
Lazy Uni�
ation with Simpli�
ation

Mi
hael Hanus

Max-Plan
k-Institut f�ur Informatik

Im Stadtwald, D-66123 Saarbr�u
ken, Germany.

mi
hael�mpi-sb.mpg.de

In Pro
. 5th European Symposium on Programming

Edinburgh, April 1994, Springer LNCS 788, pp. 272{286

Abstra
t. Uni�
ation in the presen
e of an equational theory is an im-

portant problem in theorem-proving and in the integration of fun
tional

and logi
 programming languages. This paper presents an improvement of

the proposed lazy uni�
ation methods by in
orporating simpli�
ation into

the uni�
ation pro
ess. Sin
e simpli�
ation is a deterministi

omputation

pro
ess, more eÆ
ient uni�
ation algorithms
an be a
hieved. Moreover,

simpli�
ation redu
es the sear
h spa
e so that in some
ase in�nite sear
h

spa
es are redu
ed to �nite ones. We show soundness and
ompleteness of

our method for equational theories represented by ground
on
uent and

terminating rewrite systems whi
h is a reasonable
lass w.r.t. fun
tional

logi
 programming.

1 Introdu
tion

Uni�
ation is not only an important operation in theorem provers but also the most

important operation in logi
 programming systems. Uni�
ation in the presen
e of

an equational theory, also known as E-uni�
ation, is ne
essary if the
omputational

domain in a theorem prover enjoys
ertain equational properties [26℄ or if fun
tions

should be integrated into a logi
 language [10℄. Therefore the development of E-

uni�
ation algorithms is an a
tive resear
h topi
 during re
ent years (see, for

instan
e, [29℄).

Sin
e E-uni�
ation is a
omplex problem even for simple equational axioms,

we are interested in eÆ
ient E-uni�
ation methods in order to in
orporate su
h

methods into fun
tional logi
 programming languages. One general method to im-

prove the eÆ
ien
y of implementations is the use of a lazy strategy. \Lazy" means

that evaluations are performed only if it is ne
essary to
ompute the required so-

lutions. In the
ontext of uni�
ation this
orresponds to the idea that terms are

manipulated at outermost positions. Hen
e lazy uni�
ation means that equational

axioms are applied to outermost positions of equations. For instan
e,
onsider the

following equations for addition and multipli
ation on natural numbers whi
h are

represented by terms of the form s(� � � s(0) � � �):

0 + y � y 0 � y � 0

s(x) + y � s(x + y) s(x) � y � y + x � y

If we have to unify the terms 0 � (s(0) + s(z)) and 0, we
ould apply equational

axioms to inner subterms starting with s(0)+s(z) (innermost or eager strategy) or

to outermost subterms (outermost or lazy strategy). This will lead to the following

two derivations (the subterms manipulated in the next step are underlined):

0 � (s(0) + s(z)) � 0) 0 � (s(0 + s(z))) � 0) 0 � (s(s(z))) � 0) 0 � 0

0 � (s(0) + s(z)) � 0) 0 � 0

Obviously, the se
ond lazy uni�
ation derivation should be preferred.

There are many proposals for su
h lazy uni�
ation strategies. For instan
e,

Martelli et al. [22℄ have proposed a lazy uni�
ation algorithm for
on
uent and

terminating equational axioms. Due to the
on
uen
e requirement, equations are

only applied in one dire
tion. However, their method is not pure lazy sin
e equa-

tions are applied to inner subterms in equations of the form x � t where the

variable x o

urs in t. Gallier and Snyder [11℄ have proved the
ompleteness of a

lazy uni�
ation method for arbitrary equational theories where equations
an be

applied in both dire
tions. Narrowing is a method to
ompute E-uni�ers in the

presen
e of
on
uent axioms. It is a
ombination of the redu
tion prin
iple of fun
-

tional languages with synta
ti
 uni�
ation in order to instantiate variables. Lazy

narrowing were proposed by Reddy [27℄ as the operational prin
iple of fun
tional

logi
 languages. Re
ently, Antoy, E
hahed and Hanus [1℄ have proposed a nar-

rowing strategy for programs where the fun
tions are de�ned by
ase distin
tions

over the data stru
tures. This strategy redu
es only needed redexes,
omputes no

redundant solutions, and is optimal w.r.t. the length of narrowing derivations.

From a pra
ti
al point of view the disadvantage of E-uni�
ation is its inher-

ent nondeterminism. In the area of narrowing there are many proposals for the

in
lusion of a deterministi
 simpli�
ation pro
ess in order to redu
e the nondeter-

minism [8, 9, 19, 24, 28℄, but all these proposals are based on an eager narrowing

strategy. On the other hand, only little work has been done to improve the eÆ-

ien
y of outermost or lazy strategies. E
hahed [7℄ has shown the
ompleteness of

any narrowing strategy with simpli�
ation under strong requirements (uniformity

of spe
i�
ations). Dershowitz et al. [6℄ have proposed to
ombine lazy uni�
ation

with simpli�
ation and demonstrated the usefulness of indu
tive
onsequen
es for

simpli�
ation. However, they have not proved
ompleteness of their lazy uni�
a-

tion
al
ulus if all terms are simpli�ed to their normal form after ea
h uni�
ation

step. In fa
t, their
ompleteness proof for lazy narrowing does not hold if eager

rewriting is in
luded sin
e rewriting in their sense does not redu
e the
omplexity

measure used in their
ompleteness proof and may lead to in�nite instead of su
-

essful derivations. Therefore we will formulate a
al
ulus for lazy uni�
ation whi
h

in
ludes simpli�
ation and give a rigorous
ompleteness proof. The distinguishing

features of our framework are:

{ We
onsider a ground
on
uent and terminating equational spe
i�
ation in

order to apply equations only in one dire
tion and to ensure the existen
e of

normal forms. This is reasonable if one is interested in de
larative programming

rather than theorem proving.

{ The uni�
ation
al
ulus is lazy, i.e., fun
tions are not evaluated if their value is

not required to de
ide the uni�ability of terms. Consequently, we may
ompute

redu
ible solutions as answers a

ording to the spirit of lazy evaluation. For

instan
e, in
ontrast to other \lazy" uni�
ation methods we do not allow any

evaluation of t in the equation x � t if x o

urs only on
e.

{ We in
lude a deterministi
 simpli�
ation pro
ess in our uni�
ation
al
ulus.

In order to restri
t nondeterministi

omputations as mu
h as possible, we

allow to use additional indu
tive
onsequen
es for simpli�
ation whi
h has

been proved to be useful in other
al
uli [7, 9, 24℄.

After re
alling basi
 notions from term rewriting, we present in Se
tion 3 our ba-

si
 lazy uni�
ation
al
ulus. In Se
tion 4 we in
lude a deterministi
 simpli�
ation

pro
ess into the lazy uni�
ation
al
ulus. Finally, we show in Se
tion 5 some im-

portant optimizations for
onstru
tor-based spe
i�
ations. Due to la
k of spa
e we

omit the details of some proofs, but the interested reader will �nd them in [17℄.

