
CurryInfo: Managing Analysis and Verification
Information about Curry Packages

Michael Hanus[0000−0002−4953−8202]

Institut für Informatik, Kiel University, Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. CurryInfo is a tool to manage information about program
entities defined in modules of Curry packages. CurryInfo is designed as
a generic and extensible system so that the kind of information ranges
from syntactic (e.g., comments, types, source code) to semantic aspects
(e.g., determinism, termination, total definition, non-failing). CurryInfo
collects such information and provides various methods to access them.
For instance, one can show this information in a REPL or IDE to help
the programmer to select or use operations in an appropriate manner.
Another application is to include this information in other tools to an-
alyze or verify programs. Since CurryInfo manages a cache containing
information about all Curry packages, this can speed up such tools on
larger applications.

1 Introduction

Larger software system are usually not developed from scratch but by re-using
many existing pieces of software—typically organized in packages. Although such
packages provide an API describing its use, the knowledge of the API informa-
tion does often not suffice for its correct use. For instance, in a strongly typed
programming language, the API is a collection of signatures of operations ex-
ported by the package so that the type-correct use of these operations can be
checked by the compiler. However, the knowledge about the signature is some-
times not sufficient. For instance, in imperative languages, operations might have
side effects which are not explicitly mentioned in their interfaces. Although side
effects cannot occur in declarative languages, there are other aspects relevant
to the programmer, like determinism or termination behavior, or conditions for
the non-failing execution of an operation. Since declarative languages are a good
basis to infer or approximate such semantic aspects, one can show them to the
programmer instead of manually browsing through the source code.

This is one of the motivations to develop the system described in this pa-
per. As the name indicates, CurryInfo is a system to support the development
and analysis of programs written in the multi-paradigm declarative language
Curry1 which amalgamates features of functional and logic programming. Due
to this combination, operations have various semantic properties which are not
immediately visible from their definition. For instance,
1 https://www.curry-lang.org

https://www.curry-lang.org

2 M. Hanus

– Operations might be non-deterministic [9], i.e., might yield more than one
value for a given argument: although this is an important concept of con-
temporary functional logic languages (see [3,9] for more details about the
advantages of non-deterministic operations), such operations must be used
with care in top-level computations involving I/O, since non-deterministic
computations need to be encapsulated inside deterministic I/O operations.

– Operations might be non-terminating: in lazy functional languages, comput-
ing with non-terminating operations is a feature supporting modularity [20]
but they must be used with care. Hence, it is useful to see the termination
status of operations during program development.

– Operations might fail on some arguments: when partially defined operations
are used, one should either check before the call the admissibility of the
arguments or check after the call whether it has failed (e.g., by encapsulated
search or exception handlers). Thus, it is important to know whether an
operation is totally defined or has a specific non-fail condition [13].

In the language Mercury [23], some of these properties, like non-determinism
and possible failures, are part of the source programs and used to generate ef-
ficient target code. As a consequence, explicitly defined properties restrict the
set of admissible Mercury programs whereas we are interested to keep the flexi-
bility of Curry but approximate semantic properties at compile time [15,16,18].
Since such approximations require non-trivial program analyses based on fix-
point computations, their computation needs some time for larger applications
with dozens or hundreds of modules. To avoid a time-consuming computation in
an interactive programming environment (e.g., REPL or IDE), CurryInfo pro-
vides an infrastructure to compute and collect such information when packages
are uploaded, stores this information in a central cache, and provides methods
to deliver this information in various formats so that it can be used by different
tools. This has the following advantages:

– The use of CurryInfo during program development (e.g., in a REPL or IDE)
supports the programmer to consider non-trivial semantic properties of op-
erations when they are applied.

– The use of CurryInfo in other analysis or verification tools can speed up their
computations since they can fetch information about imported packages from
CurryInfo instead of locally (re)computing it.

After a short introduction to Curry and existing analysis and verification tools
in Sect. 2, we survey the information managed by CurryInfo in Sect. 3 and show
the basic usage of CurryInfo in Sect. 4. Section 5 describes the structure and
implementation of CurryInfo and the methods provided to extend CurryInfo in
a modular manner. Section 6 contains our conclusions with a short evaluation.

