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Abstra
t

We introdu
e novel, sound, 
omplete, and lo
ally optimal evaluation strategies

for fun
tional logi
 programming languages. Our strategies 
ombine, in a

non-trivial way, two landmark te
hniques in this area: the 
omputation of

uni�ers performed by needed narrowing in indu
tively sequential rewrite sys-

tems and the simultaneous redu
tion of a ne
essary set of redexes performed

by rewriting in weakly orthogonal, 
onstru
tor-based rewrite systems. First,

we de�ne a sequential strategy similar in s
ope to other narrowing strategies

used in modern lazy fun
tional logi
 languages. Then, based on the sequential

strategy, we de�ne a parallel narrowing strategy that has several noteworthy


hara
teristi
s: it is the �rst 
omplete narrowing strategy whi
h evaluates

ground expressions in a fully deterministi
, optimal way; it 
omputes shortest

derivations and minimal sets of solutions on indu
tively sequential rewrite sys-

tems; and when 
ombined with term simpli�
ation, it subsumes and improves

all re
ently developed optimizations of narrowing for overlapping rewrite rules.

1 Introdu
tion

The interest in integrating fun
tional and logi
 programming has grown over

the last de
ade, sin
e the languages resulting from this integration are ex-

pe
ted to have advantages of both paradigms. Most proposals with a sound

and 
omplete operational semanti
s for the integration of fun
tional and logi


programming languages (see [10℄ for a re
ent survey) are based on narrowing.

Narrowing solves equations by 
omputing uni�ers with respe
t to an equa-

tional theory. Informally, narrowing uni�es a term with the left-hand side of

a rewrite rule and �res the rule on the instantiated term.

Example 1 Consider the following rewrite rules de�ning the addition for

natural numbers, whi
h are represented by terms built with 0 and s:

0 +X ! X R

1

s(X) + Y ! s(X + Y ) R

2

To narrow the equation Z+s(0) � s(s(0)), rule R

2

is applied by instantiating

Z to s(X). To narrow the resulting equation, s(X + s(0)) � s(s(0)), R

1

is

1



applied by instantiating X to 0. The resulting equation, s(s(0)) � s(s(0)), is

trivially true. Thus, fZ 7! s(0)g is the equation's solution.

A brute-for
e approa
h to �nding all the solutions of an equation would at-

tempt to unify ea
h rule with ea
h non-variable subterm of the given equation.

The resulting sear
h spa
e would be huge even for small programs. Thus,

many narrowing strategies for limiting the size of the sear
h spa
e have been

proposed [10℄. Re
ently, an optimal strategy for indu
tively sequential re-

write systems (e.g., the rewrite system in Example 1) has been dis
overed by

extending to narrowing landmark results in term rewriting [2℄. In this paper,

we investigate new evaluation strategies for a more general 
lass of programs,

namely those de�ned by weakly orthogonal, 
onstru
tor-based systems.

Example 2 Consider the following de�nition of Boolean disjun
tion known

as parallel-or.

X _ true ! true R

1

true _ X ! true R

2

false _ false ! false R

3

(1)

A signi�
ant di�eren
e of this system w.r.t. the previous one is the overlap-

ping of the �rst two rules. As a 
onsequen
e, a term of the form t

1

_ t

2

may

be narrowed to normal form by narrowing either t

1

or t

2

, although we do not

know of any 
riterion to make this 
hoi
e without look-ahead.

To pla
e our results in a 
ontext, we brie
y review relevant results about

rewriting strategies. O'Donnell has shown [19℄ that the parallel outermost

strategy is normalizing for almost orthogonal TRSs, hen
e for weakly ortho-

gonal, 
onstru
tor-based TRSs. In general, some redu
tions performed by this

strategy 
ould be avoided. Huet and L�evy have shown [11℄ that for the 
lass of

strongly sequential TRSs there is an e�e
tive strategy that performs only un-

avoidable redu
tions. Sekar and Ramakrishnan [21℄ have re�ned O'Donnell's

result in a di�erent dire
tion. Within the 
lass of the weakly orthogonal,


onstru
tor-based TRSs, they have shown that it is possible to minimize the

set of redexes that must be redu
ed in parallel in a term to 
ompute its nor-

mal form. The resulting strategy, similar to Huet and L�evy's, does not take

into a

ount the right hand sides of the TRS's rules, and it is optimal among

the strategies with this limitation.

To date, only one narrowing strategy generalizes a rewriting strategy.

Huet and L�evy's approa
h has been extended to narrowing for indu
tively-

sequential TRSs with 
omparable properties. The resulting strategy, 
alled

needed [2℄, performs only unavoidable steps and turns out to be optimal also

with respe
t to the 
omputed uni�ers. However, narrowing strategies for

weakly orthogonal TRSs depart radi
ally from O'Donnell's and Sekar and

Ramakrishnan's approa
hes in that they are sequential. This departure has

a major impa
t on the operational meaning of 
ompleteness of a strategy.

If a ground term t has a normal form, then both O'Donnell's and Sekar

and Ramakrishnan's strategies 
ompute the normal form of t by means of

deterministi
, parallel

1

steps. Narrowing t is equivalent to rewriting it, sin
e

1

In this 
ontext, parallel means that several, possibly di�erent redexes are simultaneously

redu
ed in a single step.
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we are assuming that t is ground. All the existing narrowing strategies that

are known to be ground 
omplete narrow t to its normal form by means

of possibly don't-know non-deterministi
, sequential steps. This notion of


ompleteness is somewhat redu
tive in the sense that the implementations of

these strategies don't know how to 
ompute the normal form of t without a

severe penalty in eÆ
ien
y. However, this need not be the 
ase for all ground

and for some non-ground terms.