2

2 Computing in equational theories

In this se
tion we re
all the notations for equations and term rewriting systems

[5℄ whi
h are ne
essary in our
ontext.

Let the signature F be a set of fun
tion symbols

1

and X be a
ountably in�nite

set of variables. Then T (F ;X) denotes the set of terms built from F and X .

Var(t) is the set of variables o

urring in t. A ground term t is a term without

variables, i.e., Var(t) = ;. A substitution � is a mapping from X into T (F ;X)

su
h that its domain Dom(�) = fx 2 X j �(x) 6= xg is �nite. We frequently

identify a substitution � with the set fx 7! �(x) j x 2 Dom(�)g. Substitutions are

extended to morphisms on T (�;X) by �(f(t

1

; : : : ; t

n

)) = f(�(t

1

); : : : ; �(t

n

)) for

every term f(t

1

; : : : ; t

n

). A substitution � is
alled ground if �(x) is a ground term

for all x 2 Dom(�). The
omposition of two substitutions � and � is de�ned by

� Æ �(x) = �(�(x)) for all x 2 X . A uni�er of two terms s and t is a substitution

� with �(s) = �(t). A uni�er � is
alled most general (mgu) if for every other

uni�er �

0

there is a substitution � with �

0

= � Æ �. A position p in a term t is

represented by a sequen
e of natural numbers, tj

p

denotes the subterm of t at

position p, and t[s℄

p

denotes the result of repla
ing the subterm tj

p

by the term s

(see [5℄ for details). The outermost position � is also
alled root position.

Let ! be a binary relation on a set S. Then !

�

denotes the transitive and

re
exive
losure of the relation !, and $

�

denotes the transitive, re
exive and

symmetri

losure of !. ! is
alled terminating if there are no in�nite
hains

e

1

! e

2

! e

3

! � � �. ! is
alled
on
uent if for all e; e

1

; e

2

2 S with e!

�

e

1

and

e!

�

e

2

there exists an element e

3

2 S with e

1

!

�

e

3

and e

2

!

�

e

3

.

An equation s � t is a multiset
ontaining two terms s and t. Thus equations

to be uni�ed are symmetri
. In order to
ompute with equational spe
i�
ations,

we will use the spe
i�ed equations only in one dire
tion. Hen
e we de�ne a rewrite

rule l ! r as a pair of terms l; r satisfying l 62 X and Var(r) � Var(l) where l and

r are
alled left-hand side and right-hand side, respe
tively. A rewrite rule is
alled

a variant of another rule if it is obtained by a unique repla
ement of variables by

other variables. A term rewriting system R is a set of rewrite rules. In the following

we assume a given term rewriting system R.

A rewrite step is an appli
ation of a rewrite rule to a term, i.e., t !

R

s if

there exists a position p, a rewrite rule l ! r and a substitution � with tj

p

= �(l)

and s = t[�(r)℄

p

. A term t is
alled redu
ible if we
an apply a rewrite rule to it,

and t is
alled irredu
ible or in normal form if there is no term s with t !

R

s.

A term rewriting system is ground
on
uent if the restri
tion of !

R

to the set of

all ground terms is
on
uent. If R is ground
on
uent and terminating, then ea
h

ground term t has a unique normal form whi
h is denoted by t#

R

.

We are interested in proving the validity of equations. Hen
e we
all an equation

s � t valid (w.r.t. R) if s $

�

R

t. By Birkho�'s Completeness Theorem, this is

equivalent to the validity of s � t in all models of R. In this
ase we also write

s =

R

t. If R is ground
on
uent and terminating, we
an de
ide the validity

of a ground equation s � t by
omputing the normal form of both sides using

an arbitrary sequen
e of rewrite steps sin
e s $

�

R

t i� s#

R

= t#

R

. In order to

ompute solutions to a non-ground equation s � t, we have to �nd appropriate

instantiations for the variables in s and t. This
an be done by narrowing. A term

1

In this paper we
onsider only single-sorted programs. The extension to many-sorted

signatures is straightforward [25℄. Sin
e sorts are not relevant to the subje
t of this

paper, we omit them for the sake of simpli
ity.

3

t is narrowable into a term t

0

if there exist a non-variable position p (i.e., tj

p

62 X),

a variant l ! r of a rewrite rule and a substitution � su
h that � is a mgu of tj

p

and l and t

0

= �(t[r℄

p

). In this
ase we write t;

�

t

0

.

Narrowing is able to solve equations w.r.t. R by deriving both sides of an

equation to synta
ti
ally uni�able terms. Due to the huge sear
h spa
e of simple

narrowing, several authors have proposed restri
tions on the admissible narrowing

derivations (see [18℄ for a detailed survey). Lazy narrowing [3, 23, 27℄ is in
u-

en
ed by the idea of lazy evaluation in fun
tional programming languages. Lazy

narrowing steps are only applied at outermost positions with the ex
eption that

arguments are evaluated by narrowing to their head normal form if their values

are required for an outermost narrowing step. Sin
e lazy strategies are important

in the
ontext of non-terminating rewrite rules, these strategies have been proved

to be
omplete w.r.t. domain-based interpretations of rewrite rules [13, 23℄. Lazy

uni�
ation is very similar to lazy narrowing but manipulates sets of equations

rather than terms. It has been proved to be
omplete for
anoni
al term rewriting

systems w.r.t. standard semanti
s [6, 22℄.

From a pra
ti
al point of view the most essential improvement of simple nar-

rowing is normalizing narrowing [8℄ where the term is rewritten to its normal form

before a narrowing step is applied. This optimization is important sin
e it prefers

deterministi

omputations: rewriting a term to normal form
an be done in a

deterministi
 way sin
e every rewriting sequen
e gives the same result (if R is

on
uent and terminating). As shown in [9, 16℄, normalizing narrowing has the

important e�e
t that equational logi
 programs are more eÆ
iently exe
utable

than pure logi
 programs. Normalization
an also be
ombined with other nar-

rowing restri
tions [9, 19, 28℄. Be
ause of these important advantages, normalizing

narrowing is the foundation of several programming languages whi
h
ombines

fun
tional and logi
 programming like ALF [15℄, LPG [2℄ or SLOG [9℄. However,

normalization has not been in
luded in lazy narrowing strategies.

2

Therefore we

will present a lazy uni�
ation
al
ulus whi
h in
ludes a normalization pro
ess

where the term rewrite rules as well as additional indu
tive
onsequen
es are used

for normalization.

3 A
al
ulus for lazy uni�
ation

In the rest of this paper we assume that R is a ground
on
uent and terminating

term rewriting system. This se
tion presents our basi
 lazy uni�
ation
al
ulus to

solve a system of equations. The in
lusion of a normalization pro
ess will be shown

in Se
tion 4. The \laziness" of our
al
ulus is in the spirit of lazy evaluation in

fun
tional programming languages, i.e., terms are evaluated only if their values

are needed.