2 Analysis and Verification of Curry Programs

The declarative language Curry [19] amalgamates features from functional pro-
gramming (demand-driven evaluation, strong typing, higher-order functions)

CurryInfo: Managing Analysis and Verification Information 3

and logic programming (computing with partial information, unification, con-
straints), see [3,10] for surveys. The syntax of Curry is close to Haskell [22]. In
addition to Haskell, Curry applies rules with overlapping left-hand sides in a
(don’t know) non-deterministic manner (where Haskell always selects the first
matching rule) and allows free (logic) variables in conditions and right-hand
sides of defining rules. For instance, the following operation inserts an element
at an unspecified position into a list:
insert :: a → [a] → [a]
insert x [] = [x]
insert x (y:ys) = x : y : ys
insert x (y:ys) = y : insert x ys

Note that both of the last two rules can be applied when the second argu-
ment of insert is a non-empty list. Thus, the expression insert 0 [1,2] non-
deterministically evaluates to any of the values [0,1,2], [1,0,2], or [1,2,0].
insert can be used to define permutations of lists in a simple manner:
perm :: [a] → [a]
perm [] = []
perm (x:xs) = insert x (perm xs)

Note that perm is defined by non-overlapping rules, but perm [1,2,3,4] non-
deterministically evaluates to any of the 24 permutations of the input list. This
demonstrates that the (non-)determinism status of perm is not directly visible
from its signature or definition.

In order to help the programmer to recognize semantic properties of opera-
tions which might depend on the behavior of directly or indirectly used opera-
tions, there exist various tools to approximate such properties. For instance, the
generic analysis system CASS [18] provides an infrastructure for fixpoint com-
putations which is incremental w.r.t. a given modular structure of programs to
enable the analysis of larger applications. CASS is based on the idea of abstract
interpretation [7] so that abstract domains and the corresponding abstract op-
erations can be defined and plugged into the infrastructure of CASS. Currently,
CASS supports more than 30 different analyses2 on Curry programs to approx-
imate properties like determinism, totally definedness, termination, demanded
arguments, groundness, etc. It has been used in various applications, e.g., to
transform Boolean equalities into unification to reduce search spaces [5], to de-
tect non-deterministic operations relevant to top-level computations [4], or to
optimize programs [6].

Another recent tool targets the safe execution of Curry programs by ver-
ifying the absence of failures at compile time [16]. For this purpose, non-fail
conditions [13], which approximate arguments that ensure the fail-free execution
of operations, are automatically inferred . For instance, consider the operations
last :: [a] → a fac :: Int → Int
last [x] = x fac n | n == 0 = 1
last (_:x:xs) = last (x:xs) | n > 0 = n * fac (n-1)

2 See https://cpm.curry-lang.org/webapps/cass/main.cgi?DOC_Analyses for more
details.

https://cpm.curry-lang.org/webapps/cass/main.cgi?DOC_Analyses

4 M. Hanus

The tool described in [16] infers that, if the argument of last is a non-empty
list, it does not fail. This is done by an inference with a domain of abstract
types and using properties approximated by CASS. Furthermore, the non-fail
condition “n==0 || n>0” is inferred for fac by combining this approach with
solving arithmetic constraints [15], for which an SMT solver [8] is used. If last
or fac are used in other operations, either the non-fail conditions are satisfied
in these uses or they imply new non-fail conditions of operations using them.
Altogether, the inference and verification of non-fail conditions can be time-
consuming on larger applications.

Since Curry is a universal programming language intended to implement
larger applications, it has many additional features not described here, like
monadic I/O [24] for declarative input/output, set functions [2] to encapsulate
non-deterministic search, or functional patterns [1] to specify complex transfor-
mations in a high-level manner. Curry programs are structured in modules3 and
modules can be organized in packages The Curry package manager4 provides ac-
cess to currently more than 140 packages with several hundred modules.5 Since
non-trivial applications written in Curry are based on dozens of packages (e.g.,
the Curry package manager is written in Curry and uses 40 packages and more
than 130 modules), it is relevant to have information about imported program
entities during the development of such applications. This is one of the main
motivations for the development of CurryInfo.

3 Information Managed by CurryInfo

CurryInfo is intended to provide an overview of entities defined in Curry pack-
ages. This section surveys the entities and the information managed by Curry-
Info.

A package contains the implementation of some functionality in a particular
application domain. Since the implementation and functionality evolves over
time, packages come in different versions with unique identifiers. The semantic
versioning standard6 is a recommendation to associate meaningful identifiers to
different versions of a package. The Curry package manager supports checking
these recommendations [12].