The subje
t of this paper is a parallel strategy for narrowing. Our strategy

is sound and 
omplete and 
an be implemented relatively eÆ
iently by uni�
-

ation. It always 
omputes the normal form of a ground term, if there exists

one, without non-determinism and as eÆ
iently as possible under a set of

reasonable assumptions. Our strategy narrows a ne
essary set of positions,

whi
h generally 
ontains fewer than all the outermost narrowable positions of

a term. Our parallel strategy falls ba
k to the needed narrowing strategy [2℄

on the indu
tively sequential portions of a TRS, and 
onsequently is optimal

on these portions, and falls ba
k to Sekar and Ramakrishnan's strategy on the

ground terms, and 
onsequently is optimal (in a weaker sense) on the ground

portions of a 
omputation, too. Note that our parallel narrowing strategy is

not intended as a te
hnique to implement fun
tional logi
 languages on par-

allel ar
hite
tures, sin
e the parallelism is too �ne-grained. The parallelism

is mainly used to avoid some redundant non-deterministi
 
hoi
es of simpler

narrowing strategies.

The paper is organized as follows. Some preliminary de�nitions and nota-

tions are listed in the next se
tion. Se
tion 3 de�nes the weakly needed re-

writing strategy whi
h is a parallel rewriting strategy designed for the 
lass

of weakly orthogonal, 
onstru
tor-based TRSs. In Se
tion 4, we present a

sequential narrowing strategy whi
h is a natural extension of needed narrow-

ing to overlapping TRSs. We de�ne the parallel narrowing strategy and an

important improvement in Se
tions 5 and 6 and dis
uss its optimality in Se
-

tion 7. Comparison with related work is given in Se
tion 8. Due to la
k of

spa
e, some detailed de�nitions and all proofs are omitted from this paper.

A full version 
ontaining all the details 
an be found in [3℄.

2 Preliminaries

We re
all some key notions and notations about rewriting. We are 
onsistent

with the 
onventions of [5, 13℄.

Terms are 
onstru
ted w.r.t. a given many-sorted signature �. The set of

variables o

urring in a term t is denoted by Var(t). A term t is 
alled ground

if Var(t) = ?. In pra
ti
e, most fun
tional logi
 programs are 
onstru
tor-

based, i.e., symbols, 
alled 
onstru
tors, that 
onstru
t data terms are distin-

guished from those, 
alled de�ned fun
tions or operations, that operate on

data terms (see, for instan
e, the fun
tional logi
 languages ALF [8℄, BABEL

[18℄, K-LEAF [7℄, LPG [4℄). Hen
e, we assume that R is a 
onstru
tor-

based term rewriting system 
onsisting of rewrite rules l ! r, where l is a

pattern, i.e., the root of l is an operation symbol and the arguments of l do

not 
ontain any operation symbol. A term f(t

1

; : : : ; t

n

) (n � 0) is 
alled an

operation-rooted term if f is an operation.

Substitutions and uni�ers are de�ned as usual [5℄, where we writemgu(s; t)

for the most general uni�er of s and t. We write � �

V

� i� the substitutions
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� and � are renamed variants on the set V . We write t � t

0

(respe
tively,

� �

V

�

0

) i� there is a substitution � su
h that t

0

= �(t) (respe
tively, �

0

(x) =

�(�(x)) for all variables x 2 V ).

An o

urren
e or position p is a sequen
e of positive integers identifying a

subterm in a term. t

jp

denotes the subterm of t at position p, and the result

of repla
ing t

jp

with s in t is denoted by t[s℄

p

. We write p � q to denote that

the position p is a pre�x of q.

A redu
tion step is an appli
ation of a rewrite rule l ! r to the redex t

jp

,

i.e., t !

p; l!r

s if s = t[�(r)℄

p

for some substitution � with t

jp

= �(l).

�

!

denotes the transitive and re
exive 
losure of !. A term t is redu
ible to a

term s if t

�

! s. A term t is 
alled irredu
ible or in normal form if there is no

term s with t ! s. A term rewriting system R is 
alled terminating if there

are no in�nite rewrite derivations w.r.t. R.

Rewriting is 
omputing the value of a fun
tional expression, i.e., its normal

form obtained by rewriting. Fun
tional logi
 programs 
ompute with partial

information, i.e., a fun
tional expression may 
ontain logi
 variables. The goal

is to 
ompute values for these variables su
h that the expression is evaluable

to a parti
ular normal form, e.g., a 
onstru
tor term [4, 7, 18℄. This is done

by narrowing. A term t is narrowable to a term s if there exist a non-variable

position p in t (i.e., t

jp

is not a variable), a variant l ! r of a rewrite rule

in R with Var(t) \ Var(l ! r) = ? and a uni�er � of t

jp

and l su
h that

s = �(t[r℄

p

). In this 
ase we write t ;

p; l!r;�

s, where p and l ! r are

sometimes omitted. If � is a most general uni�er of t

jp

and l, the narrowing

step is 
alled most general. Sin
e the instantiation of the variables in the rule

l ! r by � is not relevant for the 
omputed result of a narrowing derivation,

we will omit this part of �.