Our lazy uni�
ation
al
ulus manipulates sets of equations in the style of

Martelli and Montanari [21℄ rather than terms as in narrowing
al
uli. Hen
e

we de�ne an equation system E to be a multiset of equations (in the following we

write su
h sets without
urly bra
kets if it is
lear from the
ontext). A solution

of an equation system E is a ground substitution � su
h that �(s) =

R

�(t) for

all equations s � t 2 E.

3

An equation system E is solvable if it has at least one

solution. A set S of substitutions is a
omplete set of solutions for E i�

2

Ex
ept for [6, 7℄, but see the remarks in Se
tion 1.

3

We are interested in ground solutions sin
e later we will in
lude indu
tive
onsequen
es

whi
h are valid in the ground models of R. As pointed out in [24℄, this ground approa
h

subsumes the
onventional narrowing approa
hes where also non-ground solutions are

4

Lazy narrowing

f(t

1

; : : : ; t

n

) � t; E

lu

=) t

1

� l

1

; : : : ; t

n

� l

n

; r � t; E

if t 62 X or t 2 Var(f(t

1

; : : : ; t

n

))[Var(E) and f(l

1

; : : : ; l

n

)! r new variant of a rule

De
omposition of equations

f(t

1

; : : : ; t

n

) � f(t

0

1

; : : : ; t

0

n

); E

lu

=) t

1

� t

0

1

; : : : ; t

n

� t

0

n

; E

Partial binding of variables

x � f(t

1

; : : : ; t

n

); E

lu

=) x � f(x

1

; : : : ; x

n

); x

1

� �(t

1

); : : : ; x

n

� �(t

n

); �(E)

if x 2 Var(f(t

1

; : : : ; t

n

)) [Var(E) and � = fx 7! f(x

1

; : : : ; x

n

)g (x

i

new variable)

Figure 1. The lazy uni�
ation
al
ulus

1. for all � 2 S, � is a solution of E;

2. for every solution � of E, there exists some � 2 S with �(x) =

R

�(x) for all

x 2 Var(E).

In order to
ompute solutions of an equation system, we transform it by the rules

in Figure 1 until no more rules
an be applied. The lazy narrowing transformation

applies a rewrite rule to a fun
tion o

urring outermost in an equation.

4

A
tually,

this is not a narrowing step as de�ned in Se
tion 2 sin
e the argument terms may

not be uni�able. Narrowing steps
an be simulated by a sequen
e of transforma-

tions in the lazy uni�
ation
al
ulus but not vi
e versa sin
e our
al
ulus also

allows the appli
ation of rewrite rules to the arguments of the left-hand sides. The

de
omposition transformation generates equations between the argument terms of

an equation if both sides have the same outermost symbol. The partial binding

of variables
an be applied if the variable x o

urs at di�erent positions in the

equation system. In this
ase we instantiate the variable only with the outermost

fun
tion symbol. A full instantiation by the substitution � = fx 7! f(t

1

; : : : ; t

n

)g

may in
rease the
omputational work if x o

urs several times and the evaluation

of f(t

1

; : : : ; t

n

) is
ostly. In order to avoid this problem of eager variable elim-

ination (see [11℄), we perform only a partial binding whi
h is also
alled \root

imitation" in [11℄.

At �rst sight our lazy uni�
ation
al
ulus has many similarities with the lazy

uni�
ation rules presented in [6, 11, 22, 25℄. This is not a

idental sin
e these

systems have inspired us. However, there are also essential di�eren
es. Sin
e we

are interested in redu
ing the
omputational
osts in the E-uni�
ation pro
edure,

our rules behave \more lazily". In our rules it is allowed to evaluate a term only if

its value is needed (in several positions). Otherwise, the term is left unevaluated.

Example 1. Consider the rewrite rule 0 � x ! 0. Then the only transformation

sequen
e of the equation 0 � t � 0 (where t is a
ostly fun
tion) is

0 � t � 0

lu

=) 0 � 0; t � x; 0 � 0

lu

=) t � x; 0 � 0

lu

=) t � x

Thus the term t is not evaluated sin
e its
on
rete value is not needed. Con-

sequently, we may
ompute solutions with redu
ible terms whi
h is a desirable

property in the presen
e of a lazy evaluation me
hanism. 2

taken into a

ount.

4

Similarly to logi
 programming, we have to apply rewrite rules with fresh variables in

order to ensure
ompleteness.

5

Coales
e x � y; E

var

=) x � y; �(E) if x; y 2 Var(E) and � = fx 7! yg

Trivial x � x;E

var

=) E

Figure 2. The variable elimination rules

The
onventional transformation rules for uni�
ation w.r.t. an empty equational

theory [21℄ bind a variable x to a term t only if x does not o

ur in t. This o

ur

he
k must be omitted in the presen
e of evaluable fun
tion symbols. Moreover,

we must also instantiate o

urren
es of x in the term t whi
h is done in our partial

binding rule. The following example shows the ne
essity of these extensions.

Example 2. Consider the rewrite rule f(
(a))! a. Then we
an solve the equation

x �
(f(x)) by the following transformation sequen
e:

x �
(f(x))

lu

=) x �
(x

1

); x

1

� f(
(x

1

)) (partial binding)

lu

=) x �
(x

1

);
(x

1

) �
(a); x

1

� a (lazy narrowing)

lu

=) x �
(x

1

); x

1

� a; x

1

� a (de
omposition)

lu

=) x �
(a); x

1

� a; a � a (partial binding)

lu

=) x �
(a); x

1

� a (de
omposition)

In fa
t, the initial equation is solvable and fx 7!
(a)g is a solution of this equation.

This solution is also an obvious solution of the �nal equation system if we disregard

the auxiliary variable x

1

. 2

In the rest of this se
tion we will show soundness and
ompleteness of our lazy

uni�
ation
al
ulus. Soundness simply means that ea
h solution of the transformed

equation system is also a solution of the initial equation system. Completeness is

more diÆ
ult sin
e we have to take into a

ount all possible transformations.

Therefore we will show that a solvable equation system
an be transformed into

another very simple equation system whi
h has \an obvious solution". Su
h a �nal

equation system is
alled in \solved form". A

ording to [11, 21℄ we
all an equation

x � t 2 E solved (in E) if x is a variable whi
h o

urs neither in t nor anywhere

else in E. In this
ase variable x is also
alled solved (in E). An equation system

is solved or in solved form if all its equations are solved. A variable or equation is

unsolved in E if it o

urs in E but is not solved.

