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Abstra
t

Solving nonlinear 
onstraints over real numbers is a 
omplex problem. Hen
e 
onstraint

logi
 programming languages like CLP(R) or Prolog III solve only linear 
onstraints and de-

lay nonlinear 
onstraints until they be
ome linear. This eÆ
ient implementation method has

the disadvantage that sometimes 
omputed answers are unsatis�able or in�nite loops o

ur

due to the unsatis�ability of delayed nonlinear 
onstraints. These problems 
ould be solved

by using a more powerful 
onstraint solver whi
h 
an deal with nonlinear 
onstraints like in

RISC-CLP(Real). Sin
e su
h powerful 
onstraint solvers are not very eÆ
ient, we propose a


ompromise between these two extremes. We 
hara
terize a 
lass of CLP(R) programs for whi
h

all delayed nonlinear 
onstraints be
ome linear at run time. Programs belonging to this 
lass


an be safely exe
uted with the eÆ
ient CLP(R) method while the remaining programs need a

more powerful 
onstraint solver.

Keywords: Logi
 Programming, Constraints, Abstra
t Interpretation

1 Introdu
tion

The 
onstraint logi
 programming paradigm [15℄ generalizes logi
 programming by repla
ing the

Herbrand universe of terms by other, in general more powerful, domains. Uni�
ation of terms

is repla
ed by solving 
onstraints over these domains. For instan
e, CLP(R) [17, 13℄ adds real

numbers to the Herbrand universe and 
ontains equations and inequations as 
onstraints. The

system in
ludes a 
onstraint solver over the real numbers. Sin
e solving nonlinear 
onstraints is

a 
omplex problem, the 
onstraint solver in CLP(R) is restri
ted to linear 
onstraints. Nonlinear


onstraints are delayed until some variables in these 
onstraints get unique values during the further


omputation pro
ess so that the delayed 
onstraints be
ome linear [18℄ (this approa
h is also taken

in Prolog III [5℄). If a 
omputation stops with some delayed nonlinear 
onstraints, the system

generates a \maybe" answer, i.e., it is not ensured that a solution exists.

Example 1.1 Consider the following CLP(R) program to 
ompute mortgage payments:

�
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mortgage(P,T,IR,B,MP) :-

T > 0, T <= 1,

B = P*(1+T*IR)-T*MP.

mortgage(P,T,IR,B,MP) :-

T > 1,

mortgage(P*(1+IR)-MP, T-1, IR, B, MP).

The parameters are the prin
ipal P, the life of the mortgage T (in months), the monthly interest

rate IR, the outstanding balan
e B, and the monthly payment MP. Due to the 
onstraint solving

me
hanism this program 
an be queried in di�erent ways. The query

?- mortgage(100000, 180, 0.01, 0, MP).

asks for the monthly payment to �nan
e a mortgage, and the answer 
onstraint is MP=1200.17.

The query

?- mortgage(100000, T, 0.01, 0, 1400).

asks for the time to �nan
e a mortgage, and the answer 
onstraint is T=125.901. The query

?- mortgage(P, 180, 0.01, B, MP).

asks for a relationship between the prin
ipal, the outstanding balan
e and the monthly payment,

and the answer 
onstraint is P=0.166783*B+83.3217*MP. However, if we want to 
ompute the

interest rate as in the query

?- mortgage(1000, 2, IR, 0, 600).

CLP(R) 
annot 
ompute a solved answer due to the restri
tion to linear 
onstraints. The CLP(R)

system produ
es the \maybe" answer 600=(1000*IR+400)*(IR+1). 2

The CLP(R) method of delaying nonlinear 
onstraints and solving only linear 
onstraints is eÆ
ient

and su

essful for many appli
ations. However, there are also programs where this method is not

suÆ
ient be
ause CLP(R) 
ontinues a 
omputation with unsatis�able nonlinear 
onstraints. This

may generate unsatis�able answers or in�nite loops. Su
h problems 
an be avoided if a more

powerful 
onstraint solver is used. For instan
e, CAL [2℄ and RISC-CLP(Real) [14℄ do not delay

nonlinear 
onstraints but apply spe
ial methods from 
omputer algebra to 
he
k the satis�ability

of all 
onstraints.

Example 1.2 [14℄ Consider the following program for 
omputing Pythagorean numbers:

nat(X) :- X = 1.

nat(X) :- X > 1, nat(X-1).

pyth(X,Y,Z) :- X*X+Y*Y= Z*Z, X <= Y, nat(Z), nat(X), nat(Y).

If we ask the query ?-pyth(X,Y,Z), CLP(R) runs into an in�nite loop sin
e it does not dete
t

that the linear and nonlinear 
onstraints are not satis�able, while RISC-CLP(Real) 
omputes the

answers X=3,Y=4,Z=5, X=6,Y=8,Z=10, and so on. 2

Unfortunately, it is diÆ
ult to deal with nonlinear 
onstraints, and 
onstraint solvers for nonlinear


onstraints are not very eÆ
ient. It is undesirable to use su
h 
omplex 
onstraint solvers for

problems whi
h 
an be solved by the CLP(R) method. Therefore we propose a 
ompromise between
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these two extremes. In the following we will 
hara
terize a 
lass of CLP(R) programs for whi
h all

delayed nonlinear 
onstraints be
ome linear at run time. Sin
e su
h a property is unde
idable in

general, our 
hara
terization is based on a 
ompile-time analysis of CLP(R) programs using abstra
t

interpretation te
hniques. Consequently, we 
annot give a pre
ise 
hara
terization of this 
lass of

programs but we 
ompute a safe approximation of it. It is ensured that the CLP(R) 
omputation

of a program belonging to this approximated 
lass does not stop with delayed nonlinear 
onstraints.

Our method analyses the nonlinear 
onstraints whi
h may o

ur at run time. A nonlinear


onstraint is an equation or inequation 
ontaining an expression X*Y where both X and Y do not

have unique values. In order to de
ide whether su
h a 
onstraint be
omes linear, we must know

if X or Y are 
onstrained to unique values. Thus we need a program analysis 
orresponding to

groundness analysis in logi
 programming [4, 8, 24℄. A groundness analysis where variables are

simply abstra
ted into values like ground, free or any is not suÆ
ient for our purpose sin
e in


onstraint logi
 programming variables often be
ome ground due to the addition of new 
onstraints.

For instan
e, 
onsider the following sequen
e of 
onstraints:

?- Z = X*Y, X = A+B, C = 3+A, B = 5, C = 6.

A simple groundness analysis would infer that only B and C are ground after the left-to-right

evaluation of this goal. But due to the 
onstraint solving me
hanism, also A and X be
ome ground

and therefore the 
onstraint Z=X*Y is linear at the end of this goal.

1

In order to provide an

analysis of su
h situations, our method 
onsiders the dependen
ies of variables in 
onstraints and

approximates the grounding of variables due to 
onstraint solving.

In the next se
tion we give a detailed des
ription of the syntax and the operational semanti
s of

a restri
ted 
lass of CLP(R) programs for whi
h our analysis is designed. The abstra
t domain and

the abstra
t interpretation algorithm for the analysis of nonlinear 
onstraints in CLP(R) programs

are presented in Se
tion 3. The 
orre
tness of our method is proved in Se
tion 4. In Se
tion 5

we show the extension of our method to other delayed 
onstraints whi
h may o

ur in CLP(R)

programs. Finally, we dis
uss possible appli
ations of our method in Se
tion 6.

2 Operational Semanti
s of CLP(R) Programs

In this se
tion we present the 
lass of CLP(R) programs whi
h we will analyse together with their

operational semanti
s.

A CLP(R) program is a 
olle
tion of Horn 
lauses where some fun
tors and predi
ates have

a prede�ned meaning. Terms are built from variables, numeri
 
onstants (real numbers), atoms

(string 
onstants), uninterpreted fun
tor symbols with a positive arity, and the prede�ned arith-

meti
 fun
tions +, - and *.

2

An arithmeti
 term does not 
ontain atoms and uninterpreted fun
tor

1

In this simple example the groundness analysis 
an be improved by 
onsidering all 
onstraints in an arbitrary

order instead of a left-to-right order. However, this 
annot be done in general if the 
onstraints originate from the

exe
ution of several predi
ates.

2

Similarly to CLP(R) [17℄ we assume that a CLP(R) program is well-typed, i.e., variables, uninterpreted fun
tors

and predi
ates are used in su
h a way that arithmeti
 
onstraints do not 
ontain \junk" like atoms at run time.

However, this is not required in the formal des
ription of CLP(R) programs due to the sake of simpli
ity. In order

to 
he
k well-typedness at 
ompile time we may extend the language with a type system for logi
 programming (see,

for instan
e, [10℄ or the 
olle
tion [26℄).

3



symbols.

3

A 
onstraint is an equation t

1

=t

2

, where t

1

and t

2

are terms, or an inequation t

1

� t

2

,

where t

1

and t

2

are arithmeti
 terms and � 2 f<; >; <=; >=g. A literal is a de�ned predi
ate name

together with a list of argument terms. Literals are sometimes 
onsidered as terms, i.e., the de-

�ned predi
ate names are also fun
tor symbols. A 
lause has the form L :- L

1

,...,L

n

where L

is a literal and L

1

,...,L

n

is a sequen
e of literals and 
onstraints. For instan
e, the 
lauses of

Examples 1.1 and 1.2 are CLP(R) programs in this sense.