In most papers, narrowing is intended as most general narrowing [10℄.

Most general narrowing has the advantage that most general uni�ers are

uniquely 
omputable, whereas there exist many independent uni�ers. How-

ever, as shown in [2℄, most general uni�ers must be dropped to obtain an

optimal narrowing strategy. This paper follows the same approa
h.

Narrowing is intended to solve goals, where a goal is a Boolean expression

that should be redu
ed to the 
onstant true. Thus, a substitution � is a

solution for a goal G i� �(G) is redu
ible to true. This is general enough to


over the equation solving 
apabilities of 
urrent fun
tional logi
 languages

with a lazy operational semanti
s, like BABEL [18℄ or K-LEAF [7℄, sin
e the

stri
t equality

2

� 
an be de�ned as a binary operation by a set of orthogonal

rewrite rules (see [2, 7, 18℄ for more details about stri
t equality). An import-

ant 
onsequen
e of restri
ting narrowing to goals is the fa
t that during the

su

essful rewriting of a goal the topmost symbol is always an operation or

the 
onstant true. This property will be used to simplify the presentation of

our results. Note that the evaluation of an arbitrary term t to a 
onstru
tor

normal form 
an be obtained by solving the goal t � X.

To ensure the 
on
uen
e of the rewrite relation, we also require weak

orthogonality. A term rewriting system R is weakly orthogonal if for ea
h

rule l ! r 2 R the left-hand side l does not 
ontain multiple o

urren
es

of a variable (left-linearity) and for ea
h pair of rules l ! r; l

0

! r

0

2 R,

2

The stri
t equality t � t

0

holds if t and t

0

are redu
ible to the same ground 
onstru
tor

term. Note that normal forms may not exist in general due to non-terminating rewrite rules.
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non-variable subterm l

jp

of l, and mgu � for l

jp

and l

0

, the terms �(l[r

0

℄

p

) and

�(r) are identi
al. R is almost orthogonal if it is weakly orthogonal and for

ea
h pair of rules l ! r; l

0

! r

0

2 R, the only possible non-variable subterm

of l that may unify with l

0

is l itself. Sin
e we 
onsider in the following only

Constru
tor-based, Almost orthogonal, Term rewriting systems, we write

CAT for this 
lass.

It is easy to see that for 
onstru
tor-based systems almost and weak or-

thogonality are the same 
on
ept, sin
e the left-hand sides of the rules are

patterns. The notion of des
endant, well-known for orthogonal systems [11℄, is

extended to almost orthogonal systems without diÆ
ulties. Here we provide

an intuitive de�nition as proposed in [14℄. Let t

�

! t

0

be a redu
tion sequen
e

and s a subterm of t. The des
endants of s in t

0

are 
omputed as follows:

Underline the root of s and perform the redu
tion sequen
e t

�

! t

0

. Then,

every subterm of t

0

with an underlined root is a des
endant of s. A position

u of a term t is 
alled needed i� in every redu
tion sequen
e of t to a normal

form a des
endant of t

ju

is rewritten at its root.

Example 3 Consider the rewrite rule R

3

= double(X)! X+X. The follow-

ing redu
tion of double(0+0) shows, by means of underlining, the des
endants

of 0 + 0.

double(0 + 0)!

�;R

3

(0 + 0) + (0 + 0)

The set of des
endants of position 1 by the above redu
tion is f1; 2g.

3 Weakly Needed Rewriting

For indu
tively sequential systems there exists a narrowing strategy [2℄ that

performs only steps that are needed for solving goals. This strategy is a gen-

eralization to narrowing of the sequential rewriting strategy presented in [1℄.

This sequential strategy is also the basis of a parallel rewriting strategy for

weakly orthogonal, 
onstru
tor-based rewrite systems, referred to as weakly

needed rewriting and sket
hed �rst in [1℄, that 
omputes the same redu
tion

sequen
es of [21℄, although the overall approa
h is di�erent. In this se
tion,

we reformulate the weakly needed rewriting strategy and show one important

property of this generalization. We begin with some te
hni
al de�nitions.

A de�nitional tree is a hierar
hi
al stru
ture 
ontaining the rules of a

de�ned operation of a rewrite system. The symbols rule, bran
h, and or

o

urring in the next de�nition, are uninterpreted fun
tions used to 
lassify

the nodes of the tree. A de�nitional tree 
an be seen as a partially ordered

set of patterns with some additional 
onstraints.

De�nition 1 T is a generalized de�nitional tree, or gdt, with pattern � i�

the depth of T is �nite, � is a pattern, and one of the following 
ases holds:

T = rule(l ! r); where l ! r is a variant of a rule of R with � = l.

T = bran
h(�; o; T

1

; : : : ;T

k

); where o is an o

urren
e of a variable in �,




1

; : : : ; 


k

are di�erent 
onstru
tors of the sort of �

jo

, for some k > 0,

and, for all j in f1; : : : ; kg, T

j

is a gdt with pattern �[


j

(X

1

; : : : ;X

n

)℄

o

,

where n is the arity of 


j

and X

1

; : : : ;X

n

are new variables.

T = or(T

1

; : : : ;T

k

); where k > 1 and ea
h T

j

is a gdt with pattern �.