The lazy uni�
ation
al
ulus in the present form
annot transform ea
h solv-

able equation system into a solved form sin
e equations between variables are not

simpli�ed. For instan
e, the equation system

x � f(y); y � z

1

; y � z

2

; z

1

� z

2

is irredu
ible w.r.t.

lu

=) but not in solved form sin
e the variables y; z

1

; z

2

have

multiple o

urren
es. Fortunately, this is not a problem sin
e a solution
an be

extra
ted by merging the variables o

urring in unsolved equations. Therefore we

all this system quasi-solved. An equation system is quasi-solved if ea
h equation

s � t is solved or has the property s; t 2 X . In the following we will show that

a quasi-solved equation system has solutions whi
h
an be easily
omputed by

applying the rules in Figure 2 to it. The separation between the lazy uni�
ation

rules in Figure 1 and the variable elimination rules in Figure 2 has te
hni
al rea-

sons that will be
ome apparent later (e.g., applying variable elimination to the

6

equation y � z

1

may not redu
e the
omplexity measure used in our
ompleteness

proofs). However, it is obvious to obtain the solutions of a quasi-solved equation

system E. For this purpose we transform E by the rules in Figure 2 into a solved

equation system whi
h has a dire
t solution. This is always possible be
ause

var

=)

is terminating, preserves solutions, and transforms ea
h quasi-solved system into

a solved one (see [17℄ for details). Moreover, the solutions of an equation system

in solved form
an be obtained as follows:

Proposition 1. Let E = fx

1

� t

1

; : : : ; x

n

� t

n

g be an equation system in solved

form. Then the substitution set

f
 Æ fx

1

7! t

1

; : : : ; x

n

7! t

n

g j
 is a ground substitutiong

is a
omplete set of solutions for E.

Therefore it is suÆ
ient to transform an equation system into a quasi-solved form.

The soundness of the lazy uni�
ation
al
ulus is implied by the following theorem

whi
h
an be proved by a
ase analysis on the applied transformation rule [17℄.

Theorem2. Let E and E

0

be equation systems with E

lu

=)E

0

. Then ea
h solution

� of E

0

is also a solution of E.

For the
ompleteness we show that for ea
h solution of an equation system there

is a derivation into a quasi-solved form that has the same solution. Note that

the solution of the quasi-solved form
annot be identi
al to the required solution

sin
e new additional variables are generated during the derivation (by lazy nar-

rowing and partial binding transformations). But this is not a problem sin
e we

are interested in solutions w.r.t. the variables of the initial equation system.

Theorem3. Let E be a solvable equation system with solution �. Then there exists

a derivation E

lu

=)

�

E

0

with E

0

in quasi-solved form su
h that E

0

has a solution �

0

with �

0

(x) =

R

�(x) for all x 2 Var(E).

Proof. We show the existen
e of a derivation from E into a quasi-solved equation

system by the following steps:

1. We de�ne a redu
tion relation) on pairs of the form (�;E) (where E is an

equation system and � is a solution of E) with the property that (�;E))

(�

0

; E

0

) implies E

lu

=)E

0

and �

0

(x) = �(x) for all x 2 Var(E).

2. We de�ne a terminating ordering � on these pairs.

3. We show: If E has a solution � but E is not in quasi-solved form, then there

exists a pair (�

0

; E

0

) with (�;E)) (�

0

; E

0

) and (�;E) � (�

0

; E

0

).

2 and 3 implies that ea
h solvable equation system
an be transformed into a quasi-

solved form. By 1, the solution of this quasi-solved form is the required solution

of the initial equation system.

In the sequel we will show 1 and 3 in parallel. First we de�ne the terminating

ordering �. For this purpose we use the stri
t subterm ordering �

sst

on terms

de�ned by t �

sst

s i� there is a position p in t with tj

p

= s 6= t. Sin
e R is a termi-

nating term rewriting system, the relation !

R

on terms is also terminating. Let

�� be the transitive
losure of the relation!

R

[�

sst

. Then �� is also terminating

[20℄.

5

Now we de�ne the following ordering on pairs (�;E): (�;E) � (�

0

; E

0

) i�

f�(s); �(t) j s � t 2 E unsolvedg ��

mul

f�

0

(s

0

); �

0

(t

0

) j s

0

� t

0

2 E

0

unsolvedg (�)

5

Note that the use of the relation !

R

instead of �� (as done in [6℄) is not suÆ
ient for

the
ompleteness proof sin
e !

R

has not the subterm property [4℄ in general.

7

where ��

mul

is the multiset extension

6

of the ordering �� (all sets in this de�nition

are multisets). ��

mul

is terminating (note that all multisets
onsidered here are

�nite) sin
e �� is terminating [4℄.

Now we will show that we
an apply a transformation step to a solvable but

unsolved equation system su
h that its
omplexity is redu
ed. Let E be an equation

system not in quasi-solved form and � be a solution of E. Sin
e E is not quasi-

solved, there must be an equation whi
h has one of the following forms:

1. There is an equation E = s � t; E

0

with s; t 62 X : Let s = f(s

1

; : : : ; s

n

) with

n � 0 (the other
ase is symmetri
). Consider an innermost derivation of the

normal forms of �(s) and �(t):

(a) No rewrite step is performed at the root of �(s) and �(t): Then t has

the form t = f(t

1

; : : : ; t

n

) and �(s)#

R

= �(t)#

R

= f(u

1

; : : : ; u

n

). Sin
e

�(s) and �(t) are not redu
ible at the root, �(s

i

)#

R

= u

i

= �(t

i

)#

R

for

i = 1; : : : ; n. Now we apply the de
omposition transformation and obtain

the equation system

E

0

= s

1

� t

1

; : : : ; s

n

� t

n

; E

0

Obviously, � is a solution of E

0

. Moreover, the
omplexity of the new

equation system is redu
ed be
ause the equation s � t is unsolved in E

and ea
h �(s

i

) and �(t

i

) is smaller than �(s) and �(t), respe
tively, sin
e

��
ontains the stri
t subterm ordering �

sst

. Hen
e (�;E) � (�;E

0

).

(b) A rewrite step is performed at the root of �(s), i.e., the innermost rewriting

sequen
e of �(s) has the form

�(s)!

�

R

f(s

0

1

; : : : ; s

0

1

)!

R

�(r) !

�

R

�(s)#

R

where f(l

1

; : : : ; l

n

) ! r is a new variant of a rewrite rule, �(l

i

) = s

0

i

and �(s

i

) !

�

R

s

0

i

for i = 1; : : : ; n. An appli
ation of the lazy narrowing

transformation yields the equation system

E

0

= s

1

� l

1

; : : : ; s

n

� l

n

; r � t; E

0

We extend � to a new substitution �

0

with �

0

(x) = �(x) for all x 2 Dom(�)

(this is always possible sin
e � does only work on the variables of the new

variant of the rewrite rule). �

0

is a solution of E

0

sin
e

�

0

(s

i

) = �(s

i

)!

�

R

s

0

i

= �(l

i

) = �

0

(l

i

)

and

�

0

(r) = �(r)!

�

R

�(s)#

R

$

�

R

�(t) = �

0

(t)

Sin
e the transitive
losure of !

R

is
ontained in ��, �(s

i

) �� �

0

(l

i

) (if

�(s

i

) 6= �

0

(l

i

)) and �(s) �� �

0

(r). Sin
e s � t is unsolved in E, the term

�(s) is
ontained in the left multiset of the ordering de�nition (�), and

it is repla
ed by the smaller terms �(s

1

); : : : ; �(s

n

); �

0

(l

1

); : : : ; �

0

(l

n

); �

0

(r)

(�(s) �� �(s

i

) sin
e ��
ontains the stri
t subterm ordering). Therefore

the new equation system is smaller w.r.t. �, i.e., (�;E) � (�

0

; E

0

).

