
Semantic Versioning Checking in a Declarative
Package Manager
Michael Hanus

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract
Semantic versioning is a principle to associate version numbers to different software releases in a
meaningful manner. The correct use of version numbers is important in software package systems
where packages depend on other packages with specific releases. When patch or minor version
numbers are incremented, the API is unchanged or extended, respectively, but the semantics of
the operations should not be affected (apart from bug fixes). Although many software package
management systems assumes this principle, they do not check it or perform only simple syntactic
signature checks. In this paper we show that more substantive and fully automatic checks are
possible for declarative languages. We extend a package manager for the functional logic language
Curry with features to check the semantic equivalence of two different versions of a software
package. For this purpose, we combine CurryCheck, a tool for automated property testing,
with program analysis techniques in order to ensure the termination of the checker even in
case of possibly non-terminating operations defined in some package. As a result, we obtain a
software package manager which checks semantic versioning and, thus, supports a reliable and
also specification-based development of software packages.

1998 ACM Subject Classification D.2.5 Testing and Debugging, F.3.1 Specifying and Verifying
and Reasoning about Programs

Keywords and phrases functional logic programming, semantic versioning, program testing

Digital Object Identifier 10.4230/OASIcs.ICLP TCs.2017.

1 Motivation

Contemporary software systems are complex and based on many components. To structure
such systems and support the re-use of components in different software systems, software
packages with well-defined APIs (application programming interfaces) are used. A software
package consists of one or more modules and is used as a building block of a larger system.
Hence, a software system or even a complex package depends on other packages. Since
packages develop over time, e.g., new functionality is added, more efficient implementations
are developed, or the usage of operations (i.e., the API) is changed, it is important to use
appropriate versions of packages. Finding them and manage these dependencies is often
called “dependency hell.” As a solution to this problem, package managers use version
numbers associated to package releases and allow to express such dependencies as relations
on version numbers.

Semantic versioning is a recommendation to associate meaningful version numbers to
software packages. In the semantic versioning standard,1 each version number consists of
major, minor, and patch number, separated by dots, and an optional pre-release specifier

1 http://www.semver.org

© Michael Hanus;
licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha and Tran Cao Son; Article No. ; pp. :1–:16

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP TCs.2017.
http://www.semver.org
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

XX:2 Semantic Versioning Checking in a Declarative Package Manager

consisting of alphanumeric characters and hyphens appended with a hyphen (and optional
build metadata, which we do not consider here). For instance, 0.1.2 and 1.2.3-alpha.2
are valid version numbers. Furthermore, an ordering is defined on version numbers where
major, minor, and patch numbers are compared in lexicographic order and pre-releases are
considered unstable so that they are smaller than their non-pre-release versions. For instance,
0.1.1 < 0.1.2 < 0.3.1 < 1.1.2-alpha < 1.1.2. Furthermore, semantic versioning requires
that the major version number is incremented when the API functionality of a package is
changed, the minor version number is incremented when new API functionality is added
and existing API operations are backward compatible, and the patch version number is
incremented when the API functionality is unchanged (only bug fixes, code refactorings, code
improvements, etc).

The advantage of semantic versioning is an increased flexibility to choose packages when
building larger software systems. For instance, if package A requires some functionality which
has been introduced in version 2.3.1 of package B, one can specify that A depends on B in a
version greater than or equal to 2.3.1 but less than 3.0.0. Thanks to semantics versioning,
a package manager can choose newer versions of B (as long as they are smaller than 3.0.0),
when they become available, in order to build A without dependency problems.

However, semantic versioning requires the semantic compatibility of two packages with
identical major version numbers (apart from new operations or operations with bug fixes).
Since this property is obviously undecidable in general, the developer is responsible for this
semantic compatibility so that this is not checked in contemporary package management
systems. Improving this situation is the objective of the work described in this paper. Due
to the absence of side effects in declarative (functional, logic) programming languages, one
can easily write repeatable test suites. Tests parameterized over some arguments are also
called properties. Property-based testing automates the checking of properties by random or
systematic generation of test inputs. It has been introduced with the QuickCheck tool [12]
for the functional language Haskell and adapted to other languages, like PrologCheck [2] for
Prolog, PropEr [26] for the concurrent functional language Erlang, or EasyCheck [11] and
CurryCheck [17] for the functional logic language Curry.

In order to check the semantic equivalence of a unary operation f defined in versions v1 and
v2 of some package, a first approach is renaming the definitions of f in these packages to fv1

and fv2 , respectively, and checking the property ∀x.fv1(x) = fv2(x), which is called computed
result equivalence in [9].2 Ideally, one should prove this property. Since fully automatic proof
techniques are available only for limited domains, we propose to use property-based testing
instead. Although this method is incomplete in general, in practice it is quite successful if
the generated input data is well distributed (which is a goal of all property-based test tools).
Unfortunately, the brute-force testing of the equivalence of all operations, as described above,
does not yield an automatic checker for semantic versioning, since it might not terminate if
some operations are non-terminating. Moreover, declarative languages like Haskell or Curry
are based on lazy evaluation to enable optimal computations and modularity by stream-based
programming [20]. Hence, operations might also compute infinite results that cannot be
compared in a finite amount of time. Therefore, we propose to combine property-based testing
with program analysis techniques in order to ensure the termination of property testing. In
general, operations which might not terminate are excluded from equivalence checking. In

2 This property is a necessary but not sufficient condition to ensure semantic equivalence in functional
logic programs [7]. Since we do not intend to provide a faithful method for semantic versioning checking
but use a testing-based approach to detect inconsistencies, we use this simplified property.