5



X

1

_X

2

X

1

_X

2

true _X

2

true

false _X

2

X

1

_X

2

X

1

_ true

true

X

1

_ false

false _ false false _ false

false false

Figure 1: Pi
torial representation of a parallel de�nitional tree of the operation

parallel-or de�ned in display (1). The bran
h variables in the patterns of bran
h

nodes are underlined. Or-ed bran
hes are joined by an ar
.

In the remainder of the paper, we will use the notation pattern(T ) to denote

the pattern argument of a gdt T .

Let R be a rewrite system. T is a gdt of an operation f i� T is a gdt su
h

that pattern(T ) = f(X

1

; : : : ;X

n

), where n is the arity of f and X

1

; : : : ;X

n

are new distin
t variables, and for every rule l ! r of R with l = f(t

1

; : : : ; t

n

)

there exists a leaf rule(l

0

! r

0

) of T su
h that l is a variant of l

0

.

A generalized de�nitional tree T is 
alled parallel de�nitional tree, abbre-

viated pdt , i� in every node or(T

1

; : : : ;T

k

) every T

j

has a bran
h node at the

top, where these bran
h nodes 
ontain pairwise di�erent positions.

A de�nitional tree is a generalized de�nitional tree without or-nodes.

3

Figure 1 pi
torially represents the parallel de�nitional tree of the rules of the

parallel-or shown in Example 2. It is easy to see that a generalized de�nitional

tree exists for ea
h operation. A parallel de�nitional tree may not exist if the

rewrite system 
ontains useless rules, i.e., rules that are instan
es of another

rule. By eliminating all the useless rules from a rewrite system R, every

operation of the resulting system has a parallel de�nitional tree whi
h 
an be

e�e
tively 
onstru
ted [1, Th. 19℄. Moreover, the rewrite relation and the set

of solutions is not 
hanged by this elimination. From now on, we assume that

every rewrite system that we are dealing with has no useless rules.

A parallel de�nitional tree may be de
omposed into a set of sequen-

tial 
omponents ea
h of whi
h is a (sequential) de�nitional tree. If T =

rule(l ! r), then T itself is the only sequential 
omponent of T . If

T = bran
h(�; o; T

1

; : : : ;T

k

), then bran
h(�; o; T

0

1

; : : : ; T

0

k

) is a sequential


omponent of T for all sequential 
omponents T

0

j

of T

j

, j = 1; : : : ; k. If

T = or(T

1

; : : : ;T

k

), then, for all sequential 
omponents T

0

of T

j

, T

0

is a

sequential 
omponent of T .

Below, we re
all the de�nition of needed rewriting. Needed rewriting

is a strategy for indu
tively sequential systems, i.e., rewrite systems where

ea
h fun
tion has a de�nitional tree. Loosely speaking, the rewriting (and

narrowing) strategies presented in this paper are obtained by breaking up

3

This 
orresponds to the de�nition given in [2℄ ex
ept that we ignore the exempt nodes.
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X

1

_X

2

true _X

2

true

false _X

2

X

1

_X

2

X

1

_ true

true

X

1

_ false

false _ false false _ false

false false

Figure 2: Pi
torial representation of the sequential 
omponents of the parallel de�n-

itional tree of the operation parallel-or de�ned in display (1). Ea
h 
omponent is a

sequential de�nitional tree and is obtained by taking one distin
t subtree of the or

node at the root in Fig. 1.

a CAT into its indu
tively sequential 
omponents, applying needed rewriting

(or narrowing) to ea
h 
omponent, and 
ombining together the results of ea
h

appli
ation.

The needed rewriting strategy is implemented by a fun
tion, ', that takes

two arguments, an operation-rooted term, t, and a de�nitional tree, T , of the

root of t. Throughout an interleaved des
ent down both t and T , ' 
omputes,

whenever possible, a position p and a rule R su
h that t must be redu
ed at

p, using rule R, to 
ompute its 
onstru
tor normal form.

De�nition 2 The partial fun
tion ' takes two arguments, an operation-

rooted term t and a de�nitional tree T su
h that pattern(T ) � t. If '(t; T )

is de�ned, it yields a pair, (p;R), where p is a position of t and R is a rewrite

rule appli
able to t at p. The fun
tion ' is de�ned re
ursively as follows

'(t; T ) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(�; R) if T = rule(R);

'(t; T

i

) if T = bran
h(�; o; T

1

; : : : ; T

k

) and

pattern(T

i

) � t, for some i;

(o � p;R) if T = bran
h(�; o; T

1

; : : : ; T

k

), t

jo

is operation-

rooted, T

0

is a de�nitional tree of the root of

t

jo

, and '(t

jo

;T

0

) = (p;R).

In order to extend the strategy ' to CATs, we apply ' to all the sequential


omponents of a pdt and sele
t the disjoint outermost positions from all 
om-

puted positions. This strategy is denoted by �'. The weakly needed rewriting

strategy redu
es all redexes at positions 
omputed by �' in parallel.

Example 4 Consider the rewrite system of Example 2 and the term t =

(true_(true_true))_(X_(false_false). The weakly needed rewrite derivation


omputed by �' is

t!

(1;R

2

);(2�2;R

3

)

true _ (X _ false)!