2. There is an equation E = x � t; E

0

with t = f(t

1

; : : : ; t

n

) and x unsolved in

E: Hen
e x 2 Var(t) [Var(E

0

). Again, we
onsider an innermost derivation

of the normal form of �(t):

(a) A rewrite step is performed at the root of �(t). Then we apply a lazy

narrowing step and pro
eed as in the previous
ase.

6

The multiset ordering ��

mul

is the transitive
losure of the repla
ement of an element

by a �nite number of elements that are smaller w.r.t. �� [4℄.

8

(b) No rewrite step is performed at the root of �(t), i.e., �(t)#

R

= f(t

0

1

; : : : ; t

0

n

)

and �(t

i

)#

R

= t

0

i

for i = 1; : : : ; n. We apply the partial binding transfor-

mation and obtain the equation system

E

0

= x � f(x

1

; : : : ; x

n

); x

1

� �(t

1

); : : : ; x

n

� �(t

n

); �(E

0

)

where � = fx 7! f(x

1

; : : : ; x

n

)g and x

i

are new variables. We extend � to

a substitution �

0

by adding the bindings �

0

(x

i

) = t

0

i

for i = 1; : : : ; n. Then

�

0

(f(x

1

; : : : ; x

n

)) = f(t

0

1

; : : : ; t

0

n

) = �(t)#

R

$

�

R

�(t)$

�

R

�(x) = �

0

(x)

Moreover, �

0

(�(x)) = �

0

(x)#

R

whi
h implies �

0

(s) $

�

R

�

0

(�(s)) for all

terms s. Hen
e �

0

(�(t

i

)) $

�

R

�

0

(t

i

) $

�

R

t

0

i

= �

0

(x

i

). Altogether, �

0

is a

solution of E

0

.

It remains to show that this transformation redu
es the
omplexity of the

equation system. Sin
e �

0

(�(x)) = �(x)#

R

, we have �(x) !

�

R

�

0

(�(x)).

Hen
e �(E

0

) is equal to �

0

(�(E

0

)) (if �(x) = �

0

(�(x))) or �

0

(�(E

0

)) is

smaller w.r.t. ��

mul

. Therefore it remains to
he
k that �(t) is greater

than ea
h �

0

(x

1

); : : : ; �

0

(x

n

); �

0

(�(t

1

)); : : : ; �

0

(�(t

n

)) w.r.t. �� (note that

the equation x � t is unsolved in E, but the equation x � f(x

1

; : : : ; x

n

) is

solved in E

0

). First of all, �(t) �� �(t

i

) sin
e �� in
ludes the stri
t subterm

ordering. Moreover, �(t

i

) !

�

R

�

0

(x

i

), i.e., �

0

(x

i

) is equal or smaller than

�(t

i

) w.r.t. �� for i = 1; : : : ; n. This implies �(t) �� �

0

(x

i

). Similarly,

�

0

(�(t

i

)) is equal or smaller than �(t

i

) w.r.t. �� sin
e �

0

(�(x)) = �(x)#

R

.

Thus �(t) �� �

0

(�(t

i

)). Altogether, (�;E) � (�

0

; E

0

). ut

We want to point out that there exist also other orderings on substitution/equation

system pairs to prove the
ompleteness of our
al
ulus. However, the ordering

hosen in the above proof is tailored to a simple proof for the
ompleteness of lazy

uni�
ation with simpli�
ation as we will see in the next se
tion.

The results of this se
tion imply that a
omplete set of solutions for a given

equation system E
an be
omputed by enumerating all derivations in the lazy

uni�
ation
al
ulus from E into a quasi-solved equation system. Due to the nonde-

terminism in the lazy uni�
ation
al
ulus, there are many unsu

essful and often

in�nite derivations. Therefore we will show in the next se
tion how to redu
e this

nondeterminism by integrating a deterministi
 simpli�
ation pro
ess into the lazy

uni�
ation
al
ulus. More determinism
an be a
hieved by dividing the set of fun
-

tion symbols into
onstru
tors and de�ned fun
tions. This will be the subje
t of

Se
tion 5.

4 Integrating simpli�
ation into lazy uni�
ation

The lazy uni�
ation
al
ulus admits a high degree of nondeterminism even if there

is only one reasonable derivation. This is due to the fa
t that fun
tional expressions

are pro
essed \too lazy".

Example 3. Consider the rewrite rules

f(a) !
 g(a) ! a

f(b) ! d g(b) ! b

and the equation f(g(b)) � d. Then there are four di�erent derivations in our lazy

uni�
ation
al
ulus, but only one derivation is su

essful. If we would �rst
ompute

the normal form of f(g(b)), whi
h is d, then there is only one possible derivation:

d � d

lu

=) ;. Hen
e we will show that the lazy uni�
ation
al
ulus remains to be

sound and
omplete if the (deterministi
!) normalization of terms is in
luded. 2

9

It is well-known [9, 16℄ that the in
lusion of indu
tive
onsequen
es for normal-

ization may have an essential e�e
t on the sear
h spa
e redu
tion in normalizing

narrowing strategies. Therefore we will also allow the use of additional indu
tive

onsequen
es for normalization. A rewrite rule l ! r is
alled indu
tive
onse-

quen
e (of R) if �(l) =

R

�(r) for all ground substitutions �. For instan
e, the rule

x+ 0! x is an indu
tive
onsequen
e of the term rewriting system

0 + y ! y s(x) + y ! s(x+ y)

If we want to solve the equation s(x)+0 � s(x), our basi
 lazy uni�
ation
al
ulus

would enumerate the solutions x 7! 0, x 7! s(0), x 7! s(s(0)) and so on, i.e., this

equation has an in�nite sear
h spa
e. Using the indu
tive
onsequen
e x+ 0! x

for normalization, the equation s(x)+0 � s(x) is redu
ed to s(x) � s(x) and then

transformed into the quasi-solved form x � x representing the solution set where

x is repla
ed by any ground term.

7

In the following we assume that S is a set of indu
tive
onsequen
es of R (the

set of simpli�
ation rules) so that the rewrite relation !

S

is terminating. We will

use rules from R for lazy narrowing and rules from S for simpli�
ation. Note that

ea
h rule from R is also an indu
tive
onsequen
e and
an be in
luded in S. But

we do not require that all rules from R must be used for normalization. This is

reasonable if there are dupli
ating rules where one variable of the left-hand side

o

urs several times on the right-hand side, like f(x) ! g(x; x). If we normalize

the equation f(s) � t with this rule, then the term s is dupli
ated whi
h may

in
rease the
omputational
osts if the evaluation of s is ne
essary and
ostly. In

su
h a
ase it would be better to use this rule only in lazy narrowing steps.

In order to in
lude simpli�
ation into the lazy uni�
ation
al
ulus, we de�ne

a relation)

S

on systems of equations. s � t)

S

s

0

� t

0

i� s

0

and t

0

are normal

forms of s and t w.r.t. !