A package contains, apart from management information, documentation, or
test suites, a set of modules. Each module defines operations to implement the
required functionality. Since Curry is strongly typed with a Haskell-like type
system, a module might also contain definitions of types (data types or type
synonyms) and classes (type classes [25] or type constructor classes [21]).

To reflect this structure, CurryInfo manages various information about pack-
ages, versions, modules, operations, types, and classes, which are also called en-
tities in CurryInfo. For each entity, one can ask CurryInfo for different pieces of
3 The module system is almost identical to Haskell’s module system.
4 https://curry-lang.org/tools/cpm
5 https://cpm.curry-lang.org/
6 http://www.semver.org/

https://curry-lang.org/tools/cpm
https://cpm.curry-lang.org/
http://www.semver.org/

CurryInfo: Managing Analysis and Verification Information 5

information which are called requests of CurryInfo. Some of the requests for the
different entities are:7

– package requests: the name and the identifiers of the versions of a package
– version requests: the version identifier, documentation, modules, and package

dependencies of this version
– module requests: name, documentation, source code, lists of exported oper-

ations, types, and classes
– operation requests: name, documentation, definition, signature, fixity, and

various semantic properties, like determinism, demanded arguments, solu-
tion completeness, termination, totally definedness, result values, non-fail
conditions

– type requests: name, documentation, definition, and list of constructors
– class requests: name, documentation, definition, and list of methods

Since CurryInfo is designed to be extensible, new requests can easily be added
provided that a tool is available to compute them (see Sect. 5).

4 Usage

Before we show details of the implementation of CurryInfo, we survey various
use cases of CurryInfo in this section.

Basically, the executable of CurryInfo can be invoked with options to specify
an entity and the requests to be shown for this entity. For instance, requests
about the operation length defined in the module Prelude of package base with
version 3.3.0 can be shown as follows:
curry-info --package=base --version=3.3.0 --module=Prelude

--operation=length documentation deterministic totally-defined
terminating demand failfree

Requests are computed on-demand or taken from a cache (see Sect. 5) if they
have already been computed.

Since this raw access to requests is cumbersome, there is also the tiny wrapper
tool cpm-query8 so that one can compute the same information as above by the
command
cpm-query Prelude length

cpm-query searches for a package version containing length in module Prelude
according to the current load path. Moreover, the default requests shown for
a given kind of entity can be specified in a configuration file. Thus, cpm-query
provides a simple method to access analysis and verification information by other
tools, as shown next.

Curry systems come with an interactive REPL (Read-Eval-Print-Loop) which
has commands to load modules or to evaluate expressions. The recent release of
7 The page https://cpm.curry-lang.org/curry-info/run.cgi?--requests shows the actual

list of all requests supported by CurryInfo.
8 https://cpm.curry-lang.org/pkgs/cpm-query.html

https://cpm.curry-lang.org/curry-info/run.cgi?--requests
https://cpm.curry-lang.org/pkgs/cpm-query.html

6 M. Hanus

Fig. 1. Showing analysis information of length by CurryInfo in Visual Studio Code

PAKCS [17] has a command “:info” which invokes cpm-query to show requests
of operations, types, or classes. For instance, the command
> :info length

returns the same information as the call to cpm-query shown above provided that
the Prelude operation length is in the scope of the REPL expression (otherwise,
one has to qualify the operation with its module name).

The most convenient use of CurryInfo is via the Curry Language Server9
since it supports an extension to invoke any command when hovering over par-
ticular program entities, like operations, types, or classes, in a program editor
supporting the language server protocol. If this extension is configured to invoke
cpm-query,10 hovering over an occurrence of length in the editor pops up a win-
dow with analysis and verification information provided by CurryInfo. Figure 1
shows a screenshot when hovering over length using this extension in Visual
Studio Code.

A further use of CurryInfo is to speed up the computation of other analysis or
verification tools. For instance, in global program analyses, such as mentioned
in Sect. 2, CASS analyzes all imported modules before analyzing the current
module [18]. This means that all imported packages are analyzed before the
main modules of an application can be analyzed which might be time-consuming
for larger applications. A concrete implementation of this usage is evaluated in
Appendix A.

9 https://github.com/fwcd/curry-language-server
10 See https://github.com/curry-packages/cpm-query/blob/main/README.md

https://github.com/fwcd/curry-language-server
https://github.com/curry-packages/cpm-query/blob/main/README.md

CurryInfo: Managing Analysis and Verification Information 7

CurryInfo

Source code classifier

Interface reader

CASS

VerifyNonFail

. . .