M. Hanus XX:3

order to check operations which compute infinite data structures, e.g., stream generators, we
analyze the “productivity” of these operations, i.e., a property which ensures that partial
results are produced after a finite amount of time, and check finite approximations of their
results.

In order to use these ideas in practice, we integrated this kind of semantic versioning
checking into CPM [25], a new package management system for the functional logic language
Curry. In this way, we obtain a software package manager which checks semantic versioning
and, thus, supports a reliable and also specification-based development of software packages.

This paper is structured as follows. In the next section we briefly survey functional
logic programming and features of Curry. Sections 3 and 4 discuss the main features of
property-based testing and the Curry package manager CPM. The integration of semantic
versioning checking into CPM is shown in Section 5. The techniques to check also possibly
non-terminating operations are introduced in Section 6 and their implementation is discussed
in Section 7. Before we conclude, we show in Section 8 an important application of our
approach: the specification-based development of software systems.

2 Functional Logic Programming and Curry

In this section we briefly review some features of functional logic programming and Curry
that are relevant for this paper. More details can be found in surveys on functional logic
programming [6, 16] and in the language report [19].

Functional logic languages [6, 16] integrate the most important features of functional
and logic languages in order to provide a variety of programming concepts. They support
functional programming concepts like higher-order functions and lazy evaluation as well
as logic programming concepts like non-deterministic search and computing with partial
information. The declarative multi-paradigm language Curry [19] is a functional logic
language with advanced programming concepts.

The syntax of Curry is close to Haskell [27], i.e., type variables and names of defined
operations usually start with lowercase letters and the names of type and data constructors
start with an uppercase letter. α → β denotes the type of all functions mapping elements of
type α into elements of type β (where β can also be a functional type, i.e., functional types
are “curried”). The application of an operation f to e is denoted by juxtaposition (“f e”).

In addition to Haskell, Curry allows free (logic) variables in rules and initial expressions.
Function calls with free variables are evaluated by a possibly non-deterministic instantiation
of demanded arguments.

I Example 1. The following simple program shows the functional and logic features of Curry.
It defines the well-known list concatenation and an operation that returns some element of a
list having at least two occurrences:

(++) :: [a] → [a] → [a] someDup :: [a] → a
[] ++ ys = ys someDup xs | xs == _ ++ [x] ++ _ ++ [x] ++ _
(x:xs) ++ ys = x : (xs ++ ys) = x where x free

Since “++” can be called with free variables in arguments, the condition in the rule of someDup
is solved by instantiating x and the anonymous free variables “_” to appropriate values (i.e.,
expressions without defined functions) before reducing the function calls. This corresponds
to narrowing [28], but Curry narrows with possibly non-most-general unifiers to ensure the
optimality of computations [3]. Curry is a non-strict language, i.e., derivation steps are
performed at outermost positions, which supports computations with infinite data structures
[20]. We do not recapitulate the details of the operational semantics which can be found

ICLP 2017 TCs

XX:4 Semantic Versioning Checking in a Declarative Package Manager

in [1]. When we later consider evaluations of expressions, we denote by “→” the one step
outermost derivation relation and by “ ∗→” its reflexive-transitive closure.

Note that someDup is a non-deterministic operation since it might deliver more than one
result for a given argument, e.g., the evaluation of someDup [1,2,2,1] yields the values 1 and
2. Non-deterministic operations, which can formally be interpreted as mappings from values
into sets of values [14], are an important feature of contemporary functional logic languages.
Hence, Curry has also a predefined choice operation:

x ? _ = x
_ ? y = y

Thus, the expression “0 ? 1” evaluates to 0 and 1 with the value non-deterministically chosen.
A functional pattern [4] is a pattern in the left-hand side of a rule containing defined

operations (and not only data constructors and variables). Such a pattern abbreviates the
set of all standard patterns to which the functional pattern can be evaluated (by narrowing).
For instance, we can rewrite the definition of someDup as

someDup (_++[x]++_++[x]++_) = x

Functional patterns are a powerful feature to express arbitrary selections in tree structures,
e.g., as shown for processing XML documents in [15].

Curry has also features which are useful for application programming, like set functions
[5] to encapsulate non-deterministic computations, default rules [8] to deal with partially
specified operations and negation, and standard features from functional programming, like
modules or monadic I/O. Other features are explained when they are used in the following.

3 Property-based Testing and CurryCheck

Property-based testing is a useful technique to improve the reliability of software packages.
Basically, properties are Boolean expressions parameterized over input data. Concrete input
data is automatically generated by property-based test tools which evaluate the properties
on these inputs. For instance, QuickCheck [12], PropEr [26], or PrologCheck [2] generate
test inputs in a random manner, whereas SmallCheck [29], GAST [21], or EasyCheck [11]
perform a systematic enumeration of test inputs so that, for finite input domains, they can
actually verify properties.

CurryCheck [17] is a property-based test tool for Curry which automates the test process.
CurryCheck is based on EasyCheck and extracts and tests all properties contained in a source
program. A property is a top-level entity with result type Prop and an arbitrary number of
inputs. For instance, if we add to the program of Example 1 the property

concIsAssoc :: [Int] → [Int] → [Int] → Prop
concIsAssoc xs ys zs = (xs++ys)++zs -=- xs++(ys++zs)

and run CurryCheck on this program, the associativity property of list concatenation is
tested by systematically enumerating lists of integers for the variables xs, ys, and zs. The
property “-=-” has the type a → a → Prop and is satisfied if both arguments have a single
identical value.