S

, respe
tively. E)

S

E

0

i� E = e

1

; : : : ; e

n

and E

0

=

e

0

1

; : : : ; e

0

n

where e

i

)

S

e

0

i

for i = 1; : : : ; n. Note that)

S

des
ribes a deterministi

omputation pro
ess.

8

E

lus

=)E

0

is a derivation step in the lazy uni�
ation
al
ulus

with simpli�
ation if E)

S

E

lu

=)E

0

for some E.

The soundness of the
al
ulus

lus

=)
an be shown by a simple indu
tion on

the
omputation steps using Theorem 2 and the following lemma whi
h shows the

soundness of one rewrite step with a simpli�
ation rule:

Lemma4. Let s � t be an equation and s !

S

s

0

be a rewrite step. Then ea
h

solution of s

0

� t is also a solution of s � t.

For the
ompleteness proof we have to show that solutions are not lost by the

appli
ation of indu
tive
onsequen
es:

Lemma5. Let E be an equation system and � be a solution of E. If E)

S

E

0

,

then � is a solution of E

0

.

7

In larger single-sorted term rewriting systems it would be diÆ
ult to �nd indu
tive

onsequen
es. E.g., x+ 0! x is not an indu
tive
onsequen
e if there is a
onstant a

sin
e a+ 0 =

R

a is not valid. However, in pra
ti
e spe
i�
ations are many-sorted and

then indu
tive
onsequen
es must be valid only for all well-sorted ground substitutions.

Therefore we want to point out that all results in this paper
an also be extended to

many-sorted term rewriting systems in a straightforward way.

8

If there exist more than one normal form w.r.t. !

S

, it is suÆ
ient to sele
t don't
are

one of these normal forms.

10

This lemma would imply the
ompleteness of the
al
ulus

lus

=) if a derivation

step with)

S

does not in
rease the ordering used in the proof of Theorem 3.

Unfortunately, this is not the
ase in general sin
e the termination of!

R

and!

S

may be based on di�erent orderings (e.g., R = fa ! bg and S = fb ! ag). In

order to avoid su
h problems, we require that the relation !

R[S

is terminating

whi
h is not a real restri
tion in pra
ti
e.

Theorem6. Let S be a set of indu
tive
onsequen
es of the ground
on
uent and

terminating term rewriting system R su
h that !

R[S

is terminating. Let E be a

solvable equation system with solution �. Then there exists a derivation E

lus

=)

�

E

0

su
h that E

0

is in quasi-solved form and has a solution �

0

with �

0

(x) =

R

�(x) for

all x 2 Var(E).

Proof. In the proof of Theorem 3 we have shown how to apply a transformation

step to an equation system not in quasi-solved form su
h that the solution is

preserved. We
an use the same proof for the transformation

lus

=) sin
e Lemma 5

shows that normalization steps preserve solutions. The only di�eren
e
on
erns

the ordering where we use !

R[S

instead of !

R

, i.e., �� is now de�ned to be

the transitive
losure of the relation !

R[S

[�

sst

. Clearly, this does not
hange

anything in the proof of Theorem 3. Moreover, the relation)

S

does not in
rease

the
omplexity w.r.t. this ordering but redu
es it if indu
tive
onsequen
es are

applied sin
e !

S

is
ontained in ��. ut

These results show that we
an integrate the deterministi
 simpli�
ation pro
ess

into the lazy uni�
ation
al
ulus without loosing soundness and
ompleteness.

Note that the rules from S
an only be applied if their left-hand sides
an be

mat
hed with a subterm of the
urrent equation system. If these subterms are not

suÆ
iently instantiated, the rewrite rules are not appli
able and hen
e we loose

potential determinism in the uni�
ation pro
ess.

Example 4. Consider the rules

zero(s(x)) ! zero(x) zero(0) ! 0

(assume that these rules are
ontained in R as well as in S) and the equation

system zero(x) � 0; x � 0. Then there exists the following derivation in our

al
ulus (this derivation is also possible in the uni�
ation
al
uli in [11, 22℄):

zero(x) � 0; x � 0

lus

=) x � s(x

1

); zero(x

1

) � 0; x � 0 (lazy narrowing)

lus

=) x � s(x

1

); x

1

� s(x

2

); zero(x

2

) � 0; x � 0 (lazy narrowing)

lus

=) � � �

This in�nite derivation
ould be avoided if we apply the partial binding rule in the

�rst step:

zero(x) � 0; x � 0

lus

=) zero(0) � 0; x � 0 (partial binding)

)

S

0 � 0; x � 0 (rewriting with se
ond rule)

lus

=) x � 0 (de
omposition)

In the next se
tion we will present an optimization whi
h prefers the latter deriva-

tion and avoids the �rst in�nite derivation. 2

11

De
omposition of
onstru
tor equations

(t

1

; : : : ; t

n

) �
(t

0

1

; : : : ; t

0

n

); E

lu

=) t

1

� t

0

1

; : : : ; t

n

� t

0

n

; E if
 2 C

Full binding of variables to ground
onstru
tor terms

x � t; E

lu

=) x � t; �(E) if x 2 Var(E), t 2 T (C; ;) and � = fx 7! tg

Partial binding of variables to
onstru
tor terms

x �
(t

1

; : : : ; t

n

); E

lu

=) x �
(x

1

; : : : ; x

n

); x

1

� �(t

1

); : : : ; x

n

� �(t

n

); �(E)

if x 2 Var(
(t

1

; : : : ; t

n

))[Var(E), x 62
var(
(t

1

; : : : ; t

n

)) and � = fx 7!
(x

1

; : : : ; x

n

)g

(x

i

new variable)

Figure 3. Deterministi
 transformations for
onstru
tor-based rewrite systems

5 Constru
tor-based systems

In pra
ti
al appli
ations of equational logi
 programming a distin
tion is made

between operation symbols to
onstru
t data terms,
alled
onstru
tors, and oper-

ation symbols to operate on data terms,
alled de�ned fun
tions (see, for instan
e,

the fun
tional logi
 languages ALF [15℄, BABEL [23℄, K-LEAF [13℄, SLOG [9℄,

or the RAP system [12℄). Su
h a distin
tion allows to optimize our uni�
ation

al
ulus. Therefore we assume in this se
tion that the signature F is divided into

two sets F = C [D,
alled
onstru
tors and de�ned fun
tions, with C \ D = ;. A

onstru
tor term t is built from
onstru
tors and variables, i.e., t 2 T (C;X). The

distin
tion between
onstru
tors and de�ned fun
tions
omes with the restri
tion

that for all rewrite rules l ! r the outermost symbol of l is always a de�ned

fun
tion.