The operational semanti
s of CLP(R) programs is similar to Prolog's operational semanti
s

(SLD-resolution with leftmost sele
tion rule) but with the di�eren
e that uni�
ation is repla
ed

by adding a new equation between the literal and the 
lause head, and the 
omputation pro
eeds

only if all 
onstraints (ex
ept the nonlinear) are satis�able. To give a pre
ise de�nition of the

operational semanti
s, a goal is written in the form C, D ?- G where C is a 
olle
tion of sat-

is�able 
onstraints (a
tive 
onstraints), D is a 
olle
tion of delayed 
onstraints and G is a sequen
e

of literals and 
onstraints. Initially, C and D are empty and G is the given goal.

A 
omputation step is performed as follows. If the �rst (leftmost) element of G is a 
onstraint,

then it is moved to C if it is linear, otherwise to D. If the �rst element of G is a literal L, then it

is deleted in G and the new equational 
onstraint L=L

0

is generated where L

0

:-L

1

,...,L

n

is (a

new variant of) a program 
lause. Solving the 
onstraint L=L

0


orresponds to uni�
ation in logi


programming. Sin
e L or L

0

may 
ontain terms of the form X*Y , L=L

0

gives rise to a 
olle
tion of


onstraints C

0

&D

0

where D

0

is the 
olle
tion of nonlinear 
onstraints. Hen
e C

0

is added to C and

D

0

is added to D. A 
omputation fails if the new set of linear 
onstraints is unsatis�able whi
h is


he
ked by the 
onstraint solver.

It may be the 
ase that a delayed 
onstraint inD be
omes linear due to the fa
t that the addition

of new 
onstraints in C implies the linearity of the delayed 
onstraint be
ause some of the variables

in the initially nonlinear 
onstraint get unique values. If this happens during a 
omputation step,

this delayed 
onstraint is moved from D to C. More details about the operational semanti
s and

the delay me
hanism 
an be found in [13, 17, 18℄.

A derivation is 
alled su

essful if both G and D are empty. If G is empty but D not, the

derivation is 
alled 
onditionally su

essful sin
e it is not ensured that the 
onstraints in D are

satis�able. The main goal of this paper is the 
hara
terization of a 
lass of programs whi
h have

no 
onditionally su

essful derivations.

As an example for the operational semanti
s 
onsider the initial goal

?- Z = X*Y, X = A+B, C = 3+A, B = 5, C = 6.

Then a su

essful derivation 
onsists of the following elements:

3

In 
ontrast to CLP(R) we do not 
onsider other arithmeti
 fun
tions like /, sin, 
os, pow, abs, min and max.

These fun
tions 
an be treated similarly to * in our abstra
t interpretation algorithm. We will dis
uss this subje
t

in Se
tion 5.
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C D ?- G

; ; ?- Z=X*Y, X=A+B, C=3+A, B=5, C=6

; fZ=X*Yg ?- X=A+B, C=3+A, B=5, C=6

fX=A+Bg fZ=X*Yg ?- C=3+A, B=5, C=6

fX=A+B, C=3+Ag fZ=X*Yg ?- B=5, C=6

fX=A+B, C=3+A, B=5g fZ=X*Yg ?- C=6

fX=A+B, C=3+A, B=5, C=6, Z=X*Yg ; ?-

Note that the delayed 
onstraint has been moved to the set of linear 
onstraints in the last 
ompu-

tation step be
ause the 
onstraints fX=A+B, C=3+A, B=5, C=6g imply the linearity of Z=X*Y. An

equivalent but simpli�ed form of the last 
onstraint set is fX=8, A=3, B=5, C=6, Z=8*Yg.

In order to keep the abstra
t interpretation algorithm simple, we transform CLP(R) programs

into 
at CLP(R) programs where ea
h literal has the form p(X

1

; : : : ;X

n

) (all X

i

are distin
t

variables) and ea
h 
onstraint has one of the following forms (X, Y, Y

1

,. . . ,Y

n

, Z are variables, 
 is

an atom or numeri
 
onstant and f is an uninterpreted fun
tor symbol):

X = Y X = 
 X = f(Y

1

,...,Y

n

)

X = Y+Z X = Y-Z X = Y*Z

X < Y X > Y X <= Y X >= Y

It is obvious that every CLP(R) program 
an be transformed into a 
at CLP(R) program by

repla
ing terms by new variables and adding equations between the repla
ed terms and the 
or-

responding new variables. For instan
e, 
onsider the mortgage program in Example 1.1. This

CLP(R) program is transformed into the following equivalent 
at CLP(R) program:

mortgage(P,T,IR,B,MP) :-

A = 0, T > A, C = 1, T <= C,

D = T*IR, E = C+D, F = P*E,

G = T*MP, B = F-G.

mortgage(P,T,IR,B,MP) :-

A = 1, T > A,

C = A+IR, D = P*C, E = D-MP, F = T-A,

mortgage(E, F, IR, B, MP).

This transformation does not 
hange the prin
ipal answer behavior. The only di�eren
e is that the

transformed programs have more derivation steps (for the new equations) and additional equational


onstraints for the new variables. In the following we assume that all programs are 
at CLP(R)

programs.

3 Abstra
t Interpretation of CLP(R) Programs

In this se
tion we present a method for the 
ompile-time analysis of nonlinear 
onstraints in

CLP(R), i.e., a method for 
he
king at 
ompile time whether all nonlinear 
onstraints be
ome

linear during the exe
ution of the program. Obviously, a pre
ise analysis requires a solution to

the halting problem. Therefore we present an approximation to it based on an abstra
tion of the


on
rete behavior of the program. If this approximation yields a positive answer, then it is ensured

that all nonlinear 
onstraints be
ome linear at run time.
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We assume familiarity with basi
 ideas of abstra
t interpretation te
hniques (see, for instan
e,

the 
olle
tion [1℄). After the fundamental work of Cousot and Cousot [7℄ on systemati
 methods

for program analysis several frameworks for the abstra
t interpretation of logi
 programs have been

developed (see, for instan
e, [4, 20, 25℄). These frameworks 
an also be used for the analysis of

CLP(R) programs be
ause of the similar operational semanti
s (SLD-resolution with left-to-right

sele
tion rule). The only di�eren
es to logi
 programming are:

� Substitutions are repla
ed by 
olle
tions of 
onstraints. E.g., the substitution

fX 7!1,Y 7!f(a)g 
an be represented by the 
onstraints fX=1,Y=f(a)g.

� Uni�
ation of a literal L and a 
lause head H is repla
ed by adding the 
onstraint L=H to

the 
urrent 
onstraint set. The existen
e of a uni�er is then equivalent to the satis�ability of

the extended 
onstraint set.

� The 
omposition of substitutions (e.g., 
ombining the 
omputed uni�er with the previous

substitution) is repla
ed by the 
onjun
tion of 
onstraints.

Therefore we must de�ne an appropriate abstra
tion of 
onstraints (the abstra
t domain) and

of 
onstraint solving (the abstra
t operations). The 
orre
tness of the abstra
t interpretation

algorithm 
an be proved by relating the abstra
tions to the 
on
rete 
onstraints. In the following

we present the abstra
t domain and the abstra
t operations. The relation to 
on
rete 
omputations

is presented in Se
tion 4.

3.1 An Abstra
t Domain for the Analysis of Nonlinear Constraints

The most important 
omponent of an abstra
t interpretation pro
edure is an abstra
t domain

whi
h approximates subsets of the 
on
rete domain by �nite representations. An element of the

abstra
t domain des
ribes 
ommon properties of a subset of the 
on
rete domain. In our 
ase the


on
rete domain is the set of all 
onstraints where a 
onstraint is a 
onjun
tion of equations and

inequations. The following properties of 
onstraints are important for the analysis of nonlinear


onstraints:

1. Whi
h variables are ground, i.e., whi
h variables have unique values in all solutions of the


onstraint?

2. Whi
h nonlinear elements are 
ontained in the 
onstraint?

The pre
ise form of the nonlinear elements is not relevant for the analysis. Only the name of the

variables in the nonlinear elements are important in order to de
ide the linearity of the elements.

Therefore our abstra
t domain 
ontains elements of the form

delay(X or Y)

representing a potential nonlinear 
onstraint whi
h will be
ome linear if X or Y are 
onstrained to

unique values. Thus a 
orre
t abstra
tion of the 
onstraint set

X = Y*Z, X = A*B, T = A*C, B = 3

6



must 
ontain the elements delay(Y or Z) and delay(A or C). It may also 
ontain the element

delay(A or B) if the information \B is unique" is not available. Note that the order of the vari-

ables in delay(X or Y) is not relevant, i.e., in the following we identify the elements delay(X or Y)

and delay(Y or X).