(�;R

2

)

true

The following theorem shows that �rst, unless we perform at least one re-

du
tion step 
omputed by �' we 
annot obtain the normal form and se
ond,

that if we perform all the steps 
omputed by �' we do obtain the normal form

(whenever it is a 
onstru
tor term) of a goal.

7



Theorem 1 Let R be a CAT, and G a goal whi
h is redu
ible to `true'.

1. Every strategy normalizing G must redu
e a des
endant of G at some pos-

ition 
omputed by �'.

2. A strategy S that redu
es the des
endants of the redexes 
omputed in G by

�' is normalizing.

Thus, �' 
omputes a ne
essary set of redexes in the sense of [21℄, although

the way in whi
h the set is 
omputed, i.e. by means of ', is quite di�erent.

We de�ne in the next se
tion a generalization of ', �, that simultaneously


omputes both a redex and a uni�er. This allows us to generalize to narrowing

the results of [21℄ on rewriting.

4 Weakly Needed Narrowing

In this se
tion we study our �rst narrowing strategy for CATs. This strategy

is sequential and 
ould be seen as a natural extension to overlapping TRSs

of needed narrowing [2℄. In order to de�ne the narrowing steps, we use the

sequential 
omponents of a parallel de�nitional tree. Loosely speaking, we

apply the needed narrowing strategy � (de�ned in [2℄ and re
alled below)

to all the sequential 
omponents of a pdt and 
ombine the results together.

Sin
e � 
omputes optimal narrowing derivations for indu
tively sequential

programs, our strategy is a 
onservative extension of an optimal strategy.

De�nition 3 The fun
tion � takes two arguments, an operation-rooted term

t and a de�nitional tree T su
h that pattern(T ) and t unify. The fun
tion �

yields a set of triples of the form (p;R; �), where p is a position of t, R is a

rewrite rule, l ! r, of R and � is a uni�er of l and t

jp

. Thus, let t be a term

and T a de�nitional tree in the domain of �. The fun
tion � is de�ned to

yield least sets of triples satisfying the following 
onditions.

�(t; T ) �

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

f(�; l ! r;mgu(t; l))g if T = rule(l ! r);

�(t; T

i

) if T = bran
h(�; o; T

1

; : : : ; T

k

),

t and pattern(T

i

) unify, for some i;

f(o � p;R; � Æ �)g if T = bran
h(�; o; T

1

; : : : ; T

k

),

t

jo

is operation-rooted, � = mgu(t; �),

T

0

is a de�nitional tree of the root of

�(t

jo

), and (p;R; �) 2 �(�(t

jo

);T

0

).

If (p; l ! r; �) 2 �(t; T ), then t ;

p; l!r;�

�(t[r℄

p

) is a narrowing step. As

in proof pro
edures for logi
 programming, we have to apply variants of the

rewrite rules with fresh variables at ea
h narrowing step, i.e., the de�nitional

trees always 
ontain new variables if they are used in a narrowing step.

De�nition 4 The fun
tion

�

� takes two arguments, an operation-rooted term

t and a pdt T su
h that pattern(T ) and t unify. Then,

�

� is de�ned by

�

�(t; T ) = f(p;R; �) 2 �(t; T

0

) j T

0

is a sequential 
omponent of T g

We 
all weakly needed any narrowing step t;

p;R;�

t

0

with (p;R; �) 2

�

�(t; T ).

Weakly needed narrowing is almost identi
al to the demand driven narrowing

strategy proposed in [16℄. However, soundness and 
ompleteness results are

not provided in [16℄.

8



Example 5 Consider Example 2 with the additional rule R

4

= f(a)! true

and the term t = f(X) _ f(X). Let T denote the parallel de�nitional tree

of \_" pi
torially represented in Fig. 1. The sequential 
omponents of T are

pi
torially represented in Fig. 2. A

ording to De�nition 4,

�

�(t; T ) is

f(1;R

4

; fX 7! ag); (2;R

4

; fX 7! ag)g

whi
h spe
i�es the following narrowing steps:

t;

1;R

4

;fX 7!ag

true _ f(a)

t;

2;R

4

;fX 7!ag

f(a) _ true

Theorem 2 (Soundness of weakly needed narrowing) Let R be a CAT and

G a goal. If G ;

�

1

� � � ;

�

n

true is a narrowing derivation 
omputed by

�

�,

then �

n

Æ � � � Æ �

1

is a solution for G.

The 
ompleteness of weakly needed narrowing is stated w.r.t. 
onstru
tor

substitutions as solutions of goals, i.e., substitutions mapping variables into


onstru
tor terms. This is not a limitation in pra
ti
e, sin
e more general

solutions would 
ontain unevaluated or unde�ned expressions. This is not

a limitation with respe
t to related work, sin
e most general narrowing is

known to be 
omplete only for irredu
ible solutions [12℄, and lazy narrowing

is 
omplete only for 
onstru
tor substitutions [7, 18℄.

Theorem 3 (Completeness of weakly needed narrowing) Let R be a CAT.

Let � be a 
onstru
tor substitution that is a solution of a goal G and V be

a �nite set of variables 
ontaining Var(G). Then

�

� 
omputes a narrowing

derivation G;

�

1

� � �;

�

n

true su
h that �

n

Æ � � � Æ �

1

�

V

�.