The important property of su
h
onstru
tor-based term rewriting systems is

the irredu
ibility of
onstru
tor terms. Due to this fa
t we
an spe
ialize the rules

of our basi
 lazy uni�
ation
al
ulus. Therefore we de�ne the deterministi
 trans-

formations in Figure 3. Deterministi
 transformations are intended to be applied

as long as possible before any transformation

lu

=) is used. Hen
e they
an be in-

tegrated into the deterministi
 normalization pro
ess)

S

. It is obvious that this

modi�
ation preserves soundness and
ompleteness. The de
omposition transfor-

mation for
onstru
tor equations must be applied in any
ase in order to obtain a

quasi-solved equation system sin
e a lazy narrowing step R
annot be applied to

onstru
tor equations. The full binding of variables to ground
onstru
tor terms is

an optimization whi
h
ombines subsequent appli
ations of partial binding trans-

formations. This transformation de
reases the
omplexity used in the proof of

Theorem 6 sin
e a
onstru
tor term is always in normal form. The partial bind-

ing transformation for
onstru
tor terms performs an eager (partial) binding of

variables to
onstru
tor terms sin
e a lazy narrowing step
annot be applied to

the
onstru
tor term. Moreover, this binding transformation is
ombined with an

o

ur
he
k sin
e it
annot be applied if x 2
var(
(t

1

; : : : ; t

n

)) where
var denotes

the set of all variables o

urring outside terms headed by de�ned fun
tion symbols.

This restri
tion avoids in�nite derivations of the following kind:

x �
(x)

lu

=) x �
(x

1

); x

1

�
(x

1

) (partial binding)

lu

=) x �
(x

1

); x

1

�
(x

2

); x

2

�
(x

2

) (partial binding)

lu

=) � � �

A further optimization
an be added if all fun
tions are redu
ible on ground

onstru
tor terms, i.e., for all f 2 D and t

1

; : : : ; t

n

2 T (C; ;) there exists a term t

12

Clash
(t

1

; : : : ; t

n

) � d(t

0

1

; : : : ; t

0

m

); E

lu

=) fail if
; d 2 C and
 6= d

O

ur
he
k x �
(t

1

; : : : ; t

n

); E

lu

=) fail if x 2
var(
(t

1

; : : : ; t

n

))

Figure 4. Failure rules for
onstru
tor-based rewrite systems

with f(t

1

; : : : ; t

n

) !

R

t. In this
ase all ground terms have a ground
onstru
tor

normal form and therefore the partial binding transformation of

lu

=)
an be
om-

pletely omitted whi
h in
reases the determinism in the lazy uni�
ation
al
ulus.

If we invert the deterministi
 transformation rules, we obtain a set of failure

rules shown in Figure 4. Failure rules are intended to be tried during the deter-

ministi
 transformations. If a failure rule is appli
able, the derivation
an be safely

terminated sin
e the equation system
annot be transformed into a quasi-solved

system.

6 Examples

In this se
tion we demonstrate the improved
omputational power of our lazy uni-

�
ation
al
ulus with simpli�
ation by means of two examples. The �rst example

shows that simpli�
ation redu
es the sear
h spa
e in the presen
e of rewrite rules

with overlapping left-hand sides.

Example 5. Consider the following ground
on
uent and terminating rewrite sys-

tem de�ning the Boolean operator _ and the predi
ate even on natural numbers:

true _ b ! true even(0) ! true

b _ true ! true even(s(0)) ! false

false_ false ! false even(s(s(x))) ! even(x)

If we want to solve the equation even(z)_true � true, the lazy uni�
ation
al
ulus

without simpli�
ation
ould apply a lazy narrowing step with the �rst _-rule. This

yields the equation system

even(z) � true; true � b; true � true

Now there are in�nitely many solutions to the new equation even(z) � true by

instantiating the variable z with the values s

2�i

(0), i � 0, i.e., the lazy uni�
ation

al
ulus without simpli�
ation (
f. Se
tion 3) has an in�nite sear
h spa
e. The

same is true for other lazy uni�
ation
al
uli [11, 22℄ or lazy narrowing
al
uli

[23, 27℄. Moreover, in a sequential implementation of lazy narrowing by ba
ktra
k-

ing [14℄ only an in�nite set of spe
ialized solutions would be
omputed without

ever trying the se
ond _-rule. But if we use our lazy uni�
ation
al
ulus with

simpli�
ation where all rewrite rules are used for simpli�
ation (i.e., R = S), then

the initial equation even(z) _ true � true is �rst simpli�ed to true � true by

rewriting with the se
ond _-rule. Hen
e our
al
ulus has a �nite sear
h spa
e. 2

If the left-hand sides of the rewrite rules do not overlap, i.e., if the fun
tions are

de�ned by a
ase distin
tion on one argument, then there exists a lazy narrowing

strategy (needed narrowing [1℄) whi
h is optimal w.r.t. the length of derivations.

However, unsu

essful in�nite derivations
an be avoided also in this
ase by our

lazy uni�
ation
al
ulus with simpli�
ation if indu
tive
onsequen
es are added to

the set of simpli�
ation rules.

Example 6. Consider the following rewrite rules for the addition and multipli
ation

on natural numbers where C = f0; sg are
onstru
tors and D = f+; �g are de�ned

fun
tions:

13

0 + y ! y (1) 0 � y ! 0 (3)

s(x) + y ! s(x+ y) (2) s(x) � y ! y + x � y (4)

If we use this
on
uent and terminating set of rewrite rules for lazy narrowing (R)

as well as for normalization (S) and add the indu
tive
onsequen
e x � 0 ! 0 to

S, then our lazy uni�
ation
al
ulus with simpli�
ation has a �nite sear
h spa
e

for the equation x � y � s(0). This is due to the fa
t that the following derivation

an be terminated using the indu
tive
onsequen
e and the
lash rule:

x � y � s(0)

lu

=) x � s(x

1

); y � y

1

; y

1

+ x

1

� y

1

� s(0) (lazy narrowing, rule 4)

lu

=) x � s(x

1

); y � y

1

; y

1

� 0; x

1

� y

1

� y

2

; y

2

� s(0) (lazy narrowing, rule 1)

lu

=) x � s(x

1

); y � 0; y

1

� 0; x

1

� 0 � y

2

; y

2

� s(0) (bind variable y

1

)

lu

=) x � s(x

1

); y � 0; y

1

� 0; x

1

� 0 � s(0); y

2

� s(0) (bind variable y

2

)

)

S

x � s(x

1

); y � 0; y

1

� 0; 0 � s(0); y

2

� s(0) (redu
e x

1

� 0)

lu

=) fail (
lash between 0 and s)

The equation x

1

� 0 � s(0)
ould not be transformed into the equation 0 � s(0)

without the indu
tive
onsequen
e. Consequently, an in�nite derivation would o
-

ur in our basi
 uni�
ation
al
ulus of Se
tion 3.