REPL

IDE

HTML/Currygle

Analyzer

Verifier
. . .

Fig. 2. Structure of the CurryInfo system

5 System Structure and Implementation

CurryInfo provides a generic infrastructure to collect information about Curry
packages from different sources and delivers the collected information in various
forms, as shown in Fig. 2. Currently, the following tools contribute information:

– Information about documentation comments and definitions of operations,
types, and classes in the source text is extracted by a specific source code
classifier11 which performs a lexical and syntactical analysis of Curry pro-
grams to group the source text.

– The front end of Curry implementations generates interface files to organize
the independent compilation of modules. These interface files are processed
by a specific interface reader12 in order to extract the signature and fixity
information of operations defined in modules.

– Analysis and verification information is obtained from external tools, like
[15,16,18]. Since these tools can deliver their results also in a standard JSON
format, it is easier to parse these results instead of integrating these complex
tools in CurryInfo.

In order to get requests from CurryInfo for various purposes, CurryInfo can
deliver results in different output formats, like human-readable text, optional
with markdown syntax, JSON, or as Curry data terms. Moreover, CurryInfo
can be invoked in different modes:

– command mode (as shown in Sect. 4): parameters are passed as options and
the results are printed on the output stream.

– server mode: communication with CurryInfo is done via a socket connection
and a specified protocol so that CurryInfo is kept active until the communi-
cation is closed.

– web service mode: this is similar to the command mode but parameters
are passed by the environment variable QUERY_STRING so that the executable
curry-info can be used as a CGI script on a web server. The default instal-
lation of this web service is at https://cpm.curry-lang.org/curry-info/. When a
new package version is uploaded, this web service will be informed so that it

11 https://cpm.curry-lang.org/pkgs/curry-source.html
12 https://cpm.curry-lang.org/pkgs/curry-interface.html

https://cpm.curry-lang.org/curry-info/
https://cpm.curry-lang.org/pkgs/curry-source.html
https://cpm.curry-lang.org/pkgs/curry-interface.html

8 M. Hanus

automatically starts to compute all requests for this package and stores this
information in its cache.

In its default mode, cpm-query contacts this web service to request information.
Thus, when using cpm-query in a REPL or IDE, as discussed in Sect. 4, it is not
necessary to have a local installation of CurryInfo.

CurryInfo also stores all information in human-readable HTML format in
static web pages. The Curry API search engine Curr(y)gle13 delivers references
to the information stored in the CurryInfo web pages so that Curry users have
immediate access to analysis and verification information of operations defined
in published packages.

Since the actual computation of requests can be costly in the case of complex
analysis or verification tasks, CurryInfo caches already computed results for
program entities. For this purpose, CurryInfo associates a file to each entity
which contains a JSON object with request names as keys.14 For requests dealing
with source texts (documentation comments, definitions), only references to the
original source files are stored in the JSON objects to limit their sizes.

As already mentioned, CurryInfo is designed to be extensible, i.e., new re-
quests can easily be added to the implementation of CurryInfo. For this purpose,
CurryInfo has a configuration module where the requests for the different entities
are defined by calls to the generic operation
registerRequest :: ConvertJSON b => String → String

→ Generator a b → Printer b → RegisteredRequest a

Here, a is the type of entities (package, module, operation,. . .) and b is the type of
values of the request. Since these values are stored in the cache in JSON format,
the class constraint “ConvertJSON b” requires conversion operations to and from
JSON. The first argument is an identifier of the request and the second argument
a short description (to be shown in the help menu). The third argument is an
operation which generates, for an entity of type a, the requested value of type b.
The fourth argument prints a value of the request as a string (according to output
format options). Hence, in order to add a new kind of request to CurryInfo, one
has to implement a generator for this request, e.g., by using an external analysis
tool, and a pretty printer for request values, and add them to the implementation
of CurryInfo15 by using registerRequest.

6 Conclusions

We presented CurryInfo, an infrastructure to collect information about entities
defined in Curry packages and to distribute them to different applications. Cur-
ryInfo is generic in the kind of information so that it can cover syntactic as well
13 https://cpm.curry-lang.org/currygle/
14 In principle, one can also use a data base for all entities. Since there is a direct

mapping from entities to files, the use of JSON files was advantageous for debugging
during the development of CurryInfo.