If we 
onsider again the term t in Example 5, we 
an observe that, to narrow

t to true, the strategy

�

� 
omputes four distin
t derivations with the same

substitution fX 7! ag. In order to avoid su
h redundant 
omputations, we

propose a parallel narrowing strategy in the next se
tion.

5 Parallel Narrowing

Classi
 narrowing may be de�ned in two steps as follows: t narrows to t

0

i� there exists a substitution � su
h that the term �(t) rewrites to t

0

using

some rewrite rule l ! r. From this informal de�nition, narrowing di�ers

from rewriting only by the instantiation step. Now, if we generalize this idea

to parallel rewriting, i.e., if we repla
e the rewriting step, in the narrowing

relation, by a parallel rewriting step, we obtain a new relation that we 
all

parallel narrowing. The de�nition below formalizes the idea that we just

sket
hed and de�nes a parallel narrowing step as an instantiation followed by

a parallel rewriting step.

De�nition 5 Let R be a term rewriting system and S a parallel rewriting

strategy. t

S

;

;

�

t

0

is a parallel narrowing step (w.r.t. S) i� �(t)

S

! t

0

. A

parallel narrowing strategy N

S

is a fun
tion from terms to sets of substitutions,

N

S

: T (�;X )! 2

Sub

. A substitution � is in N

S

(t) only if there exists a term

t

0

su
h that t

S

;

;

�

t

0

. We denote the parallel narrowing relation w.r.t. a

strategy N

S

by

N

S

;

;

.

9



Throughout this se
tion, parallel narrowing is de�ned upon the parallel re-

writing strategy �'. Below we de�ne the parallel narrowing strategy

�

�

�. There

are two main di�eren
es w.r.t. weakly needed narrowing:

�

�

� may disregard

some uni�ers 
omputed by weakly needed narrowing whi
h 
ontribute to re-

dundant derivations, and at every narrowing step a ne
essary set of redexes

of the instantiated term is redu
ed in parallel.

De�nition 6 Let R be a CAT, t an operation-rooted term, T a parallel

de�nitional tree of the root of t. We de�ne the parallel narrowing strategy

�

�

�

as follows.

4

�

�

�(t; T ) = f�

jVar(t)

j 9 (p;R; �) 2

�

�(t; T ); 8 (q;R

0

; �) 2

�

�(t; T );

(� �

Var(t)

� and � 6�

Var(t)

id) � �

Var(t)

�) and

(� �

Var(t)

id and q � p) � �

Var(t)

id)g = �

Intuitively, a substitution � belongs to

�

�

�(t; T ) i� � is either the identity or

a minimal substitution (w.r.t. �) among the non-identity substitutions 
om-

puted by

�

�(t; T ). Furthermore, whenever two triples (p;R; id) and (q;R

0

; �)

belong to

�

�(t; T ) with p being a pre�x of q (p � q), the substitution � is not


onsidered by the strategy

�

�

�.

Example 6 Consider the following rewrite rules:

X � 0 ! 0 R

1

0 � X ! 0 R

2

f(s(s(X))) ! 0 R

3

g(X) ! g(s(X)) R

4

and the term t = g(X) � (f(Y ) � (0 � f(s(Y )))). One 
an easily verify that

�

�(t; T ) = f(1;R

4

; id); (2�1;R

3

; fY 7! s(s(Y

1

))g); (2�2;R

2

; id);

(2�2�2;R

3

; fY 7! s(Y

2

)g)g

�

�

�(t; T ) = fidg

(for some pdt T ). The uni�er fY 7! s(s(Y

1

))g is dis
arded sin
e it is an

instan
e of fY 7! s(Y

2

)g. The uni�er fY 7! s(Y

2

)g is dis
arded sin
e the redex


reated by its appli
ation is non-outermost. Thus the strategy

�

�

� rewrites the

term t in parallel at positions 1 and 2�2.

Theorem 4

�

�

�

;

;

is sound and 
omplete in the sense of Theorems 2 and 3.

6 Parallel Narrowing with Simpli�
ation

The strategy

�

�

� improves weakly needed narrowing, but it may still perform

some redundant 
omputations, as shown in the following example.

4

The set notation f�

jVar(t)

j � � �g = � means that this set must not 
ontain two substitu-

tions �

1

; �

2

with �

1

�

Var(t)

�

2

.

10



Example 7 Consider the rules of Example 6. Let t = f(s(Y )) � f(s(s(Y ))).

Then, for an appropriate pdt T ,

�

�

�(t; T ) = fid; fY 7! s(Y

2

)gg. If we develop

the sear
h spa
e of t, we will 
ompute twi
e the result 0 with the substitution

id and the redundant substitution fY 7! s(Y

2

)g. However, if we simplify t

to f(s(Y )) � 0 by applying a rewrite step with rule R

3

(note that all rules

ex
ept R

4

are terminating) before applying a parallel narrowing step, we will


ompute only on
e the result 0 with the identity substitution.