Note that other lazy uni�
ation
al
uli [11, 22℄ or lazy narrowing
al
uli [23, 27℄

have an in�nite sear
h spa
e for this equation. It is also interesting to note that a

normalizing innermost narrowing strategy as in [9℄ has also an in�nite sear
h spa
e

even if the same indu
tive
onsequen
es are available. This shows the advantage

of
ombining a lazy strategy with a simpli�
ation pro
ess. 2

7 Con
lusions

In this paper we have presented a
al
ulus for uni�
ation in the presen
e of an

equational theory. In order to obtain a small sear
h spa
e, the
al
ulus is designed

in the spirit of lazy evaluation, i.e., fun
tions are not evaluated if their result is

not required to solve the uni�
ation problem. The most important property of

our
al
ulus is the in
lusion of a deterministi
 simpli�
ation pro
ess. This has the

positive e�e
t that our
al
ulus is more eÆ
ient (in terms of the sear
h spa
e size)

than other lazy uni�
ation
al
uli or eager narrowing
al
uli (like basi
 narrowing,

innermost narrowing) with simpli�
ation. We think that our
al
ulus is the basis

of eÆ
ient implementations of future fun
tional logi
 languages.

A
knowledgements. The author is grateful to Harald Ganzinger for his pointer to a

suitable termination ordering and to two anonymous referees for their helpful remarks.

The resear
h des
ribed in this paper was supported in part by the German Ministry

for Resear
h and Te
hnology (BMFT) under grant ITS 9103 and by the ESPRIT Basi

Resear
h Working Group 6028 (Constru
tion of Computational Logi
s).

Referen
es

1. S. Antoy, R. E
hahed, and M. Hanus. A Needed Narrowing Strategy. In Pro
. 21st

ACM Symp. on Prin
iples of Programming Languages, pp. 268{279, Portland, 1994.

2. D. Bert and R. E
hahed. Design and Implementation of a Generi
, Logi
 and Fun
-

tional Programming Language. In Pro
. ESOP'86, pp. 119{132. Springer LNCS 213,

1986.

3. J. Darlington and Y. Guo. Narrowing and uni�
ation in fun
tional programming -

an evaluation me
hanism for absolute set abstra
tion. In Pro
. of the Conferen
e on

Rewriting Te
hniques and Appli
ations, pp. 92{108. Springer LNCS 355, 1989.

14

4. N. Dershowitz. Termination of Rewriting. J. Symboli
 Computation, Vol. 3, pp.

69{116, 1987.

5. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,

Handbook of Theoreti
al Computer S
ien
e, Vol. B, pp. 243{320. Elsevier, 1990.

6. N. Dershowitz, S. Mitra, and G. Sivakumar. Equation Solving in Conditional AC-

Theories. In Pro
. ALP'90, pp. 283{297. Springer LNCS 463, 1990.

7. R. E
hahed. Uniform Narrowing Strategies. In Pro
. of the 3rd International Con-

feren
e on Algebrai
 and Logi
 Programming, pp. 259{275. Springer LNCS 632, 1992.

8. M.J. Fay. First-Order Uni�
ation in an Equational Theory. In Pro
. 4th Workshop

on Automated Dedu
tion, pp. 161{167, Austin (Texas), 1979. A
ademi
 Press.

9. L. Fribourg. SLOG: A Logi
 Programming Language Interpreter Based on Clausal

Superposition and Rewriting. In Pro
. IEEE Internat. Symposium on Logi
 Pro-

gramming, pp. 172{184, Boston, 1985.

10. J.H. Gallier and S. Raatz. Extending SLD-Resolution to Equational Horn Clauses

Using E-Uni�
ation. Journal of Logi
 Programming (6), pp. 3{43, 1989.

11. J.H. Gallier and W. Snyder. Complete Sets of Transformations for General E-

Uni�
ation. Theoreti
al Computer S
ien
e, Vol. 67, pp. 203{260, 1989.

12. A. Geser and H. Hussmann. Experien
es with the RAP system { a spe
i�
ation

interpreter
ombining term rewriting and resolution. In Pro
. ESOP 86, pp. 339{

350. Springer LNCS 213, 1986.

13. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logi
 plus

Fun
tional Language. Journal of Computer and System S
ien
es, Vol. 42, No. 2, pp.

139{185, 1991.

14. W. Hans, R. Loogen, and S. Winkler. On the Intera
tion of Lazy Evaluation and

Ba
ktra
king. In Pro
. PLILP'92, pp. 355{369. Springer LNCS 631, 1992.

15. M. Hanus. Compiling Logi
 Programs with Equality. In Pro
. PLILP'90, pp. 387{

401. Springer LNCS 456, 1990.

16. M. Hanus. Improving Control of Logi
 Programs by Using Fun
tional Logi
 Lan-

guages. In Pro
. PLILP'92, pp. 1{23. Springer LNCS 631, 1992.

17. M. Hanus. Lazy Uni�
ation with Indu
tive Simpli�
ation. Te
hni
al Report MPI-I-

93-215, Max-Plan
k-Institut f�ur Informatik, Saarbr�u
ken, 1993.

18. M. Hanus. The Integration of Fun
tions into Logi
 Programming: From Theory to

Pra
ti
e. To appear in Journal of Logi
 Programming, 1994.

19. S. H�olldobler. Foundations of Equational Logi
 Programming. Springer LNCS 353,

1989.

20. J.-P. Jouannaud and H. Kir
hner. Completion of a set of rules modulo a set of

equations. SIAM Journal on Computing, Vol. 15, No. 4, pp. 1155{1194, 1986.

21. A. Martelli and U. Montanari. An EÆ
ient Uni�
ation Algorithm. ACM Transa
-

tions on Programming Languages and Systems, Vol. 4, No. 2, pp. 258{282, 1982.

22. A. Martelli, G.F. Rossi, and C. Moiso. Lazy Uni�
ation Algorithms for Canoni
al

Rewrite Systems. In Hassan A��t-Ka
i and Mauri
e Nivat, editors, Resolution of

Equations in Algebrai
 Stru
tures, Volume 2, Rewriting Te
hniques,
hapter 8, pp.

245{274. A
ademi
 Press, New York, 1989.

23. J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi
 Programming with Fun
-

tions and Predi
ates: The Language BABEL. Journal of Logi
 Programming, Vol. 12,

pp. 191{223, 1992.

24. W. Nutt, P. R�ety, and G. Smolka. Basi
 Narrowing Revisited. Journal of Symboli

Computation, Vol. 7, pp. 295{317, 1989.

25. P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Monographs

on Theoreti
al Computer S
ien
e. Springer, 1988.

26. G.D. Plotkin. Building-in Equational Theories. In B. Meltzer and D. Mi
hie, editors,

Ma
hine Intelligen
e 7, pp. 73{90, 1972.

27. U.S. Reddy. Narrowing as the Operational Semanti
s of Fun
tional Languages. In

Pro
. IEEE Internat. Symposium on Logi
 Programming, pp. 138{151, Boston, 1985.

28. P. R�ety. Improving basi
 narrowing te
hniques. In Pro
. of the Conferen
e on

Rewriting Te
hniques and Appli
ations, pp. 228{241. Springer LNCS 256, 1987.

29. J.H. Siekmann. An Introdu
tion to Uni�
ation Theory. In Formal Te
hniques in

Arti�
ial Intelligen
e, pp. 369{425. Elsevier S
ien
e Publishers, 1990.

15