To check laws involving non-deterministic operations, one can use the property “<~>”
which is satisfied if both arguments have identical result sets. For instance, consider the
following definition of a permutation of a list (which exploits a functional pattern to select
some element in the argument list):

perm (xs++[x]++ys) = x : perm (xs++ys)

M. Hanus XX:5

perm [] = []

The requirement that permutations do not change the list length can be expressed by the
property

permLength xs = length (perm xs) <~> length xs

Since the left argument of “<~>” evaluates to many (identical) values, the set-based interpret-
ation of “<~>” is relevant here. This is reasonable since, from a declarative programming
point of view, it is irrelevant how often some result is computed.

Now consider an alternative definition of permutations which non-deterministically inserts
the first element into a permutation of the remaining elements:

permIns [] = []
permIns (x:xs) = insert x (permIns xs)

insert x (xs++ys) = xs++[x]++ys

In order to check whether both definitions of permutations compute identical results, we
(successfully) test the following property:

permSameAsPermIns xs = perm xs <~> permIns xs

4 CPM: The Curry Package Manager

The Curry Package Manager CPM3 [25] is a tool to distribute and install Curry software
packages and manage version dependencies between them. Essentially, a package consists of
one or more Curry modules and a package specification, a file in JSON format containing
the package’s metadata. Beyond some standard fields, like author, name, or synopsis, the
metadata of each package contains the version number of the package (in semantic versioning
format, see above) and a list of dependency constraints. A dependency constraint consists of
the name of another package and a disjunction of conjunctions of version relations, which
are comparison operators (<, <=, >, >=, =) together with a version number. Conjunctions
are separated by commas, and disjunctions are separated by ||. Hence, the dependency
constraint

"B" : ">= 2.0.0, < 3.0.0 || > 4.1.0"

expresses the requirement that the current package depends on package B with major version
2 or in a version greater than 4.1.0.

CPM has various commands to manage the set of all packages and install and upgrade
individual packages. CPM uses a central index of all known packages and their versions. A
user can download a local copy of this index and also add other local packages and versions
to this index. To install a package, CPM tries to resolve all dependency constraints of the
current package and all dependent packages. This is a classic constraint satisfaction problem
and CPM uses a lazy functional approach based on [24] to solve all dependency constraints
and find appropriate package versions. If there is a solution to these constraints, CPM
automatically installs all required packages. If there are several possible versions of some
package to install, CPM uses the newest one. CPM also supports upgrading packages, i.e.,
to replace already installed packages by newer versions, if possible. The details of these
processes are outside the scope of this paper and are described in [25].

3 http://curry-language.org/tools/cpm

ICLP 2017 TCs

http://curry-language.org/tools/cpm

XX:6 Semantic Versioning Checking in a Declarative Package Manager

CPM adheres to the semantic versioning standard as sketched in Section 1. Thus, if
there are two versions of a package with identical major version numbers, they should have
compatible APIs, i.e., all public data types and operations in the exported modules4 occurring
in both package versions must have identical type signatures and behavior, and new public
operations can be added only if the minor version number is increased. CPM supports the
automated checking of this principle by the diff command. For instance, to compare the
current package to a previous version 1.2.4 of the same package, a package developer can
invoke the command

> cpm diff 1.2.4

This starts a complex comparison process which is described in the next section. Depending
on the outcome of this API comparison, the current package can be added to the central
CPM index.

5 Semantic Versioning Checking

Semantic versioning checking is the process to compare the APIs of two versions of some
package and report possible violations according to the semantic versioning standard. In our
context, the API of a package is the set of all public data types and operations occurring
in the exported modules of this package. To accomplish this task, the semantic versioning
checker integrated in CPM performs the following steps:
1. The signatures of all API data types and operations occurring in both packages are

compared. If there are any syntactic differences and the major version numbers of the
packages are identical, a violation is reported.

2. If there is some API entity f occurring in version a1.b1.c1 but not in version a2.b2.c2,
then a violation is reported if a1 and a2 are identical but b1 is not greater than b2.

3. If the major version numbers of the packages are identical, then, for all API operations
occurring in both package versions, the behavior of both versions of such an operation is
compared (see below for more details about this comparison). If any difference is detected,
a violation is reported.

To compare the behavior of some operation f defined in versions v1 and v2 of some package,
the code of both packages is copied and all modules of these packages (and all packages
on which these packages depend) are renamed with the version number as a prefix. For
instance, a module Mod occurring in package version 1.2.3 is copied and renamed into module
V_1_2_3_Mod. Thus, if there is a unary operation f occurring in module Mod in package
versions 1.2.3 and 1.2.4 to compare, one can access both versions of this operation by the
qualified name V_1_2_3_Mod.f and V_1_2_4_Mod.f. After copying all modules, CPM generates
a new “comparison” module which contains the following code:

import qualified V_1_2_3_Mod
import qualified V_1_2_4_Mod

check_Mod_f x = V_1_2_3_Mod.f x <~> V_1_2_4_Mod.f x

If this is passed to CurryCheck and the property is satisfied for all generated test inputs, we
have some confidence about the semantic equivalence of f in both packages (although full

4 A package specification can also declare a subset of all modules as “exported” so that only operations
in these modules can be used by other packages. If this is not explicitly declared, all modules of the
package are considered as exported.

M. Hanus XX:7

confidence requires the proof of a more complex property [7, 9]). This approach works under
the following assumptions:
1. The input and result types of V_1_2_3_Mod.f and V_1_2_4_Mod.f are identical.
2. The operations to be compared are terminating on all input values.
Since these conditions might not be satisfied in practice, we develop (partial) solutions to it.
To see an example where the first condition is not satisfied, consider the following excerpt of
the library Day dealing with weekdays:

data Weekday = Monday | Tuesday | . . . | Sunday

nextDay :: Weekday → Weekday
. . .