15 Available at https://github.com/curry-language/curry-info-system.

https://cpm.curry-lang.org/currygle/
https://github.com/curry-language/curry-info-system

CurryInfo: Managing Analysis and Verification Information 9

as semantic properties of program entities, like information inferred by program
analysis or verification systems. Providing information about semantic aspects
is quite relevant since computing them is time consuming for larger packages.
Therefore, CurryInfo caches this information so that it is immediately available
when required by a REPL or IDE.

To get an impression of the usability of CurryInfo in an IDE, we measured
the time16 to execute cpm-query to compute the results as shown in Fig. 1. The
elapsed time of this execution is 0.3 seconds when using the remote CurryInfo
web service (which runs on a different server outside the local network), which
is an acceptable time in an IDE. This time reduces to 0.1 seconds when a local
installation of CurryInfo is used (for this purpose, the CurryInfo web server
allows to download its cache so that it can be locally installed). Although this
difference seems relevant, it is hardly recognizable when hovering in an IDE.
On the other hand, the on-demand analysis of the same information without
CurryInfo requires more than a minute. This clearly demonstrates the advantage
of CurryInfo and its information caching. The use of CurryInfo to speed up other
analysis tools is discussed and evaluated in Appendix A.

For future work it is interesting to evaluate whether the use of a database
for the cache might provide an efficiency improvement, to add further requests
that could be helpful to the programmer, like verified contracts [14], or to use
CurryInfo in other analysis or verification systems.

References

1. S. Antoy and M. Hanus. Declarative programming with function patterns. In
Proceedings of the International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’05), pages 6–22. Springer LNCS 3901, 2005.

2. S. Antoy and M. Hanus. Set functions for functional logic programming. In Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’09), pages 73–82. ACM Press, 2009.

3. S. Antoy and M. Hanus. Functional logic programming. Communications of the
ACM, 53(4):74–85, 2010.

4. S. Antoy and M. Hanus. Eliminating irrelevant non-determinism in functional logic
programs. In Proc. of the 19th International Symposium on Practical Aspects of
Declarative Languages (PADL 2017), pages 1–18. Springer LNCS 10137, 2017.

5. S. Antoy and M. Hanus. Transforming boolean equalities into constraints. Formal
Aspects of Computing, 29(3):475–494, 2017.

6. B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new compiler from
Curry to Haskell. In Proc. of the 20th International Workshop on Functional and
(Constraint) Logic Programming (WFLP 2011), pages 1–18. Springer LNCS 6816,
2011.

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixpoints. In Proc. of the
4th ACM Symposium on Principles of Programming Languages, pages 238–252,
1977.

16 We used a Linux machine running Ubuntu 22.04 with an Intel Core i7-1165G7
(2.80GHz) processor with eight cores. The tools were executed with KiCS2 [6].

10 M. Hanus

8. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. of the 14th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2008), pages 337–340. Springer LNCS 4963, 2008.

9. J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and
M. Rodríguez-Artalejo. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming, 40:47–87, 1999.

10. M. Hanus. Functional logic programming: From theory to Curry. In Programming
Logics - Essays in Memory of Harald Ganzinger, pages 123–168. Springer LNCS
7797, 2013.

11. M. Hanus. CurryCheck: Checking properties of Curry programs. In Proceedings of
the 26th International Symposium on Logic-Based Program Synthesis and Trans-
formation (LOPSTR 2016), pages 222–239. Springer LNCS 10184, 2017.

12. M. Hanus. Semantic versioning checking in a declarative package manager. In Tech-
nical Communications of the 33rd International Conference on Logic Programming
(ICLP 2017), OpenAccess Series in Informatics (OASIcs), pages 6:1–6:16. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

13. M. Hanus. Verifying fail-free declarative programs. In Proceedings of the 20th
International Symposium on Principles and Practice of Declarative Programming
(PPDP 2018), pages 12:1–12:13. ACM Press, 2018.

14. M. Hanus. Combining static and dynamic contract checking for Curry. Fundamenta
Informaticae, 173(4):285–314, 2020.

15. M. Hanus. Hybrid verification of declarative programs with arithmetic non-fail
conditions. In Proc. of the 22nd Asian Symposium on Programming Languages
and Systems (APLAS 2024), pages 109–129. Springer LNCS 15194, 2024.