In this se
tion we de�ne a new parallel narrowing strategy whi
h 
ombines

the strategy

�

�

� with a kind of term simpli�
ation. The resulting strategy is


omplete and avoids some useless 
omputations performed by

�

�

�. In order

to support 
exible simpli�
ation strategies, we 
ombine

�

�

� with a simplifying

rewriting strategy whi
h is a mapping S from terms to terms su
h that

1. 8 t 2 T (�;X );S(t) = t

0

) t

�

! t

0

(i.e., S is 
ompatible with rewriting)

2. S is re
ursive (i.e., S is 
omputable).

For instan
e, mapping a term to itself, or its redu
t, or one of its des
end-

ants obtained using terminating rules are all plausible simplifying rewrit-

ing strategies. The following de�nition introdu
es a new parallel narrowing

strategy that 
ombines

�

�

� and a simplifying rewriting strategy. We denote by

�

�

�(t) the substitution set

�

�

�(t; T ) if t is operation-rooted and T is a parallel

de�nitional tree of the root of t, or the empty set if t is not operation-rooted.

De�nition 7 Let R be a CAT, S a simplifying rewriting strategy, and t

an operation-rooted term. We 
all parallel narrowing with simpli�
ation the

binary relation

�

�

�

S

over terms de�ned as follows: t

�

�

�

S

;

;

�

t

0

i� either

� � 2

�

�

�(S(t)) and S(t)

�

�

�

;

;

�

t

0

, or

�

�

�

�(S(t)) = ?, t

0

= S(t), t

0

6= t, and � = id.

Thus, parallel narrowing with simpli�
ation deterministi
ally simpli�es a term

before applying a narrowing step. It may happen that no narrowing step is

appli
able after simpli�
ation sin
e the term may be redu
ed to normal form,

whi
h is the reason for the se
ond 
ase in the de�nition.

Theorem 5 Let S be a simplifying rewriting strategy. The parallel narrowing

with simpli�
ation strategy

�

�

�

S

is sound and 
omplete in the sense of Theor-

ems 2 and 3.

If we use a parallel rewriting strategy similar to �' to 
ompute simpli�
a-

tion steps, then the simpli�
ation steps 
an also be 
onsidered as narrowing

steps where the applied substitution is the identity. Therefore, one might

suppose that the 
ommitment to the identity substitution in the de�nition of

�

�

� (whenever possible) has the same e�e
t as simpli�
ation. Unfortunately,

su
h a 
ommitment destroys the 
ompleteness of parallel narrowing, as 
an

be seen by developing the sear
h spa
e for the term g(X) � f(Y ) w.r.t. the

rules in Example 6.

11



7 Optimality

In this se
tion we dis
uss two optimality results of our narrowing strategies.

Indu
tively sequential systems are a sub
lass of CATs. An indu
tively sequen-

tial operation f has a parallel de�nitional tree T with exa
tly one sequen-

tial 
omponent, i.e., T itself is a (sequential) de�nitional tree. Both weakly

needed narrowing and parallel narrowing behave as needed narrowing when

they operate on su
h a tree.

Theorem 6 Let R be a CAT, t an operation-rooted term whose de�ned oper-

ations are all indu
tively sequential. Then, for appropriate de�nitional trees

for the operations in t, the narrowing steps of t 
omputed by both weakly

needed narrowing and parallel narrowing are the same as the narrowing steps

of t 
omputed by needed narrowing.

We now turn our attention to the behavior of parallel narrowing on ground

goals.

Theorem 7 The parallel narrowing strategy is (deterministi
ally) normaliz-

ing on ground goals.

The above results show that parallel narrowing is a 
onservative extension of

two optimal strategies, needed narrowing on indu
tively sequential systems

and rewriting ne
essary sets on ground terms.

The strong optimality results of needed narrowing 
annot be expe
ted to

hold for both weakly needed and parallel narrowing. In parti
ular, we re
all

that rewriting and/or narrowing needed positions is not always possible in

almost orthogonal TRSs, sin
e su
h positions generally do not exist [21℄. Fur-

thermore, 
omputing only independent uni�ers seems unlikely, too, without

look-ahead, as the next example shows.

Example 8 Consider the parallel-or of Example 2 together with the rules

f(0;X) ! X h(0) ! true

and the goal f(X;h(Y )) _ f(Y; h(X)). Parallel narrowing 
omputes two de-

rivations of this goal beginning with di�erent uni�ers, eventually to dis
over

that they yield the same substitution.

8 Related Work

In this se
tion we 
ompare our parallel narrowing strategy with other narrow-

ing strategies proposed for CATs. There are also many narrowing strategies

for other rewrite systems than CATs, like innermost, outermost, or basi


narrowing (see [10℄). However, all these strategies require the termination

of the rewrite relation whi
h is an unde
idable property and immediately

ex
ludes typi
al fun
tional programming te
hniques like in�nite data stru
-

tures. To ensure 
on
uen
e in the presen
e of non-terminating rules, weak

orthogonality and 
onstru
tor-based rewrite rules are natural requirements.

For this 
lass of rewrite systems, lazy narrowing has been proposed (see, e.g.,

12



[7, 18, 20℄). Similarly to lazy evaluation in fun
tional languages, lazy nar-

rowing evaluates an inner term only when its value is demanded to narrow

an outer term. In 
ontrast to fun
tional languages, a naive version of lazy

narrowing may evaluate the same argument several times due to the non-

deterministi
 
hoi
e of a fun
tion's rewrite rules. Therefore, several methods

have been proposed aiming at evaluating arguments 
ommonly demanded by

all rules before the non-deterministi
 
hoi
e (e.g., [2, 16℄). Needed narrowing

[2℄ is the only strategy that has been shown to be optimal w.r.t. the length

of derivations and the number of 
omputed solutions. Needed narrowing is

de�ned for indu
tively sequential systems, and we have shown in Theorem 6

that parallel narrowing is a 
onservative extension of this optimal strategy.