Since the type Weekday is locally defined, copying and renaming two versions of this library
for semantic versioning checking results in two different Weekday types so that both versions
of nextDay have incompatbile argument and result types. Thus, to generate a property to
compare both versions, CPM generates a bijective mapping between both renamed types:

t_Weekday :: V_1_2_4_Day.Weekday → V_1_2_3_Day.Weekday
t_Weekday V_1_2_4_Day.Monday = V_1_2_3_Day.Monday
t_Weekday V_1_2_4_Day.Tuesday = V_1_2_3_Day.Tuesday
. . .

This mapping must exist (otherwise, semantic versioning is syntactically violated) and it
allows to compare both versions of nextDay with the following property:

check_Day_nextDay :: V_1_2_4_Day.Weekday → Prop
check_Day_nextDay x = t_Weekday (V_1_2_4_Day.nextDay x)

<~> V_1_2_3_Day.nextDay (t_Weekday x)

If our second assumption (termination of the operations to be compared) is not satisfied,
the behavior checker might not terminate. Obviously, this should be avoided. Therefore,
we analyze the operations to be compared before the comparison properties are generated.
As a simple approach, one can approximate the termination behavior of these operations,
e.g., by comparing the argument sizes in recursive calls [22]. For this purpose, we used
the Curry analysis framework CASS [18] to implement a simple termination analysis which
checks the arguments of direct recursive calls of an operation. If all these calls contain at
least one syntactically smaller argument (since we consider only algebraic data types for this
purpose, there are no infinite chains of size-decreasing values) and all dependent operations
are terminating, the operation is classified as terminating. We can use this analysis to
check only those operations which are definitely terminating and emit warnings about the
remaining unchecked operations. Although there are many opportunities to improve the
termination analyzer, it can only approximate the termination property. Therefore, CPM
also accepts specific pragmas where the programmer can annotate operations as terminating.
For instance, CPM will consider the following operation as terminating and, thus, includes it
in semantic versioning checking:

{-# TERMINATE -#}
mcCarthy :: Int → Int
mcCarthy n = if n<=100 then mcCarthy (mcCarthy (n+11))

else n-10

Although this is reasonable to increase the number of operations considered in semantic
versioning checking, an important class of operations is still excluded: operations that are
intentionally non-terminating since they generate infinite data structures. A method to check

ICLP 2017 TCs

XX:8 Semantic Versioning Checking in a Declarative Package Manager

such operations will be presented in the next section.

6 Checking Non-terminating Operations

It is well known that lazy evaluation is a useful programming feature to increase modularity
by separating producers and consumers of data [20]. Typically, data producers are operations
which generate infinite structures, like the following operations which generate infinite lists
of ascending integers starting from the argument:

ints :: Int → [Int] ints2 :: Int → [Int]
ints n = n : ints (n+1) ints2 n = n : ints2 (n+2)

Although these operations compute infinite lists of a different shape, this difference cannot
be detected by the property

checkInts x = ints x <~> ints2 x

due to its non-termination. Since such operations are actually used in non-strict languages,
semantic versioning checking should be supported for them in some way.

How can we state that ints and ints2 have a different behavior? If we consider the
computed result equivalence of operations introduced in Sect. 1, there is no difference since
neither ints nor ints2 evaluate to some value (an expression without operation symbols).
Therefore, a simple strategy like running CurryCheck with a time limit would not show any
difference in the values computed by ints nor ints2. We need another way to compare the
behavior of these operations. Thus, we use a more general notion of equivalence of operations
in non-strict functional logic languages proposed in [7], also called “contextual equivalence”
in [9]. It expresses the idea that two operations are equivalent if they can be replaced by
each other in any context without changing the produced values.

I Definition 2 (Equivalent operations [7]). Let f1, f2 be operations of the same type. f1 is
equivalent to f2 iff, for any expression E1 and value v, E1 evaluates to v iff E2 evaluates to
v, where E2 is obtained from E1 by replacing any occurrence of f1 with f2.

Since equivalence in this sense implies computed result equivalence, counter-examples found
by the method introduced in Sect. 5 are also counter-examples to the equivalence of operations.
Moreover, ints and ints2 are not equivalent w.r.t. Def. 2: head (tail (ints 0)) evaluates to
1 but head (tail (ints2 0)) evaluates to 2. To detect such differences, we put the operations
into some context where only a finite outermost part is computed. In our example, we
define an operation that limits the length of a list. Since the length should be limited with
non-negative numbers, we define Peano numbers with the constructors Z(ero) and S(uccessor):

data Nat = Z | S Nat

We limit potentially infinite lists to some length provided as a Nat argument:
limitList :: Nat → [Int] → [Int]
limitList Z _ = []
limitList (S n) [] = []
limitList (S n) (x:xs) = x : limitList n xs

Now we can check the observable equivalence of ints and ints2 by the following property:
limitCheckInts n x = limitList n (ints x) <~> limitList n (ints2 x)

CurryCheck finds a counter-example for the input arguments n=(S (S Z)) and x=1.
Since the list length limit is an input parameter to the property, this property is sufficient

to detect observable differences between such infinite lists. A formal result about the

M. Hanus XX:9

soundness and completeness of limited property checking will be presented below. Before we
have to discuss some conditions required for this method.

In order to ensure the termination of property checking, a depth restriction is not sufficient
in general. For instance, when checking the equivalence of the operations

loop n = loop (n+1) loop2 n = loop2 (n+2)

a depth limit would not avoid the non-terminating evaluations of loop and loop2. This is
due to the fact that the evaluation of these operations do not produce a constructor-rooted
term after finitely many steps. To exclude this kind of operations, we define the class of
productive operations (for the sake of simplicity, we consider unary operations only, but all
definitions and results can be extended to operations with more than one argument):

I Definition 3 (Productive operations). An operation f is called root-productive if, for all
values t, there is no infinite derivation

f t → e1 → e2 → · · ·

where each ei is operation-rooted. An operation f is called productive if it is root-productive
and, for all values t and derivations f t ∗→ e, all operations in e are productive.