A simple abstra
tion of groundness information of variables is a list of variables whi
h are

de�nitely ground [24℄ or an assignment of variables to the values ground, free or any [4℄. However,

this is not suÆ
ient in our 
ase sin
e in 
onstraint logi
 programming variables be
ome ground not

only by uni�
ation but also, and more important, by solving 
onstraints when new 
onstraints are

added or delayed nonlinear 
onstraints are awakened (like in CLP(R)). For instan
e, if the 
urrent


onstraints 
ontain X=Y*Z, T=3+Y, then the addition of the new 
onstraint T=5 would 
ause Y to

be
ome ground and Y*Z to be
ome linear. Hen
e our abstra
tions 
ontain information about the

dependen
ies between variables. To be more pre
ise, our abstra
t domain 
ontains elements of the

form

V)X

representing the fa
t that the variables in the set V uniquely determine the value of the variable

X. As an extreme 
ase, the abstra
tion element ;)X represents the fa
t that X has a unique value,

i.e., X is ground. For instan
e, an abstra
tion of the 
onstraints A=B+C, D=3+A may 
ontain the

elements

fB,Cg)A; fA,Cg)B; fA,Bg)C; fAg)D; fDg)A :

In our abstra
t interpretation algorithm we analyse the goal and ea
h 
lause o

urring in the

program. The abstra
tions 
omputed in this algorithm 
ontain information about the variables

in the goal or 
lause. Hen
e ea
h abstra
tion A has a domain dom(A) whi
h is a set of variables

o

urring in some 
lause or goal. All variables o

urring in A must belong to dom(A).

Altogether, the abstra
t domain A 
ontains the element ? (representing the empty subset of

the 
on
rete domain) and sets 
ontaining the following elements (su
h sets are 
alled abstra
tions

and denoted by A, A

1

et
):

Element: Meaning:

V)X the values of V determine the value of X

delay(X or Y) there is a delayed 
onstraint whi
h will be awakened if X or Y are ground, i.e., if

X or Y have a unique value

delay there is a delayed 
onstraint whi
h depends on arbitrary variables

Obviously, the �niteness of dom(A) implies the �niteness of A. The additional element delay is the

\worst 
ase" in the algorithm and will be used if the dependen
ies between nonlinear 
onstraints

and their variables are too 
omplex for a �nite representation. For 
onvenien
e we simply write

\X" instead of \;)X". Hen
e an element \X" in an abstra
tion means that variable X has a unique

value.

For the sake of simpli
ity we will sometimes generate abstra
tions 
ontaining redundant infor-

mation. The following normalization rules eliminate some redundan
ies in abstra
tions:

7



Normalization rules for abstra
tions:

A [ fZ; V [ fZg)Xg �! A [ fZ; V)Xg (N1)

A [ fX; delay(X or Y )g �! A [ fXg (N2)

A [ fV

1

)X; V

2

)Xg �! A [ fV

1

)Xg if V

1

� V

2

(N3)

An abstra
tion A is 
alled normalized if none of these normalization rules is appli
able to A. Later

we will see that the normalization rules are invariant w.r.t. the 
on
rete 
onstraints 
orresponding

to abstra
tions. Therefore we 
an assume that we 
ompute only with normalized abstra
tions in

the abstra
t interpretation algorithm.

It is possible to add further normalization rules to delete some obvious redundan
ies, like

A [ fV [ fXg)Xg �! A

A [ fdelay(X or Y ); delayg �! A [ fdelayg

This should be done in a 
on
rete implementation in order to keep the abstra
tions as small as

possible. On the other hand, we 
ould also add the rule

A [ fV

1

)X; V

2

[ fXg)Y g �! A [ fV

1

)X; V

2

[ fXg)Y ; V

1

[ V

2

)Y g

(provided that Y 62 V

1

) to add impli
it dependen
ies to the abstra
tion whi
h 
ould improve the

a

ura
y of the analysis in some examples. However, these rules are not ne
essary for the intended

results in our examples. Therefore we omit su
h additional rules sin
e it simpli�es the 
orre
tness

proofs in Se
tion 4.

3.2 The Abstra
t Interpretation Algorithm

The abstra
t interpretation algorithm is based on abstra
t operations 
orresponding to 
on
rete

operations during program exe
ution. The most important 
on
rete operations are the pro
essing

of a new 
onstraint, the 
all of a 
lause for a predi
ate and the exit of a 
lause. In the following

we des
ribe the 
orresponding abstra
t operations.

First we des
ribe the abstra
t pro
essing of a new 
onstraint. It is the most important operation

in 
onstraint logi
 programming and 
orresponds to uni�
ation in logi
 programming. At the

abstra
t level it is a fun
tion ai-
on(�;C) whi
h takes an element of the abstra
t domain � 2 A

and a single 
onstraint C (equation or inequation) as input and produ
es another abstra
t domain

element as the result. � is an abstra
tion of the possible given 
onstraints and the result should be

an abstra
tion of the given 
onstraints together with the new 
onstraint C. Sin
e we are dealing

with 
at CLP(R) programs where all 
onstraints have a restri
ted form (
ompare Se
tion 2), it is

8



suÆ
ient to de�ne ai-
on by the following equations:

ai-
on(?; C) = ?

ai-
on(A; X=Y) = A [ ffXg)Y; fYg)Xg

ai-
on(A; X=
) = A [ fXg

ai-
on(A; X=f(Y

1

,...,Y

n

)) = A [ ffY

1

,...,Y

n

g)X; fXg)Y

1

; : : : ; fXg)Y

n

g

ai-
on(A; X=Y+Z) = A [ ffY,Zg)X; fX,Zg)Y; fX,Yg)Zg

ai-
on(A; X=Y-Z) = A [ ffY,Zg)X; fX,Zg)Y; fX,Yg)Zg

ai-
on(A; X=Y*Z) = A [ ffY,Zg)X; delay(Y or Z)g

ai-
on(A; X�Y) = A if � 2 f<; >; <=; >=g

The 
onstraint X=Y implies a mutual dependen
y between both variables while the 
onstraint

X=f(Y

1

,...,Y

n

) implies a dependen
y between X and the argument variables of the 
ompound

term. The variable X be
omes ground by the 
onstraint X=
 while it may be
ome ground by the


onstraints X=Y+Z or X=Y-Z if two of the three variables are ground. The situation for X=Y*Z is a

little bit di�erent. Here X is ground if Y and Z are ground. But Y be
omes ground only if X and

Z are ground and Z 6= 0. Sin
e we have no a

ess to the 
on
rete values in our abstra
t domain,

we 
annot formulate this 
ondition at the abstra
t level.

4

Similarly, we 
annot express the fa
t

that X be
omes ground by the 
onstraint X=Y*Z if Y or Z have a zero value. This is also the reason

why inequations have no in
uen
e on the abstra
tion, i.e., impli
it equations generated by inequa-

tions (e.g., the inequations X<=1,X>=1 generate the impli
it equation X=1) are not dete
ted at the

abstra
t level.

Note that the fun
tion ai-
on adds information to the 
urrent abstra
tion. The pro
essing of

this information (
orresponding to 
onstraint solving) is performed by the normalization rules. For

instan
e, 
onsider the goal

?- Z = X*Y, U = V+X, U = 5, V = 3.

If we apply ai-
on to the 
onstraints from left to right starting with the empty abstra
tion, we

obtain the abstra
tion

f fX,Yg)Z, delay(X or Y), fV,Xg)U, fU,Xg)V, fU,Vg)X, U, V g

whi
h is not normalized. But this abstra
tion is transformed by the normalization rules as follows:

f fX,Yg)Z, delay(X or Y), fV,Xg)U, fU,Xg)V, fU,Vg)X, U, V g

! f fX,Yg)Z, delay(X or Y), fU,Xg)V, fU,Vg)X, U, V g (by rule N3)

! f fX,Yg)Z, delay(X or Y), fU,Vg)X, U, V g (by rule N3)

! f fX,Yg)Z, delay(X or Y), fVg)X, U, V g (by rule N1)

! f fX,Yg)Z, delay(X or Y), X, U, V g (by rule N1)

! f fX,Yg)Z, X, U, V g (by rule N2)

! f fYg)Z, X, U, V g (by rule N1)

The last normalized abstra
tion is a 
orre
t abstra
tion of the simpli�ed answer 
onstraint

Z=2*Y, X=2, U=5, V=3. But note that fZg)Y is not 
ontained in the last abstra
tion sin
e the


on
rete value of X is not present in this abstra
tion.

4

This 
an be improved by in
luding information about the sign of variables in our abstra
t domain. For instan
e,

we 
ould in
lude (stri
t) inequalities between variables and the 
onstant 0 as in the abstra
t domain Ineq of [19℄.

9



We also need abstra
t operations for the analysis of de�ned predi
ates. The next operation

restri
ts an abstra
tion A to a set of variables W � dom(A). It will be used in a predi
ate 
all to

omit the information about variables not passed from the predi
ate 
all to the applied 
lause:


all-restri
t(?;W ) = ?


all-restri
t(A;W ) = fV)X 2 A j fXg [ V �Wg

This operation also deletes all delay information in the given abstra
tion. This is justi�ed sin
e all

omitted information is re
onsidered after the predi
ate 
all (see below).

At the end of a 
lause a similar operation is ne
essary to forget the information about lo
al


lause variables. Hen
e we de�ne:

exit-restri
t(?;W ) = ?

exit-restri
t(A;W ) = fV)X 2 A j fXg [ V �Wg

[ fdelay(X or Y) 2 A j X; Y 2Wg

[ fdelay j delay 2 A or delay(X or Y) 2 A with fX; Yg 6�Wg

This restri
tion operation for 
lause exits transforms an abstra
tion element delay(X or Y) into the

element delay if one of the involved variables is not 
ontained in W , i.e., it is noted that there may

be a delayed 
onstraint whi
h depends on lo
al variables at the end of the 
lause, but the possible

dependen
ies are too 
omplex for a �nite abstra
t analysis. For a similar reason, the dependen
y

V)X is simply omitted if V 6�W .