In 
ase of overlapping rules, the situation is more diÆ
ult sin
e an argu-

ment may be demanded by some rule but not demanded by another rule for

the same fun
tion. This has the unfortunate e�e
t that naive lazy narrowing

is often ineÆ
ient for su
h rules [9℄. There are di�erent proposals to improve

naive lazy narrowing in this 
ase. For instan
e, Loogen and Winkler [17℄

propose the dynami
 
ut whi
h ignores subsequent alternative rules for nar-

rowing if a rule is appli
able without binding of goal variables. The e�e
t of

the dynami
 
ut is subsumed by our strategy sin
e parallel narrowing prefers

deterministi
 redu
tions at the root:

Proposition 1 Let R be a CAT, t an operation-rooted term and l ! r 2 R

a rule with �(l) = t for some substitution �. Then t

�

�

�

;

;

id

�(r) is the only

parallel narrowing step starting at t.

This proposition also shows another advantage of our parallel narrowing

strategy in 
omparison to the dynami
 
ut: parallel narrowing is independent

of the order of rewrite rules. Sin
e the dynami
 
ut only dis
ards alternative

rules after the 
urrent rule, it has no e�e
t if the appli
ation of previous rules

instantiates variables. This disadvantage is omitted in [9℄ where the 
om-

bination of lazy narrowing with possible redu
tion steps between narrowing

steps is proposed. In order to ensure the 
ompleteness of this lazy narrow-

ing with simpli�
ation strategy, a terminating subset of all rewrite rules is

used for redu
tion. Parallel narrowing does not subsume lazy narrowing with

simpli�
ation, as 
an be seen in Example 7. However, simpli�
ation with

a terminating set of rewrite rules is a simplifying rewrite strategy. There-

fore, parallel narrowing with simpli�
ation has the same advantage as lazy

narrowing with simpli�
ation.

Parallel narrowing is not intended as a strategy to implement fun
tional

logi
 languages on parallel ar
hite
tures due to its �ne-grained parallelism.

This is in 
ontrast to the AND-parallel narrowing implementation presented

in [15℄ where independent subterms are evaluated in parallel. However, due

to the fa
t that parallel narrowing redu
es the number of non-deterministi



hoi
es in narrowing steps (
ompared to 
lassi
 narrowing), parallel narrowing

is useful to avoid redundant 
omputations in OR-parallel implementations of

narrowing.

The following table summarizes the 
hara
teristi
s of the major narrowing

strategies for weakly orthogonal 
onstru
tor-based rewrite systems. \Ground

deterministi
" means that a strategy performs only deterministi
 
omputa-

tions steps for all programs and all ground goals. \Normalizing" is satis�ed

if a strategy 
omputes the normal form of a (non-ground) goal G satisfying

13



G

�

! true in a fully deterministi
 way. In this 
ase, a sequential implementa-

tion of this strategy always 
omputes the normal form whenever it exists.

Strategy

Ground

deterministi
:

Normalizing: Optimality properties:

simple lazy [18, 20℄ no no

weakly needed [16℄ no no

dynami
 
ut [17℄ no no

lazy narrowing with

simpli�
ation [9℄

terminating

TRS

terminating

TRS

parallel narrowing yes no

parallel narrowing

with simpli�
ation

yes

terminating

TRS

indu
tively sequential TRSs:

shortest derivations (sharing)

minimal number of solutions

Parallel narrowing (with simpli�
ation) is deterministi
 on ground terms

by Theorem 7. However, parallel narrowing without simpli�
ation is not

normalizing as shown in Example 7. The optimality of parallel narrowing

follows from the optimality results for needed narrowing [2℄ by Theorem 6.

This table shows that parallel narrowing is not only a further narrow-

ing strategy with some optimizations, but it is the only strategy whi
h sub-

sumes the advantages of known lazy narrowing strategies together with 
learly

de�ned optimality results. Due to its fully deterministi
 behavior on fun
-

tional programs (ground terms) and its ability to 
ompute solutions to non-

ground goals, it is the �rst sound and 
omplete strategy whi
h 
ombines the

evaluation me
hanisms of fun
tional and logi
 programs in a seamless way.

9 Con
lusions

We have presented a new narrowing strategy for weakly orthogonal, 
onstru
-

tor-based rewrite systems. Sin
e this 
lass in
ludes non-terminating systems,

it adequately models the fun
tional 
omponent of modern, integrated fun
-

tional logi
 languages. The main idea of our narrowing strategy is the parallel

evaluation of ne
essary sets of redexes. This leads to a generalization of Sekar

and Ramakrishnan's work on rewriting to narrowing. Parallel narrowing is

a 
onservative extension of an optimal narrowing strategy, needed narrowing

[2℄, to weakly orthogonal rewrite systems. Furthermore, parallel narrowing is

the only known narrowing strategy for possibly non-terminating and overlap-

ping TRSs whi
h evaluates ground terms in a fully deterministi
 way. It 
an

be implemented relatively eÆ
iently, sin
e narrowing steps are 
omputed by

lo
al 
omputations based on uni�
ation.

5

These features seem to make this

strategy the best available 
hoi
e for the implementation of fun
tional logi


programming languages.
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