For instance, loop and loop2 are not productive whereas ints and ints2 are productive (re-
member that “→” denotes the outermost reduction relation of Curry). Obviously, terminating
operations are productive but not vice versa.

If all operations in an expression are productive and we limit the result depth of evaluating
this expression, as done in the property limitCheckInts above, all evaluations are terminating.
Thus, if we restrict semantic versioning checking to productive operations and limit the depth
of the results, it is always terminating. To formalize this method, we define a limit operation
for some data type τ as follows (for the sake of simplicity, we consider monomorphic data
types here; the extension to polymorphic type constructors will be discussed later):

I Definition 4 (Limit operation). Let τ be some type defined by
data τ = C1 τ11 . . . τ1n1 | . . . | Ck τk1 . . . τknk

Then the limit operation for type τ is defined as follows:
limitτ :: Nat → τ → τ

limitτ Z _ = cτ -- cτ is some ground value of type τ

limitτ (S n) (C1 x1 . . . xn1) = C1 (limitτ11 n x1) . . . (limitτ1n1 n xn1)
. . .

limitτ (S n) (Ck x1 . . . xnk) = Ck (limitτk1 n x1) . . . (limitτknk n xnk)

The operation limitList defined above is an example of a limit operation for lists of integers.
The definition assumes that there is always a ground value cτ (i.e., a constructor term without
variables like a constant) of type τ . This assumption might not be satisfied for data types
that do not have finite values, as

data ByteStream = Cons Byte ByteStream

In this case, there is no ground value which can be used as a result of limitByteStream Z _.
However, we could extend this data type with a new constant

data ByteStream = Cons Byte ByteStream | EmptyByteStream

and define
limitByteStream Z _ = EmptyByteStream

ICLP 2017 TCs

XX:10 Semantic Versioning Checking in a Declarative Package Manager

Note that this data type extension is similarly to the representation of failures when compiling
functional logic programs into purely functional programs [10] so that it does not change the
set of computed values.

The termination of semantic versioning checking with limit operations for productive
operations is a consequence of the following result:

I Proposition 1. Let limitτ be a limit operation, n some Nat value, and e an expression of
type τ which contains only productive operations. Then all derivations of (limitτ n e) are
finite.

Now we can state the soundness and completeness of checking the equivalence of operations
with limit operations. Soundness means that every counter-example found by limited
equivalence checking shows that the considered operations are not equivalent:

I Proposition 2 (Soundness of limited equivalence checking). Let f1 and f2 be operations of
type τ → τ ′ and limitτ ′ be a limit operation for type τ ′. If there are values n, x, y such that
limitτ ′ n (f1 x) evaluates to y but limitτ ′ n (f2 x) does not evaluate to y, then f1 and f2 are
not equivalent.

Completeness of equivalence checking with limit operations means that one can always find
a counter-example for non-equivalent operations (if we search long enough for appropriate
inputs). However, this is not the case in general due to partially defined operations. For
instance, consider a slightly modified variant of the ints operations where the generated lists
also include elements head [] whose evaluation leads to a failure:

fints n = head [] : n : fints (n+1) fints2 n = head [] : n : fints2 (n+2)

Since the evaluation of (limitList n fints) fails and does not produce any value for non-zero
n, a counter-example to the equivalence of fints and fints2 is not generated. Fortunately,
generators of infinite structures are in practical programs totally defined, i.e., reducible on
all ground constructor terms. For such operations, completeness is ensured:

I Proposition 3 (Completeness of limited equivalence checking). Let f1 and f2 be totally
defined operations of type τ → τ ′ and limitτ ′ be a limit operation for type τ ′. If f1 and f2
are not equivalent, then there are values n, x, y such that limitτ ′ n (f1 x) evaluates to y but
limitτ ′ n (f2 x) does not evaluate to y.

7 Implementation of Semantic Versioning Checking

Based on the observations discussed so far, we can construct a fully automatic tool for
semantic versioning checking as follows. Instead of comparing all operations of two versions,
which might not terminate, we consider the following operations:
1. Terminating operations: Since their evaluations are finite on all input values, one can

check their behavior on given inputs by comparing the sets of their result values (using
the property “<~>” of CurryCheck).

2. Productive operations: Since they might produce infinite data structures, their result
values cannot be fully compared. Instead, one can check their behavior on given inputs
by comparing the results obtained by applying some limit operation to them.

By Propositions 2 and 3, this is a sound and complete method for equivalence checking for
totally defined operations. The method is still applicable to partial operations but then it is
not ensured that counter-examples are found. On the other hand, every implementation has
to limit the number of test inputs to a finite set. Therefore, the theoretical incompleteness of
property testing for partially defined operation does not cause a problem in practice.

M. Hanus XX:11

From a practical point of view, it is more relevant to ensure the termination of the
checking tool. This requires to approximate the termination and productivity properties of
operations and the generation of limit operations for data types. First, we consider the latter
(easier) requirement.

We have already seen the definition of limit operations for monomorphic types like list of
integers. This scheme can be extended to polymorphic data types: in this case, we pass limit
operations for the polymorphic argument types which are applied to polymorphic arguments.
For instance, a limit operation for polymorphic lists can be defined as follows:

limitList :: (Nat → a → a) → Nat → [a] → [a]
limitList la Z _ = []
limitList la (S n) [] = []
limitList la (S n) (x:xs) = la n x : limitList la n xs

CPM generates limit operations according to this scheme for all result types of productive
operations.