The least upper bound operation is used to 
ombine the results of di�erent 
lauses for a predi
ate


all:

? t A = A

A t ? = A

A

1

t A

2

= fV

1

[ V

2

)X j V

1

)X 2 A

1

; V

2

)X 2 A

2

g

[ fdelay(X or Y) j delay(X or Y) 2 A

1

or delay(X or Y) 2 A

2

g

[ fdelay j delay 2 A

1

or delay 2 A

2

g

Now we are able to present the algorithm for the abstra
t interpretation of a 
at CLP(R) pro-

gram. It is spe
i�ed as a fun
tion ai(�;L) whi
h takes an abstra
t domain element � and a literal

or 
onstraint L and yields a new abstra
t domain element as result. Clearly, ai(?; L) =? and

ai(A;C) = ai-
on(A;C) for all 
onstraints C. The interesting 
ase is the abstra
t interpretation

of a 
all to a de�ned predi
ate, ai(A; p(X

1

; : : : ;X

n

)), whi
h is 
omputed by the following steps

(var(�) denotes the set of all variables o

urring in the synta
ti
 
onstru
tion �):

1. Let p(Z

1

; : : : ; Z

n

) :-L

1

; : : : ; L

k

be a 
lause for predi
ate p

(if ne
essary, rename the 
lause variables su
h that they are disjoint from X

1

; : : : ;X

n

)

Compute A


all

= 
all-restri
t(A; fX

1

; : : : ;X

n

g)

A

0

= hrepla
e all X

i

by Z

i

in A


all

i (i.e., dom(A

0

) = fZ

1

; : : : ; Z

n

g [

S

k

i=1

var(L

i

))

A

1

= ai(A

0

; L

1

)

A

2

= ai(A

1

; L

2

)

.

.

.

A

k

= ai(A

k�1

; L

k

)
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A

out

= exit-restri
t(A

k

; fZ

1

; : : : ; Z

n

g)

A

exit

= hrepla
e all Z

i

by X

i

in A

out

i (i.e., dom(A

exit

) = dom(A))

2. Let A

1

exit

; : : : ; A

m

exit

be the exit substitutions of all 
lauses for p as 
omputed in step 1.

Then de�ne A

su

ess

= A

1

exit

t : : : tA

m

exit

3. ai(A; p(X

1

; : : : ;X

n

)) = A

su

ess

[ (A�A


all

) if A

su

ess

6=?, else ?

Step 1 interprets a 
lause in the following way. Firstly, the 
all abstra
tion is 
omputed, i.e.,

the information 
ontained in the abstra
tion for the predi
ate 
all is restri
ted to the argument

variables (A


all

). The domain is 
hanged to the 
lause variables by mapping argument variables

to the 
orresponding variables of the applied 
lause (A

0

). Then ea
h literal in the 
lause body is

interpreted. The resulting abstra
tion (A

k

) is restri
ted to the variables in the 
lause head, i.e.,

we forget the information about the lo
al variables in the 
lause. Potential delayed 
onstraints

whi
h are not awakened at the 
lause end are passed to the abstra
tion A

out

by the exit-restri
t

operation. In the last step the domain is 
hanged to the original variables by renaming the variables

of the 
lause head into the variables of the predi
ate 
all (A

exit

). If all 
lauses de�ning the 
alled

predi
ate p are interpreted in this way, all possible interpretations are 
ombined by the least upper

bound of all abstra
tions (A

su

ess

). The 
ombination of this abstra
tion with the information

whi
h was forgotten by the restri
tion at the beginning of the predi
ate 
all yields the abstra
tion

after the predi
ate 
all (step 3).

Unfortunately, this abstra
t interpretation algorithm does not terminate in 
ase of re
ursive

programs. Sin
e this problem is solved in all frameworks for abstra
t interpretation, we do not

develop a new solution to this problem but we use one of the well-known te
hniques. Following

Bruynooghe's framework [4℄ we 
onstru
t a rational abstra
t AND-OR-tree representing the 
om-

putation of the abstra
t interpretation algorithm (see also Se
tion 4.3). During the 
onstru
tion of

the tree we 
he
k before the interpretation of a predi
ate 
all P whether there is an an
estor node

P

0

with a 
all to the same predi
ate and the same 
all abstra
tion (up to renaming of variables).

If this is the 
ase we take the su

ess abstra
tion of P

0

(or ? if it is not available) as the su

ess

abstra
tion of P instead of interpreting P . If the further abstra
t interpretation 
omputes a su

ess

abstra
tion A

0

for P

0

whi
h di�ers from the su

ess abstra
tion used for P , we start a re
omputation

beginning at P with A

0

as new su

ess abstra
tion. This iteration terminates be
ause all operations

used in the abstra
t interpretation are monotone (w.r.t. the order on A de�ned in Se
tion 4) and

the abstra
t domain is �nite. A detailed des
ription of this method is given in Se
tion 4.3.

3.3 Examples

The following CLP(R) program 
omputes the produ
t of all elements of a list of arithmeti
 expres-

sions:

prod([℄, 1).

prod([E|R℄, E*P) :- prod(R, P).

The 
orresponding 
at CLP(R) program is:

prod(A, B) :- A = [℄, B = 1.

prod(A, B) :- A = [E|R℄, B = E*P, prod(R, P).

If we query this program with a list of numbers, as in

11



fLg prod(L,Pr) fL,Prg

OR

fAg prod(A,B) fA,Bg fAg prod(A,B) fA,Bg

"

"

"

"

"

"

"

"

"

"

b

b

b

b

b

b

b

b

b

b

AND

fAg A=[℄ fAg B=1 fA,Bg

�

�

�

�

�

�

�

�

�

�

�

�

AND

fAg A=[E|R℄ A

1

B=E*P A

2

prod(R,P) A

3

#

#

#

#

#

#

#






















A

1

= fA, E, Rg A

2

= fA, E, R, fPg)Bg A

3

= fA, E, R, B, Pg

Figure 1: Final AND-OR-tree for the abstra
t interpretation of prod(L,Pr)

?- prod([2,3,4℄,Pr).

then the answer 
onstraint is Pr=24. Our abstra
t interpretation algorithm 
omputes the follow-

ing abstra
tions for the initial goal prod(L,Pr) and the initial abstra
tion fLg (spe
ifying the

groundness of the �rst argument):

ai(fLg; prod(L,Pr)):

Interpret the �rst 
lause:

ai(fAg; A=[℄) = fAg

ai(fAg; B=1) = fA; Bg

Interpret the se
ond 
lause:

ai(fAg; A=[E|R℄) = fA; E; Rg

ai(fA; E; Rg; B=E*P) = fA; E; R; fPg)Bg

ai(fA; E; R; fPg)Bg; prod(R,P)):

Re
ursive 
all: Take ? as result sin
e su

ess abstra
tion of an
estor 
all not available:

ai(fLg; prod(L,Pr)) = fL; Prgt ?= fL; Prg

Re
ursive 
all prod(R,P) again: Take the new su

ess abstra
tion fR; Pg of an
estor 
all:

ai(fA; E; R; fPg)Bg; prod(R,P)) = fA; E; R; fPg)B; Pg ! fA; E; R; B; Pg

ai(fLg; prod(L,Pr)) = fL; Prg t fL; Prg = fL; Prg

Hen
e the 
omputed su

ess abstra
tion is fL; Prg. This means that after a su

essful 
omputation

of the goal prod(L,Pr) the variable Pr is bound to a ground term and there are no delayed


onstraints. The �nal AND-OR-tree for this abstra
t interpretation is shown in Figure 1 (the

abstra
tions are written to the left and right of the 
orresponding literal).

In a similar way one 
an 
ompute the su

ess abstra
tion of the goal prod(L,Pr)w.r.t. the initial

abstra
tion fPrg. The result is ai(fPrg; prod(L,Pr)) = fPr; delayg indi
ating that there may be

a delayed 
onstraint at the end of the 
on
rete 
omputation. In fa
t, the CLP(R) 
omputation of

12



the goal

?- prod([A,B,C℄,24).

produ
es the \maybe" nonlinear answer 
onstraint 24=A*B*C.

Similarly, our abstra
t interpretation algorithm 
omputes the expe
ted answers (w.r.t. to the

delay information) to all queries shown in Example 1.1.

4 Corre
tness of the Abstra
t Interpretation Algorithm

In this se
tion we will prove the 
orre
tness of the presented abstra
t interpretation algorithm.

As mentioned in Se
tion 3 we use Bruynooghe's framework [4℄ for abstra
t interpretation of logi


programs with the modi�
ations listed at the beginning of Se
tion 3. Therefore we have to relate the

abstra
t domain to the 
on
rete domain of 
onstraints by de�ning a 
on
retisation fun
tion. If we


an prove that the abstra
t operations de�ned in Se
tion 3.2 are 
orre
t w.r.t. the 
orresponding

operations on the 
on
rete domain, the 
orre
tness of our algorithm is a dire
t 
onsequen
e of

Bruynooghe's work.

