaluation and Ba
ktra
king. In Pro
.

of the 4th International Symposium on Programming Language Implementation and Logi
 Programming,

pp. 355{369. Springer LNCS 631, 1992.

[19℄ M. Hanus. Compiling Logi
 Programs with Equality. In Pro
. of the 2nd Int. Workshop on Programming

Language Implementation and Logi
 Programming, pp. 387{401. Springer LNCS 456, 1990.

[20℄ M. Hanus. EÆ
ient Implementation of Narrowing and Rewriting. In Pro
. Int. Workshop on Pro
essing

De
larative Knowledge, pp. 344{365. Springer LNAI 567, 1991.

[21℄ M. Hanus. Improving Control of Logi
 Programs by Using Fun
tional Logi
 Languages. In Pro
. of the

4th International Symposium on Programming Language Implementation and Logi
 Programming, pp.

1{23. Springer LNCS 631, 1992.

[22℄ M. Hanus. The Integration of Fun
tions into Logi
 Programming: From Theory to Pra
ti
e. Journal

of Logi
 Programming, Vol. 19&20, pp. 583{628, 1994.

[23℄ M. Hanus. EÆ
ient Translation of Lazy Fun
tional Logi
 Programs into Prolog. In Pro
. Fifth Interna-

tional Workshop on Logi
 Program Synthesis and Transformation, pp. 252{266. Springer LNCS 1048,

1995.

[24℄ M. Hanus. On Extra Variables in (Equational) Logi
 Programming. In Pro
. International Conferen
e

on Logi
 Programming, pp. 665{679. MIT Press, 1995.

[25℄ S. H�olldobler. Foundations of Equational Logi
 Programming. Springer LNCS 353, 1989.

[26℄ J.-M. Hullot. Canoni
al Forms and Uni�
ation. In Pro
. 5th Conferen
e on Automated Dedu
tion, pp.

318{334. Springer LNCS 87, 1980.

[27℄ A. Josephson and N. Dershowitz. An Implementation of Narrowing. Journal of Logi
 Programming (6),

pp. 57{77, 1989.

[28℄ J.-P. Jouannaud and H. Kir
hner. Completion of a set of rules modulo a set of equations. SIAM Journal

on Computing, Vol. 15, No. 4, pp. 1155{1194, 1986.

[29℄ S. Kris
her and A. Bo
kmayr. Dete
ting Redundant Narrowing Derivations by the LSE-SL Redu
ibility

Test. In Pro
. RTA'91. Springer LNCS 488, 1991.

[30℄ R. Loogen. Relating the Implementation Te
hniques of Fun
tional and Fun
tional Logi
 Languages.

New Generation Computing, Vol. 11, pp. 179{215, 1993.

[31℄ R. Loogen, F. Lopez Fraguas, and M. Rodr��guez Artalejo. A Demand Driven Computation Strategy for

Lazy Narrowing. In Pro
. of the 5th International Symposium on Programming Language Implementa-

tion and Logi
 Programming, pp. 184{200. Springer LNCS 714, 1993.

31

[32℄ R. Loogen and S. Winkler. Dynami
 Dete
tion of Determinism in Fun
tional Logi
 Languages. In

Pro
. of the 3rd Int. Symposium on Programming Language Implementation and Logi
 Programming,

pp. 335{346. Springer LNCS 528, 1991. Extended version to appear in Theoreti
al Computer S
ien
e,

1995.

[33℄ A. Martelli and U. Montanari. An EÆ
ient Uni�
ation Algorithm. ACM Transa
tions on Programming

Languages and Systems, Vol. 4, No. 2, pp. 258{282, 1982.

[34℄ A. Martelli, G.F. Rossi, and C. Moiso. Lazy Uni�
ation Algorithms for Canoni
al Rewrite Systems. In

Hassan A��t-Ka
i and Mauri
e Nivat, editors, Resolution of Equations in Algebrai
 Stru
tures, Volume

2, Rewriting Te
hniques,
hapter 8, pp. 245{274. A
ademi
 Press, New York, 1989.

[35℄ J.J. Moreno-Navarro, H. Ku
hen, R. Loogen, and M. Rodr��guez-Artalejo. Lazy Narrowing in a Graph

Ma
hine. In Pro
. Se
ond International Conferen
e on Algebrai
 and Logi
 Programming, pp. 298{317.

Springer LNCS 463, 1990.

[36℄ J.J. Moreno-Navarro, H. Ku
hen, J. Marino-Carballo, S. Winkler, and W. Hans. EÆ
ient Lazy Nar-

rowing Using Demandedness Analysis. In Pro
. of the 5th International Symposium on Programming

Language Implementation and Logi
 Programming, pp. 167{183. Springer LNCS 714, 1993.

[37℄ J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi
 Programming with Fun
tions and Predi
ates:

The Language BABEL. Journal of Logi
 Programming, Vol. 12, pp. 191{223, 1992.

[38℄ W. Nutt, P. R�ety, and G. Smolka. Basi
 Narrowing Revisited. Journal of Symboli
 Computation, Vol. 7,

pp. 295{317, 1989.

[39℄ P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Monographs on Theoreti
al

Computer S
ien
e. Springer, 1988.

[40℄ C. Prehofer. Higher-Order Narrowing. In Pro
. Ninth Annual IEEE Symposium on Logi
 in Computer

S
ien
e, pp. 507{516, 1994.

[41℄ U.S. Reddy. Narrowing as the Operational Semanti
s of Fun
tional Languages. In Pro
. IEEE Internat.

Symposium on Logi
 Programming, pp. 138{151, Boston, 1985.

[42℄ P. R�ety. Improving basi
 narrowing te
hniques. In Pro
. of the Conferen
e on Rewriting Te
hniques

and Appli
ations, pp. 228{241. Springer LNCS 256, 1987.

[43℄ J.R. Slagle. Automated Theorem-Proving for Theories with Simpli�ers, Commutativity, and Asso
i-

ativity. Journal of the ACM, Vol. 21, No. 4, pp. 622{642, 1974.

[44℄ L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

32