Since termination and productivity are undecidable properties, we approximate these
properties with a program analysis and use the Curry analysis framework CASS [18] to
implement this analysis. For termination, the size-change principle [22] is a reasonable
framework. We implemented only a simplified version of it where all directly recursive
calls must have decreasing arguments. Although this is not as powerful as the general
framework, it is a good starting to implement our approach. Of course, one can make the
termination analysis more precise by implementing sophisticated termination methods or
use, if free variables occur in right-hand sides, specific termination methods for functional
logic programming [23].

The approximation of productivity is less explored than termination. A notion of
productivity has been investigated in the area of term rewriting systems (TRSs), e.g., [13, 30].
However, the focus is different there. Productivity in TRS means that there is some reduction
sequence that produces an outermost constructor in finitely many steps, whereas productivity
in our sense means that all outermost reduction sequences cannot go on forever without
producing outermost constructors, which is important to ensure the termination of our
checking procedure (see Prop. 1). This difference becomes relevant for non-deterministic
computations where it is not sufficient for our purpose that some computation branch
produces constructors. Furthermore, terminating operations are always productive in our
sense.

We approximate productivity by considering the top-level operation calls (tlo) of some
operation. For each operation f , the set tlo(f) is defined by (we denote by o a sequence of
objects o1 . . . on):

tlo(f) = {g | ∃ values t, s and some derivation f t ∗→ g s}

Similarly, we define the set tlc(f) of top-level calls inside constructors as all operations
occurring outermost in a constructor derived from a call to f . For instance, tlo(ints) = {}
and tlc(ints) = {ints}. These sets can be over-approximated by a fixpoint computation on
the program rules. Then we classify an operation f as productive if
1. f 6∈ tlo(f),
2. all operations in tlo(f) and tlc(f) are productive, and
3. all other operations which might occur in derivations of f are terminating.
Hence, the operation ints is productive (note that no other operation occur in a derivation
of ints) whereas loop is not productive (since it violates the first requirement). Productive
operations occurring in arguments of other operations lead to non-productive operations. To

ICLP 2017 TCs

XX:12 Semantic Versioning Checking in a Declarative Package Manager

understand this strong requirement, consider the following operation (the standard operation
filter removes all elements in the second argument list which do not satisfy the predicate
provided in the first argument):

natsWith p = filter p (ints 0)

Although ints is productive, the productivity of natsWith depends on the value of its argument:
if the argument is the predicate (>0), it always produces outermost constructors, but if the
argument is the predicate (<0), it loops without producing any constructor. One might
improve our weak but safe approximation for particular cases, but our current approximation
is still useful in practice. If this approximation does not classify an operation as productive,
the package developer can add a pragma to tell CPM that an operation is productive. For
instance, one can compute the list of all prime numbers by the sieve of Eratosthenes, but
the productivity depends on the fact that there are infinitely many prime numbers. Hence,
Euclid would add the following pragma:

{-# PRODUCTIVE -#}
primes = sieve (ints 2)

where sieve (p:xs) = p : sieve (filter (\x → mod x p > 0) xs)

The effectiveness of the termination and productivity analysis depends on the programs
under consideration. In order to evaluate our approach, we applied our analysis to the
largest library available in Curry distributions: the standard prelude which contains the
definitions of operations that are available to any Curry program. The prelude defines 126
operations (plus 30 I/O actions which are excluded from automated property checking due
to the problem of guessing appropriate input values like file names, see also [17]). Our
analysis shows that 112 operations are terminating, 11 operations are productive, and the
remaining three operations might be non-terminating so that they should not be checked. A
closer look at the latter operations shows that one operation is actually non-terminating (the
prelude operation until which implements a loop which might not terminate), whereas two
other are actually terminating but use other productive operations so that their termination
cannot be shown by our criteria. Nevertheless, the precision is encouraging and there are
non-terminating but productive operations that can be checked thanks to our techniques.

Note that our approach to equivalence checking for non-terminating operations is also
applicable to non-deterministic operations. For instance, if we define lists of ascending
integers in a non-deterministic manner by

ndints n = n : (ndints (n+1) ? (n+1) : ndints (n+2))

then our check with limit operations succeeds: although ndints non-deterministically evaluates
to several infinite lists, all of them are identical to the list computed by ints.

The inclusion of non-determinism is relevant for packages that use logic programming
features. Apart from this, it is also useful to support specification-based software development
as discussed in the following section.

If a previous version of the package contains a bug in the implementation of some
operation, it is meaningless to compare the operation of the current version against the
previous version. For this purpose, there is a pragma to tell CPM to drop the checking of
some operation:

{-# NOCOMPARE -#}
f . . . = . . . code with bug fixes. . .

If the current version is accepted to the CPM repository, this annotation should be removed.

M. Hanus XX:13

8 Specification-based Software Development

The advantage of using functional logic languages like Curry as a wide-spectrum language for
software development is discussed in [7]. There it is shown that functional logic programming
features are useful to write comprehensive, executable specifications as well as more efficient
implementations. Since specifications as well as implementations are written in the same
language, specifications can be used as run-time assertions for implementations or their
equivalence can be statically checked by property testing [17]. For this purpose, [7] proposed
to define the specification of some operation f by some operation with the name f’spec.
CurryCheck uses this name convention for generating and testing equivalence properties.

With the use of packages, one can structure this development process even better. The
idea is to write the specification of the operations to be developed in a first version of a
package, i.e., the package n.0.0 (where n is a major version number) contains the specification.
For instance, if we want to develop a package sort with sorting operations, we could define a
specification of sorting a list in version 1.0.0 by

sort (xs++[x,y]++ys) | x>y = sort (xs++[y,x]++ys)
sort’default xs = xs

In the first rule, a functional pattern is used to select some arbitrary pair of elements that
are swapped to improve the ordering of the list. The second default rule [8] is applicable
when the first rule cannot be applied, i.e., when all elements are in the correct order.