4.1 Relating Abstra
tions to Con
rete Constraints

Our abstra
t interpretation algorithm is useless if we have no proposition about the relationship

of the 
omputed abstra
t properties of a 
at CLP(R) program and the 
on
rete 
onstraints whi
h


an o

ur at run time. Therefore we have to de�ne a 
on
retisation fun
tion 
:A ! 2

C

whi
h maps

an abstra
tion into a subset of the 
on
rete domain. In our 
ase the 
on
rete domain C is the set

of all 
olle
tions of 
onstraints of the form

X = Y X = 
 X = f(Y

1

,...,Y

n

)

X = Y+Z X = Y-Z X = Y*Z

X < Y X > Y X <= Y X >= Y

where X, Y, Y

1

,. . . ,Y

n

, Z are variables, 
 is an atom or numeri
 
onstant and f is an uninterpreted

fun
tor symbol. These are the 
onstraints a

umulated during the exe
ution of a 
at CLP(R)

program and therefore sometimes 
alled 
at 
onstraints. In pra
ti
e a 
olle
tion of su
h 
onstraints

is transformed into a simpli�ed non-
at form in order to get a more eÆ
ient satis�ability 
he
k and

readable answer 
onstraints, but this is not relevant for our purpose. The meaning of a 
olle
tion

C 2 C of 
onstraints is the 
onjun
tion of all its elements, i.e., it spe
i�es a set of solutions (mappings

from variables into elements of the underlying 
onstraint stru
ture) satisfying ea
h single 
onstraint

(
f. [15℄):

Sol(C) := f� j � is a valuation where �(
) is true for all 
 2 Cg

The notion of \groundness" in logi
 programming 
orresponds to \uniqueness" of solutions in


onstraint logi
 programming. We say that variable X is unique in the 
onstraints C if �

1

(X) =

�

2

(X) for all �

1

; �

2

2 Sol(C). Moreover, we say that a variable set V determines X in C if

�

1

(X) = �

2

(X) for all �

1

; �

2

2 Sol(C) with �

1

=

V

�

2

.

5

In this 
ase we write V

C

)X. Hen
e ;

C

)X

is equivalent to X unique in C. We 
all the arithmeti
 term X*Y nonlinear in the 
onstraints C

5

�

1

=

V

�

2

is equivalent to the 
ondition �

1

(Z) = �

2

(Z) for all Z 2 V .
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if both X and Y are not unique in C, i.e., a 
onstraint 
ontaining this term would be delayed in

CLP(R).

Now we are able to present the pre
ise de�nition of the 
on
retisation fun
tion 
:A ! 2

C

whi
h

relates an abstra
tion to a set of 
onstraints:


(?) = ;


(A) = fC 2 C j 1. V

C

)X for all V)X 2 A

2. X=Y*Z 2 C with Y; Z 2 dom(A) and Y*Z nonlinear in C

=) delay 2 A or delay(Y or Z) 2 A g

The �rst 
ondition expresses that for all abstra
tion elements V)X 2 A the variables in V determine

the value of X in all 
onstraints 
orresponding to A. We also say that the 
onstraints C satisfy the

variable 
ondition V)X if this 
ondition holds. Hen
e X 2 A implies that X is unique in all 
on
rete


onstraints 
orresponding to A.

The se
ond 
ondition ensures that all nonlinear parts of 
onstraints are 
ontained in A. If

this 
ondition holds, we say that the nonlinear term Y*Z is 
overed by A. But note that only

nonlinear terms having variables in the domain of A must be 
overed by A. This is due to the

fa
t that A 
ontains abstra
t information about the variables of one 
lause but during the 
on
rete


omputation the a

umulated 
onstraints may 
ontain nonlinear parts from arbitrary 
lauses. Sin
e

we are interested in the analysis of all nonlinear 
onstraints, we will prove in Theorem 4.7 that the

nonlinear 
onstraints with variables outside dom(A) are also 
overed by the abstra
tion A.

Sin
e our abstra
t interpretation algorithm always simpli�es the 
omputed abstra
tions by the

normalization rules of Se
tion 3.1, we have to show that these rules are invariant w.r.t. the 
on
rete

interpretation of abstra
tions. This is the purpose of the following lemma.

Lemma 4.1 If A and A

0

are abstra
tions with A! A

0

, then 
(A) = 
(A

0

).

Proof: First we show 
(A) � 
(A

0

). Let C 2 
(A). C 2 
(A

0

) 
an be proved by a 
ase analysis

on the applied normalization rule. We show only the nontrivial 
ase N1, i.e., let A = A

0

[

fZ; V [ fZg)Xg and A

0

= A

0

[ fZ; V)Xg. Sin
e the only di�eren
e between A and A

0

is the

transformation of \V [ fZg)X" into \V)X", we have to show V

C

)X. Z is unique in C sin
e

Z 2 A and C 2 
(A). Let �

1

; �

2

2 Sol(C) with �

1

=

V

�

2

. Then �

1

=

V [fZg

�

2

by uniqueness of Z

in C. This implies �

1

(X) = �

2

(X) by V [ fZg)X 2 A. Hen
e V

C

)X.

Next we show 
(A) � 
(A

0

). Let C 2 
(A

0

). As before C 2 
(A) 
an be proved by a


ase analysis on the applied normalization rule but we show only the interesting rule N3. Let

A = A

0

[fV

1

)X; V

2

)Xg and A

0

= A

0

[fV

1

)Xg with V

1

� V

2

. We have to show that C satis�es

the variable 
ondition V

2

)X. Let �

1

; �

2

2 Sol(C) with �

1

=

V

2

�

2

. Then �

1

=

V

1

�

2

sin
e V

1

� V

2

.

Hen
e �

1

(X) = �

2

(X) by V

1

)X 2 A

0

and C 2 
(A

0

).

Due to this lemma it makes no di�eren
e to use an abstra
tion A or the normalization of A if we

want to prove a proposition like C 2 
(A). We will use this property in the 
orre
tness proofs for

the abstra
t operations (
f. Se
tion 4.2).
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For the termination of the abstra
t interpretation algorithm it is important that all operations on

the abstra
t domain are monotone. Therefore we de�ne the following order relation on normalized

abstra
tions:

(a) ?v � for all � 2 A

(b) A v A

0

() 1. V

0

)X 2 A

0

=) 9V � V

0

with V)X 2 A

2. delay(X or Y ) 2 A ) delay(X or Y ) 2 A

0

3. delay 2 A ) delay 2 A

0

It is easy to prove that v is a re
exive, transitive and anti-symmetri
 relation on normalized

abstra
tions. Moreover, the operation t de�ned in Se
tion 3.2 
omputes the least upper bound of

two abstra
tions whi
h is a simple 
onsequen
e of its de�nition.

Proposition 4.2 A

1

tA

2

is a least upper bound of A

1

; A

2

2 A.

It 
an also be easily shown that 
 is a monotone fun
tion.

Proposition 4.3 If A v A

0

, then 
(A) � 
(A

0

).

For the termination of the analysis algorithm it is essential that all abstra
t operations de�ned in

Se
tion 3.2 (
all and exit restri
tion, abstra
t 
onstraint solving et
.) are monotone. But this is

also a dire
t 
onsequen
e of the de�nition of v and thus we omit the simple proofs.

4.2 Corre
tness of Abstra
t Operations

Following the framework presented in [4℄, the 
orre
tness of the abstra
t interpretation algorithm


an be proved by showing the 
orre
tness of ea
h basi
 operation of the algorithm (like abstra
t


onstraint solving, 
lause entry and 
lause exit). Corre
tness means in this 
ontext that all 
on
rete


omputations, i.e., the results of 
on
rete 
onstraint solving, 
lause entry and 
lause exit (
f.

Se
tion 2) are subsumed by the abstra
tions 
omputed by the 
orresponding abstra
t operations.

In this se
tion we will show the 
orre
tness of ea
h of these operations.

The main result in this se
tion is the 
orre
tness of ai-
on, i.e., the abstra
t 
onstraint solver

ai-
on 
overs all possible 
on
rete 
onstraints obtained by adding a new 
onstraint to a given set of


onstraints. Sin
e the proof requires a lengthy 
ase distin
tion on the di�erent kinds of 
onstraints,

the detailed proof is 
ontained in the Appendix.

Theorem 4.4 (Corre
tness of abstra
t 
onstraint solving) Let A be an abstra
tion, 
 be a


at 
onstraint (as de�ned in Se
tion 4.1) with var(
) � dom(A). Then C [ f
g 2 
(ai-
on(A; 
))

for all C 2 
(A).

Next we want to prove that the abstra
t operations performed at the entry of a 
lause are 
orre
t

w.r.t. the 
on
rete operational semanti
s.

Theorem 4.5 (Corre
tness of 
lause entry) Let P = p(X

1

; : : : ;X

n

) be a predi
ate 
all with

abstra
tion A and C 2 
(A). Let p(Z

1

; : : : ; Z

n

) :-L

1

; : : : ; L

k

be a (renamed) 
lause and A

0

be the

abstra
tion 
omputed by algorithm ai. Then C [ fp(X

1

; : : : ;X

n

)=p(Z

1

; : : : ; Z

n

)g 2 
(A

0

).
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Proof: Let A

0

be the abstra
tion after 
lause entry, i.e., A

0

is identi
al to A ex
ept that all

delay abstra
tions are omitted and the variables are restri
ted to fX

1

; : : : ;X

n

g and then re-

named to fZ

1

; : : : ; Z

n

g. Hen
e dom(A

0

) = var(p(Z

1

; : : : ; Z

n

) :-L

1

; : : : ; L

k

). Let C

0

:= C [

fp(X

1

; : : : ;X

n

)=p(Z

1

; : : : ; Z

n

)g. We have to show: C

0

2 
(A

0

).