16. M. Hanus. Inferring non-failure conditions for declarative programs. In Proc. of
the 17th International Symposium on Functional and Logic Programming (FLOPS
2024), pages 167–187. Springer LNCS 14659, 2024.

17. M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, F. Steiner, and F. Teegen. PAKCS: The Portland Aachen Kiel Curry
System. Available at https://www.curry-lang.org/pakcs/, 2025.

18. M. Hanus and F. Skrlac. A modular and generic analysis server system for func-
tional logic programs. In Proc. of the ACM SIGPLAN 2014 Workshop on Partial
Evaluation and Program Manipulation (PEPM’14), pages 181–188. ACM Press,
2014.

19. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Avail-
able at http://www.curry-lang.org, 2016.

20. J. Hughes. Why functional programming matters. Computer Journal, 32(2):98–
107, 1989.

21. M.P. Jones. A system of constructor classes: overloading and implicit higher-order
polymorphism. Journal of Functional Programming, 5(1):1–35, 1995.

22. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

23. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1-3):17–64, 1996.

24. P. Wadler. How to declare an imperative. ACM Computing Surveys, 29(3):240–263,
1997.

25. P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proc. of
the 16th ACM Symposium on Principles of Programming Languages (POPL’89),
pages 60–76, 1989.

https://www.curry-lang.org/pakcs/
http://www.curry-lang.org

CurryInfo: Managing Analysis and Verification Information 11

A Using CurryInfo in Analysis Tools

As mentioned in Sect. 4, the information managed by CurryInfo can be useful to
speed up the computation of other analysis or verification tools. To evaluate this
potential usage, we modified the Curry analysis system CASS [18] by adding an
option to force CASS to query CurryInfo for required analysis information: if
CurryInfo has this information available, it will be copied from CurryInfo instead
of computing it locally by CASS. One can also choose to contact the CurryInfo
web service or a local installation of CurryInfo.

The subsequent table shows the timings of these different usages (on the same
machine as described in Sect. 6). We compared the elapsed times (in seconds) of
two implementations of CASS: one compiled with PAKCS [17] (which compiles
to Prolog and uses SICStus-Prolog 4.9.0 as back end) and one compiled with
KiCS2 [6] (which compiles to Haskell and uses GHC 9.4.5 as back end). For
each Curry application shown in the first column, we show the timings for the
analysis without CurryInfo (no CI), with the CurryInfo web service (web), and
a local installation of CurryInfo (local). Moreover, the “Modules” column shows
the total number of modules of the application (all), the number of modules
from imported packages (imp) where the results can be copied from CurryInfo,
and the number of local modules (loc) which must always be analyzed by CASS.
The applications used in these tests are the CurryInfo system, CASS [18], the
inference and verification system for non-fail conditions [15,16], the property-
based testing tool CurryCheck [11], the Curry Package Manager CPM [12], and
cpm-manage, a tool to generate the web pages of the CPM repository. For all
these applications, we analyzed the determinism behavior of the operations in
the main module.

Modules CASS (PAKCS) CASS (KiCS2)
all imp loc no CI web local no CI web local

CurryInfo 83 58 25 6:48.81 3:14.27 3:01.10 19.85 23.01 11.79
CASS 89 74 15 7:47.93 3:17.15 4:47.05 17.70 23.77 9.43
VerifyNonFail 122 103 19 14:52.85 8:07.68 4:42.85 29.98 34.80 15.16
CurryCheck 122 111 11 9:57.19 4:51.37 3:41.69 25.33 34.57 13.25
CPM 134 105 29 8:36.62 6:42.24 4:56.29 32.45 37.67 17.25
cpm-manage 64 59 5 6:01.36 3:41.91 2:27.37 14.03 19.51 8.09

As one can see, the speed-up obtained by copying analysis information from
CurryInfo depends on the implementation of CASS, the network connection or
time to copy and parse the analysis results, and the complexity of the analysis
process. For instance, KiCS2 is quite efficient for purely functional programs.
Hence, the network connection to the CurryInfo web service causes a substantial
delay so that the use of the local installation of CurryInfo is much faster.17

One can expect that for more complex systems, like the inference and verifi-
cation of non-fail conditions, where also external SMT-solvers are used [15], the
efficiency improvements are higher than for the CASS analyses tested above.
17 Due to this reason, the CurryInfo web service provides a copy of its cache which can

easily be downloaded and locally installed.

	CurryInfo: Managing Analysis and Verification Information about Curry Packages