Note that this specification is non-deterministic, i.e., its execution might return a sorted
list more than one time. However, this is not relevant if we use it for semantic versioning
checking since there we compare the result sets of two versions of an operation. Thus, if
we implement a deterministic and more efficient sorting operation in version 1.0.1 of the
package sort, we can use the semantic versioning checker to automatically test the new
implementation against its specification.

9 Conclusions and Related Work

We have presented, to the best of our knowledge, the first semantic versioning checker that
is integrated in a software package manager. In order to make the checking process fully
automatic, it is necessary to ensure the termination of the checker. Therefore, the checker
analyzes the termination and productivity behavior of all operations and generates appropriate
properties that will be tested by CurryCheck. With these methods, most operations can be
automatically checked, even operations which produce infinite data structures. Since the
checker can only approximate the run-time behavior of operations, a package developer can
also insert annotations to increase the number of checked operations.

We developed this framework for the functional logic programming language Curry, but
most of the ideas can also be transferred to other declarative (purely functional or purely logic)
languages. Nevertheless, the use of Curry also supports the specification-based development
of software since specifications can often be adequately expressed in a non-deterministic way.

Although semantic versioning is recommended in many package managers and used in
software projects, there are almost no tools to help the developer to check semantic properties
of different package versions. An exception is the Elm package manager5 which performs
semantic versioning checks based on purely syntactic API comparisons. Thus, it can not

5 http://elm-lang.org/

ICLP 2017 TCs

http://elm-lang.org/

XX:14 Semantic Versioning Checking in a Declarative Package Manager

detect semantic differences when API types are unchanged, like replacing a decrement by an
increment operation.

We have demonstrated that declarative programming in combination with property testing
tools is a good basis for this task. Hence, all kinds of languages with property testing tools are
appropriate for this technique, e.g., Haskell with QuickCheck [12], Prolog with PrologCheck
[2], or Erlang with PropEr [26]. For a fully automatic tool that can be integrated into the
infrastructure of package managers, it is important to ensure the termination of the checking
process. For this purpose, one needs methods to ensure the termination of the programs
under consideration. For non-strict languages, one should also provide methods to compare
operations which produce infinite structures. For this purpose, we defined the notion of
productive operations and a method to approximate this property. One can find similar
notions in term rewriting systems (e.g., [30, 13]) but with a slightly different focus.

For future work, we plan to integrate better techniques for termination checking, since
this would enlarge the class of checked operations. Furthermore, it would be interesting to
add methods for equivalence checking without property testing. An obvious method is to
check the structural equivalence of program code. This is useful for operations which are
unchanged or only reformatted in two versions of a package. One might also use an abstract
semantics to infer equivalences in functional logic programs, as done in [9]. Another idea is
to combine property testing with theorem proving to develop and store proofs of properties.
Initial ideas are supported by CurryCheck [17] but their integration for semantic versioning
checking has to be explored.

References
1 E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational semantics for declarative

multi-paradigm languages. Journal of Symbolic Computation, 40(1):795–829, 2005.
2 C. Amaral, M. Florido, and V. Santos Costa. PrologCheck - property-based testing in

Prolog. In Proc. of the 12th International Symposium on Functional and Logic Porgram-
ming (FLOPS 2014), pages 1–17. Springer LNCS 8475, 2014. doi:http://dx.doi.org/
10.1007/978-3-319-07151-0_1.

3 S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of the ACM,
47(4):776–822, 2000. doi:http://dx.doi.org/10.1145/347476.347484.

4 S. Antoy and M. Hanus. Declarative programming with function patterns. In Proceedings of
the International Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’05), pages 6–22. Springer LNCS 3901, 2005.

5 S. Antoy and M. Hanus. Set functions for functional logic programming. In Proceed-
ings of the 11th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming (PPDP’09), pages 73–82. ACM Press, 2009. doi:http:
//doi.acm.org/10.1145/1599410.1599420.

6 S. Antoy and M. Hanus. Functional logic programming. Communications of the ACM,
53(4):74–85, 2010. doi:http://dx.doi.org/10.1145/1721654.1721675.

7 S. Antoy and M. Hanus. Contracts and specifications for functional logic programming. In
Proc. of the 14th International Symposium on Practical Aspects of Declarative Languages
(PADL 2012), pages 33–47. Springer LNCS 7149, 2012. doi:http://dx.doi.org/10.1007/
978-3-642-27694-1_4.

8 S. Antoy and M. Hanus. Default rules for Curry. Theory and Practice of Logic Programming,
17(2):121–147, 2017. doi:10.1017/S1471068416000168.

9 G. Bacci, M. Comini, M.A. Feliú, and A. Villanueva. Automatic synthesis of specifications
for first order Curry. In Principles and Practice of Declarative Programming (PPDP’12),
pages 25–34. ACM Press, 2012. doi:10.1145/2370776.2370781.

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-319-07151-0_1
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-319-07151-0_1
http://dx.doi.org/http://dx.doi.org/10.1145/347476.347484
http://dx.doi.org/http://doi.acm.org/10.1145/1599410.1599420
http://dx.doi.org/http://doi.acm.org/10.1145/1599410.1599420
http://dx.doi.org/http://dx.doi.org/10.1145/1721654.1721675
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-27694-1_4
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-27694-1_4
http://dx.doi.org/10.1017/S1471068416000168
http://dx.doi.org/10.1145/2370776.2370781

M. Hanus XX:15

10 B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new compiler from Curry
to Haskell. In Proc. of the 20th International Workshop on Functional and (Constraint)
Logic Programming (WFLP 2011), pages 1–18. Springer LNCS 6816, 2011. doi:http:
//dx.doi.org/10.1007/978-3-642-22531-4_1.