1. V)Z 2 A

0

: Let � be the bije
tive renaming mapping � = fZ

1

7! X

1

; : : : ; Z

n

7! X

n

g. By

de�nition of A

0

, �(V ))�(Z) 2 A. Let �

1

; �

2

2 Sol(C

0

) with �

1

=

V

�

2

. Sin
e �

1

and �

2

are

solutions of p(X

1

; : : : ;X

n

)=p(Z

1

; : : : ; Z

n

), �

1

=

�(V )

�

2

. Sin
e C 2 
(A) and �(V ))�(Z) 2 A,

�(V )

C

)�(Z), and therefore �

1

(�(Z)) = �

2

(�(Z)). This implies �

1

(Z) = �

2

(Z). Hen
e V

C

0

)Z.

2. X=Y*Z 2 C

0

with Y; Z 2 dom(A

0

) and Y*Z nonlinear in C

0

. This 
ase 
annot o

ur sin
e

the only 
onstraint in C

0

with variables from dom(A

0

) is p(X

1

; : : : ;X

n

)=p(Z

1

; : : : ; Z

n

) (re
all

that the applied 
lause is a new variant and has no variables in 
ommon with the previous


omputation).

Next we prove the 
orre
tness of the abstra
t 
lause exit operations, i.e., we show that all 
onstraints

o

urring at the end of a 
lause applied to a predi
ate 
all are 
overed by the abstra
t interpretation

algorithm. Sin
e the exe
ution of a 
lause only adds new 
onstraints to the 
onstraints present at

the beginning of the predi
ate 
all, it is suÆ
ient to formulate the 
orre
tness 
riterion as in the

following theorem.

Theorem 4.6 (Corre
tness of 
lause exit) Let P = p(X

1

; : : : ;X

n

) be a predi
ate 
all with

abstra
tion A

in

and C

in

2 
(A

in

). Let A = ai(A

in

; P ) = A

su

ess

[ (A

in

�A


all

) be the abstra
tion

after the predi
ate 
all 
omputed by the abstra
t interpretation algorithm ai. Let L :-L

1

; : : : ; L

k

be a (renamed) 
lause for P , and A

k

be the abstra
tion 
omputed for the 
lause end in ai. If

C

k

2 
(A

k

) is an extension of C

in

and the 
onstraint P=L, i.e., C

k

= C

in

[ fP=Lg [ C for some


onstraints C, then C

k

2 
(A).

Proof: We show C

k

2 
(A) if the 
onditions of the theorem are satis�ed. Let L = p(Z

1

; : : : ; Z

n

)

and � be the bije
tive renaming mapping � = fX

1

7! Z

1

; : : : ;X

n

7! Z

n

g.

1. V)X 2 A: We 
an distinguish two di�erent 
ases:

(a) V)X 2 A

in

� A


all

: Then V)X 2 A

in

and hen
e V

C

in

)X. This implies V

C

k

)X be
ause

C

k

= C

in

[ fP=Lg [ C.

(b) V)X 2 A

su

ess

: By de�nition of A

su

ess

, there exists V

0

� V with �(V

0

))�(X) 2 A

k

and �(V

0

) [ f�(X)g � fZ

1

; : : : ; Z

n

g. Hen
e C

k

2 
(A

k

) implies �(V

0

)

C

k

)�(X). Sin
e ea
h

solution of C

k

is also a solution of X

i

=Z

i

(i = 1; : : : ; n), we obtain V

0

C

k

)X and therefore

V

C

k

)X.

2. X=Y*Z 2 C

k

with Y; Z 2 dom(A) and Y*Z nonlinear in C

k

. Sin
e C

k

= C

in

[ fP=Lg [ C and

C 
ontains only new 
onstraints with 
lause variables whi
h are di�erent from dom(A), the


onstraint X=Y*Zmust o

ur in C

in

. Clearly, Y*Z is nonlinear in C

in

sin
e it is nonlinear in C

k

.

Therefore C

in

2 
(A

in

) implies delay 2 A

in

or delay(Y or Z) 2 A

in

. This delay abstra
tion is

also 
ontained in A be
ause A

in

�A


all

� A and A


all

does not 
ontain any delay abstra
tions

(by de�nition of 
all-restri
t). Hen
e the nonlinear term Y*Z is 
overed by A.
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Figure 2: OR-node for 
lause entry
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Figure 3: AND-node for a 
lause

4.3 Corre
tness of the Abstra
t Interpretation Algorithm

In the last se
tion we have shown the lo
al 
orre
tness of the three elementary operations of the

abstra
t interpretation algorithm. Bruynooghe [4℄ has proved that these lo
al 
orre
tness 
riteria

are suÆ
ient for the global 
orre
tness of the abstra
t interpretation algorithm. As already sket
hed

in Se
tion 3.2, the abstra
t interpretation algorithm generates an abstra
t AND-OR-tree whi
h

represents all 
on
rete 
omputations. To avoid in�nite paths, this tree is a rational AND-OR-

tree, i.e., if a predi
ate 
all is identi
al to (or a variant of) a predi
ate 
all in an an
estor node,

then this 
all node is identi�ed with the an
estor node and the abstra
t su

ess information of the

an
estor node is passed to this predi
ate 
all. Sin
e the su

ess abstra
tion of the predi
ate 
all may

in
uen
e the su

ess abstra
tion of the 
orresponding an
estor, the algorithm loops until these two

abstra
tions are identi
al. The monotoni
ity property of all abstra
t operations together with the

�nite domain avoids an in�nite looping in this graph. Now we present the abstra
t interpretation

algorithm in more detail.

The abstra
t interpretation pro
edure generates the abstra
t AND-OR-graph as follows. In

the �rst step, the root is 
reated. It is marked with the initial goal (w.l.o.g. we assume that the

initial goal 
ontains only one literal) and the initial abstra
tion for this goal. Then this initial

graph is extended by 
omputing the su

ess abstra
tion for this goal. The su

ess abstra
tion

A

0

of a single 
onstraint 
 with abstra
tion A is 
omputed by abstra
t 
onstraint solving, i.e.,

A

0

= ai-
on(A; 
) (
ompare Se
tion 3.2). We distinguish the following 
ases for the 
omputation of

the su

ess abstra
tion A

0

of a node with a predi
ate 
all P and abstra
tion A:

1. There is no an
estor node with the same predi
ate 
all and the same 
all abstra
tion

6

(up to

renaming of variables): First of all, we add an OR-node as shown in Figure 2 (H

1

; : : : ;H

m

are

6

Re
all that the 
all abstra
tion of a predi
ate is the abstra
tion given before the predi
ate 
all restri
ted to the

argument variables of the predi
ate 
all (
ompare operation 
all-restri
t in Se
tion 3.2).
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Figure 4: Re
ursive 
all: P is a renaming of P

0

and A

in

restri
ted to


all P is a renaming of A

0

in

restri
ted to 
all P

0

the heads of all 
lauses for P ). A

in

i

is the abstra
tion 
omputed by our abstra
t operations

for the entry of 
lause H

i

:- � � � (i.e., A

0

in algorithm ai in Se
tion 3.2). Then for ea
h new


lause head H an AND-node is added as shown in Figure 3 where H :-L

1

; : : : ; L

k

is the


orresponding 
lause. After 
opying the abstra
tion of the head to the abstra
tion of the �rst

body literal (A

0

= A

in

) the su

ess abstra
tion of ea
h literal in the 
lause body is 
omputed.

Then the su

ess abstra
tion A

out

of the entire 
lause is 
al
ulated by restri
ting A

k

to the

head variables (i.e., A

out

is identi
al to A

out

in algorithm ai in Se
tion 3.2). When all su

ess

abstra
tions of all 
lauses for the predi
ate 
all P are 
omputed, they are renamed, 
ombined

by the least upper bound operation and then 
ombined with the elements of abstra
tion A

whi
h were deleted in the 
all abstra
tion (
ompare algorithm ai).

2. There is an an
estor node P

0

with the same predi
ate 
all and the same 
all abstra
tion

(up to renaming of variables) (Figure 4): Then the su

ess abstra
tion of P

0

(A

0

out

without

the elements already present in A

0

in

, i.e., A

su

ess

in algorithm ai in Se
tion 3.2) is taken as

the su

ess abstra
tion of P (or ? if it is not available). The 
ombination of this su

ess

abstra
tion with the remaining elements of A

in

yields A

out

(step 3 of algorithm ai) and we

pro
eed with the abstra
t interpretation pro
edure (i.e., we 
onne
t P to P

0

). If we rea
h the

node P

0

at some point during the further 
omputation and we 
ompute a su

ess abstra
tion

for P

0

whi
h di�ers from the old su

ess abstra
tion taken for P , we re
ompute the su

ess

abstra
tions beginning at P where we take the new su

ess abstra
tion of P

0

as new su

ess

abstra
tion for P . The monotoni
ity property of the abstra
t operations and the �nite domain

ensures that this iteration terminates.

Bruynooghe [4℄ has shown that this algorithm 
omputes a superset of all 
on
rete proof trees if the

abstra
t operations for built-ins (here: 
onstraints), 
lause entry and 
lause exit satis�es 
ertain


orre
tness 
onditions. We have mentioned at the beginning of Se
tion 3 that this framework
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an also be applied to 
onstraint logi
 programming if the notions of substitution and uni�
ation

are repla
ed by 
onstraints and 
onstraint solving. Therefore Theorems 4.4, 4.5 and 4.6 imply

exa
tly the ne
essary 
orre
tness 
onditions of Bruynooghe's framework applied to 
onstraint logi


programming. Hen
e we 
an infer the 
orre
tness of our abstra
t interpretation algorithm.

There is one remaining problem with our abstra
t interpretation algorithm. The main mo-

tivation of this paper is the 
hara
terization of a 
lass of CLP(R) programs where all nonlinear


onstraints be
ome linear during the 
omputation. If we analyse a CLP(R) program with our

algorithm, the absen
e of delay elements in the su

ess abstra
tion of the goal does not ne
essarily

indi
ate that there are no delayed nonlinear 
onstraints at the end of the 
omputation. Due to

the de�nition of our 
on
retisation fun
tion 
, this indi
ates that there are no delayed nonlinear


onstraints 
ontaining goal variables. But it does not ex
lude the 
ase that there are delayed 
on-

straints with variables lo
al to some 
lauses. The next theorem shows that this 
ase 
annot o

ur

sin
e all delayed 
onstraints are 
overed by our algorithm.

Theorem 4.7 (Completeness of delay abstra
tions) Let L be a 
at literal or 
onstraint with

abstra
tion A and A

0

= ai(A;L). Let C 2 
(A) and C

0

2 
(A

0

) with C

0

= C [ C

L

where C

L

are

the new 
onstraints added to C during the exe
ution of L. If X=Y*Z 2 C

L

with Y*Z nonlinear in

C

0

, then A

0


ontains a delay element.

Proof: If X=Y*Z 2 C

L

, this 
onstraint must be added by exe
uting a 
lause 
ontaining this 
onstraint

in the body (or L = X=Y*Z, whi
h is the trivial 
ase). Sin
e all 
on
rete proof trees are represented

by the abstra
t rational AND-OR-tree 
omputed by the abstra
t interpretation algorithm (
f. [4℄),

this 
onstraint must also be pro
essed by our analysis algorithm whi
h inserts the delay element

delay(Y or Z). From the de�nition of ai-
on, exit-restri
t, t, and ai it is obvious that this delay

element will never be deleted in the subsequent (su

ess) abstra
tions. The only possibility to

delete a delay element is an appli
ation of normalization rule N2, but this 
annot happen if Y*Z is

nonlinear in C

0

(and hen
e in all subsets of C

0

) due to the 
orre
tness of the normalization rules

(Lemma 4.1). Thus this delay element or a transformed version of it (by operation exit-restri
t or

renaming) is 
ontained in A

0

.

Due to this theorem our abstra
t interpretation algorithm 
hara
terizes a 
lass of CLP(R) programs

(those 
ontaining no new delay elements in the su

ess abstra
tion of the goal) for whi
h all

nonlinear 
onstraints be
ome linear at run time. A 
on
rete example for the 
onstru
tion of an

abstra
t AND-OR-tree has been shown in Se
tion 3.3.

5 Extension to Other Delayed Constraints

In Se
tion 2 we have de�ned the sub
lass of CLP(R) programs whi
h 
an be analysed by our

abstra
t interpretation algorithm. However, CLP(R) programs may also 
ontain the arithmeti


fun
tions /, sin, 
os, pow, abs, min and max whi
h are also delayed until parti
ular 
onditions are

satis�ed. For instan
e, the 
onstraint Z=sin(X) is delayed until X is ground while the 
onstraint

Z=abs(X) is delayed until X is ground, Z=0 or Z is ground and negative [13℄. Sin
e the exa
t value

of a ground variable is not available in our abstra
t domain, we 
an only approximate this behavior
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on the abstra
t level. In order to analyse these new 
onstraints we have to extend our algorithm

as follows:

1. De�ne a new element in the abstra
t domain appropriate to the abstra
t des
ription of the

delayed 
onstraint.

2. Extend the abstra
t 
onstraint solver ai-
on to the new 
onstraint.

3. Extend the normalization rules for abstra
tions to des
ribe the wakeup 
onditions of the

delayed 
onstraint.

In the following we demonstrate the ne
essary extensions by two examples.

Z=sin(X): This 
onstraint delays until X is ground. Therefore we introdu
e the element delay(X)

in our abstra
t domain and extend the de�nition of ai-
on to:

ai-
on(A; Z=sin(X)) = A [ ffXg)Z; delay(X)g

The wakeup 
ondition for this kind of 
onstraints is des
ribed by the following normalization

rule for abstra
tions:

A [ fX; delay(X)g �! A [ fXg

Z=min(X,Y): This 
onstraint delays until X and Y are ground. Therefore we introdu
e the element

delay(X and Y) in our abstra
t domain and extend the de�nition of ai-
on to:

ai-
on(A; Z=min(X,Y)) = A [ ffX,Yg)Z; delay(X and Y)g

The wakeup 
ondition for this kind of 
onstraints is des
ribed by the following normalization

rule:

A [ fX; Y; delay(X andY )g �! A [ fX; Y g

All other types of delayed 
onstraints 
an be handled in a similar way. Although we have not

expli
itly mentioned the ne
essary 
hanges to exit-restri
t, it is obvious how to adapt the de�nition

of exit-restri
t to the new kinds of 
onstraints.

6 Appli
ations

We have presented an algorithm to approximate the potential run-time o

urren
es of nonlinear


onstraints in a CLP(R) program. In this se
tion we will outline possible appli
ations of this

algorithm.

6.1 Better User Support

In CLP(R) the programmer 
an formulate arbitrary arithmeti
 
onstraints. However, during the


omputation pro
ess only linear arithmeti
 
onstraints are a
tively used to restri
t the sear
h spa
e

and 
ontrol the 
omputation. The programmer is responsible for writing the programs in su
h a

way that all nonlinear 
onstraints be
ome linear during the 
omputation. If this is not the 
ase,
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the program may stop with a set of 
omplex nonlinear 
onstraints for whi
h the satis�ability is

diÆ
ult to de
ide. Unfortunately, it is not easy to see whether 
onstraints be
ome linear be
ause

this depends on the data
ow and the 
onstraint solving in the program. Our algorithm is able to

support the user in this diÆ
ult question sin
e the algorithm 
an be applied in the following ways:

1. We start the algorithm with a parti
ular goal and an initial abstra
tion. If the su

ess

abstra
tion 
omputed for this goal 
ontains no delay elements, then all 
omputed answer


onstraints are linear, i.e., the CLP(R) 
onstraint solver 
an de
ide the satis�ability of the

�nal answer. Conditionally su

essful answers 
annot o

ur in this 
ase.

2. If the user is interested not only in the �nal answer 
onstraints but also in 
onstraints produ
ed

during the 
omputation pro
ess, we start the algorithm with a goal and an abstra
tion and


onsider at the end of the abstra
t interpretation the 
all and su

ess abstra
tions of all

literals in the program (i.e., the entire abstra
t AND-OR-tree as shown in Se
tion 3.3). Sin
e

these abstra
tions are valid approximations of all 
onstraints whi
h o

ur at run time, we


an infer properties of intermediate 
onstraints. For instan
e, if none of these abstra
tions


ontains a delay element, then the programmer 
an be sure that the CLP(R) 
onstraint solver

de
ides the satis�ability of all 
onstraints during the entire exe
ution and therefore useless

derivations with unsolvable nonlinear 
onstraints are not explored. On the other hand, delay

elements in some abstra
tion indi
ate the program points where nonlinear 
onstraints may

o

ur at run time. This 
an be a useful information for the programmer.

7

6.2 More EÆ
ient Implementations

The knowledge about the potential presen
e of nonlinear 
onstraints 
an be used to optimize the

implementation of logi
 programs with arithmeti
 
onstraints. In this 
ase it is ne
essary to 
onsider

the 
all and su

ess abstra
tions of all literals rather than the su

ess abstra
tion of the main goal

(similarly to item 2 in Se
tion 6.1 above). There are at least two potential optimizations:

1. If none of the abstra
tions 
ontains a delay element, nonlinear 
onstraints 
annot o

ur at run

time. Therefore general instru
tions for 
reating nonlinear 
onstraints 
an be spe
ialized to

simpler instru
tions for 
reating linear 
onstraints [16℄ and the program 
an be 
ompiled with-

out the delay me
hanism for nonlinear 
onstraints [18℄. For instan
e, 
onsider the following


lause whi
h may be part of an ele
troni
 
ir
uit program.

p(V,I,R) :- Rs = Rt+R, Rt = 2*R, V = Rs*I.

Without any information about the run-time behavior of the program, the CLP(R) 
ompiler

translates the 
onstraint V = Rs*I into an instru
tion whi
h generates a possibly nonlinear


onstraint [16℄. However, if it is known at 
ompile time that predi
ate p will always be 
alled

su
h that the third argument R has a unique value, our algorithm infers that variable Rs has

always a unique value just before the 
onstraint V = Rs*I is pro
essed. Hen
e the 
onstraint

V = Rs*I 
an be 
ompiled into 
ode for generating a linear 
onstraint (see [16℄ for details)

whi
h has a more eÆ
ient behavior at run time.