11 J. Christiansen and S. Fischer. EasyCheck - test data for free. In Proc. of the 9th Inter-
national Symposium on Functional and Logic Programming (FLOPS 2008), pages 322–336.
Springer LNCS 4989, 2008.

12 K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random testing of Haskell
programs. In International Conference on Functional Programming (ICFP’00), pages 268–
279. ACM Press, 2000.

13 J. Endrullis and D. Hendriks. Lazy productivity via termination. Theoretical Computer
Science, 412(28):3203–3225, 2011. doi:10.1016/j.tcs.2011.03.024.

14 J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and M. Rodríguez-
Artalejo. An approach to declarative programming based on a rewriting logic. Journal of
Logic Programming, 40:47–87, 1999.

15 M. Hanus. Declarative processing of semistructured web data. In Technical Commu-
nications of the 27th International Conference on Logic Programming, volume 11, pages
198–208. Leibniz International Proceedings in Informatics (LIPIcs), 2011. doi:http:
//dx.doi.org/10.4230/LIPIcs.ICLP.2011.198.

16 M. Hanus. Functional logic programming: From theory to Curry. In Programming Logics
- Essays in Memory of Harald Ganzinger, pages 123–168. Springer LNCS 7797, 2013. doi:
10.1007/978-3-642-37651-1_6.

17 M. Hanus. CurryCheck: Checking properties of Curry programs. In Proceedings of the 26th
International Symposium on Logic-Based Program Synthesis and Transformation (LOP-
STR 2016). Springer LNCS 10184, 2016.

18 M. Hanus and F. Skrlac. A modular and generic analysis server system for functional
logic programs. In Proc. of the ACM SIGPLAN 2014 Workshop on Partial Evaluation and
Program Manipulation (PEPM’14), pages 181–188. ACM Press, 2014. doi:http://doi.
acm.org/10.1145/2543728.2543744.

19 M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Available at
http://www.curry-language.org, 2016.

20 J. Hughes. Why functional programming matters. In D.A. Turner, editor, Research Topics
in Functional Programming, pages 17–42. Addison Wesley, 1990.

21 P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic automated soft-
ware testing. In Proc. of the 14th International Workshop on Implementation of Functional
Languages, pages 84–100. Springer LNCS 2670, 2003.

22 C.S. Lee, N.D. Jones, and A.M. Ben-Amram. The size-change principle for program ter-
mination. In ACM Symposium on Principles of Programming Languages (POPL’01), pages
81–92, 2001.

23 N. Nishida and G. Vidal. Termination of narrowing via termination of rewriting. Applicable
Algebra in Engineering, Communication and Computing, 21(3):177–225, 2010. doi:10.
1007/s00200-010-0122-4.

24 T. Nordin and A.P. Tolmach. Modular lazy search for constraint satisfaction prob-
lems. Journal of Functional Programming, 11(5):557–587, 2001. doi:10.1017/
S0956796801004051.

25 J. Oberschweiber. A package manager for Curry. Master’s thesis, University of Kiel, 2016.
26 M. Papadakis and K. Sagonas. A PropEr integration of types and function specifications

with property-based testing. In Proc. of the 10th ACM SIGPLAN Workshop on Erlang,
pages 39–50, 2011. doi:http://doi.acm.org/10.1145/2034654.2034663.

ICLP 2017 TCs

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-22531-4_1
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-22531-4_1
http://dx.doi.org/10.1016/j.tcs.2011.03.024
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.198
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.198
http://dx.doi.org/10.1007/978-3-642-37651-1_6
http://dx.doi.org/10.1007/978-3-642-37651-1_6
http://dx.doi.org/http://doi.acm.org/10.1145/2543728.2543744
http://dx.doi.org/http://doi.acm.org/10.1145/2543728.2543744
http://www.curry-language.org
http://dx.doi.org/10.1007/s00200-010-0122-4
http://dx.doi.org/10.1007/s00200-010-0122-4
http://dx.doi.org/10.1017/S0956796801004051
http://dx.doi.org/10.1017/S0956796801004051
http://dx.doi.org/http://doi.acm.org/10.1145/2034654.2034663

XX:16 Semantic Versioning Checking in a Declarative Package Manager

27 S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report. Cam-
bridge University Press, 2003.

28 U.S. Reddy. Narrowing as the operational semantics of functional languages. In Proc. IEEE
Internat. Symposium on Logic Programming, pages 138–151, Boston, 1985.

29 C. Runciman, M. Naylor, and F. Lindblad. SmallCheck and Lazy SmallCheck: automatic
exhaustive testing for small values. In Proc. of the 1st ACM SIGPLAN Symposium on
Haskell, pages 37–48. ACM Press, 2008.

30 H. Zantema and M. Raffelsieper. Proving productivity in infinite data structures. In
Proc. 21st International Conference on Rewriting Techniques and Applications (RTA 2010),
volume 6 of LIPIcs, pages 401–416. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2010. doi:10.4230/LIPIcs.RTA.2010.401.

http://dx.doi.org/10.4230/LIPIcs.RTA.2010.401

	Motivation
	Functional Logic Programming and Curry
	Property-based Testing and CurryCheck
	CPM: The Curry Package Manager
	Semantic Versioning Checking
	Checking Non-terminating Operations
	Implementation of Semantic Versioning Checking
	Specification-based Software Development
	Conclusions and Related Work