7

For su
h an appli
ation it may be ne
essary to 
hange the de�nition of 
all-restri
t so that delay elements are

passed into the applied 
lause. Then the potential presen
e of nonlinear 
onstraints 
an be immediately seen by


onsidering the lo
al abstra
tion without in
luding the abstra
tions of an
estor nodes in the tree.
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2. The RISC-CLP(Real) system [14℄ allows the formulation of nonlinear arithmeti
 
onstraints

whi
h are not delayed but 
he
ked by a powerful 
onstraint solver. However, this 
onstraint

solver is very 
omplex and therefore sometimes too ineÆ
ient for solving simple linear 
on-

straints. Our algorithm 
an be used to optimize the RISC-CLP(Real) system sin
e our

algorithm determines the program points where nonlinear 
onstraints may o

ur and where

all 
onstraints are de�nitively linear. Hen
e we 
an 
all a more eÆ
ient linear 
onstraint

solver for the latter program points without restri
ting the 
omputational power of the RISC-

CLP(Real) system.

6.3 Improving the Termination Behavior

One of the prin
iples of 
onstraint logi
 programming is the satis�ability 
he
k during 
omputa-

tion: a derivation pro
eeds only if all a

umulated 
onstraints are solvable [15℄. This allows an

early failure dete
tion and avoids in�nite derivation paths whi
h may be present in pure logi
 pro-

gramming. However, in CLP(R) this advantage is sometimes lost sin
e nonlinear 
onstraints are

not 
he
ked for satis�ability. For instan
e, 
onsider the following CLP(R) program for 
omputing

fa
torial numbers:

fa
(0,1).

fa
(N,N*F) :- N >= 1, fa
(N-1,F).

To 
ompute a fa
torial we start with the goal ?-fa
(8,F) and obtain the answer 
onstraint

F=40320. If we want to know whether a given number is a fa
torial, we try to prove a goal like

?-fa
(N,24). In this 
ase CLP(R) 
omputes the answer 
onstraint N=4 after some ba
ktra
king

steps. Although nonlinear 
onstraints are generated during this 
omputation, they be
ome linear if

the �rst 
lause is used and binds the unknown �rst argument. But if we try to prove a (unsolvable)

goal like ?-fa
(N,10), CLP(R) runs into an in�nite loop by applying the se
ond 
lause again and

again. The a

umulated nonlinear 
onstraints are not solvable but this is not dete
ted by CLP(R)

due to the delay me
hanism. If we use a more powerful 
onstraint solver whi
h is able to treat

nonlinear 
onstraints (like in CAL [2℄ or RISC-CLP(Real) [14℄), this in�nite loop 
an be avoided.

We 
an use our abstra
t interpretation algorithm to �nd su
h sour
es of nontermination. For

this purpose we 
ompute the 
all abstra
tion of ea
h literal in the program. If the abstra
tion of a

re
ursive 
all 
ontains a delay element, we may do the following:

1. We warn the user that there may be delayed nonlinear 
onstraints before the re
ursive 
all

whi
h 
an 
ause an in�nite loop if these 
onstraints are not solvable.

2. We use a powerful 
onstraint solver for nonlinear 
onstraints before the re
ursive 
all at

run time in order to avoid the des
ribed sour
e of nontermination. This seems to be a

good 
ompromise between the eÆ
ien
y of the CLP(R) system and the power of the RISC-

CLP(Real) system.

If a solver for nonlinear 
onstraints is integrated in the system, it should also be used at the end

of a 
omputation whenever the su

ess abstra
tion of the initial goal 
ontains delay elements.
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7 Con
lusions and Related Work

We have presented a method for the analysis of nonlinear 
onstraints o

urring at run time in the

exe
ution of a CLP(R) program. Sin
e an exa
t analysis is impossible at 
ompile time, we have

used an abstra
t interpretation algorithm to approximate the possible delayed nonlinear 
onstraints

and the variable dependen
ies o

urring at run time. The appli
ation of this algorithm to various

examples shows that our algorithm has enough pre
ision for pra
ti
al programs. The information

produ
ed by this algorithm 
an be used to support the programmer when using the delay me
hanism

of the CLP(R) system or to optimize the program when using a more powerful 
onstraint solver

like RISC-CLP(Real).

We have developed our analysis algorithm on the basis of a given framework for the abstra
t

interpretation of logi
 programs [4℄ sin
e the operational semanti
s of CLP(R) is very similar to logi


programming. The only di�eren
e is the use of sets of 
onstraints instead of substitutions. Therefore

any other framework may also be appli
able. Marriott and S�ndergaard [21℄ have developed a

parti
ular framework for the abstra
t interpretation of 
onstraint logi
 programming languages

based on a denotational des
ription of the semanti
s. They have also shown the appli
ation of

their framework to the freeness and groundness analysis of CLP programs. However, they have

not applied their method to a parti
ular domain of 
onstraints. Therefore they have not pre
isely

des
ribed a solution to one of the main diÆ
ulties in a 
on
rete appli
ation: the abstra
tion of

the freeness or uniqueness of a variable w.r.t. a given 
on
rete set of 
onstraints. This is one of

the main points addressed in this paper. We have derived uniqueness information w.r.t. arithmeti



onstraints over the real numbers by 
onsidering the variable dependen
ies 
aused by 
onstraints.

The normalization rules for our abstra
t domain 
orresponds to 
onstraint solving in the 
on
rete

domain.

Most of the well-known abstra
t interpretation algorithms for the derivation of groundness

information of variables or mode information for predi
ates in logi
 programs use a small number

of abstra
t values like ground, free or any (see, for instan
e, [23, 24, 4℄ or [19℄ for the 
ase of

CLP(R)). Su
h a domain yields quite good results for many pra
ti
al logi
 programs. However,

for 
onstraint logi
 programming it must be re�ned sin
e the possible reasons for the groundness

of variables are mu
h more 
ompli
ated. For instan
e, the arithmeti
 
onstraint X=Y+Z implies the

groundness of Y if X and Z are ground but not the groundness of Y and Z if X is ground. A typi
al

programming methodology in 
onstraint logi
 programming is \test and generate" [17, 27℄ where

variables are instantiated by generators after the 
reation of a network of 
onstraints between these

variables. The following simple digital 
ir
uit program uses this te
hnique (re
all that we assume

a left-to-right strategy for the evaluation of subgoals):

p(X,Y,Z) :- not(X,NX), and(NX,Y,NXY), not(Z,NZ), and(NXY,NZ,1), % test

bit(X), bit(Y), bit(Z). % generate

not(A,NA) :- NA = 1-A.

and(A,B,AB) :- AB = A*B.

bit(0).

bit(1).

The unique answer 
onstraint to the goal ?-p(X,Y,Z) is X=0,Y=1,Z=0, i.e., there are no delayed

nonlinear 
onstraints in the answer. However, a simple mode analysis as in [19℄ would infer that
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the predi
ate and is 
alled with free variables in the �rst and se
ond argument position and hen
e

there may be a delayed nonlinear 
onstraint at run time. In order to improve the a

ura
y of the

analysis, we have used impli
ations of the form V)X to des
ribe dependen
ies between di�erent

variables. For the last example our algorithm infer the dependen
ies fXg)NX, fNX,Yg)NXY and

fZg)NZ (among others). Sin
e the variables X, Y and Z are bound to ground terms by the last

bit-literals in the �rst 
lause, our algorithm infers (using the variable dependen
ies) that there are

no delayed nonlinear 
onstraints in the answer. This example shows that our algorithm has a better

pre
ision than other algorithms for groundness analysis whi
h is due to the fa
t that grounding

variables by 
onstraint solving and awakening delayed 
onstraints 
an be easily des
ribed on the

abstra
t level with our abstra
t domain.

Our abstra
t domain has some similarities to the abstra
t domain used for the analysis of

residuating logi
 programs [11℄. This is due to the fa
t that the analysis of variable dependen
ies

is also essential for a pre
ise analysis of residuating logi
 programs. However, the meaning of

abstra
tions is quite di�erent in both approa
hes. In 
ase of residuating logi
 programs the 
on
rete

domain 
onsists of substitutions and residuated equations and therefore substitutions must be

interpreted w.r.t. the 
urrent set of residuated equations. In our 
ase abstra
tions have a more

dire
t meaning in the 
on
rete domain and therefore the 
on
retisation fun
tion and the 
orre
tness

proofs are simpler. Further essential di�eren
es show up in the de�nition of abstra
t uni�
ation

whi
h is more sophisti
ated in the 
ase of 
onstraint logi
 programs.

Gar
��a de la Banda and Hermenegildo [9℄ have independently developed a framework for the

analysis of 
onstraint logi
 programs by extending Bruynooghe's framework. Although they were

mainly interested in the derivation of groundness information and did not in
lude information

about nonlinear 
onstraints in their abstra
t domain, the abstra
t representation of variable de-

penden
ies is very similar to our approa
h. They also asso
iate to ea
h variable sets of variables

whi
h uniquely determine the value of that variable. However, they have given a dire
t de�nition of

abstra
t 
onstraint solving whi
h results in more 
ompli
ated de�nitions than our approa
h using

normalization rules to simplify abstra
tions after abstra
t 
onstraint solving.

Re
ently, Baker and S�ndergaard [3℄ have proposed to use the abstra
t domain Prop [22, 6℄

for a pre
ise uniqueness analysis in 
onstraint logi
 programs. Their domain 
onsists of a parti
-

ular sub
lass of propositional formulae over the program variables. The abstra
tion of arithmeti



onstraints is very similar to our approa
h, and their domain 
an additionally 
apture disjun
tive

information like \X or Y is de�nite." However, they have not 
onsidered the abstra
tion of delayed

nonlinear 
onstraints, and a rigorous 
orre
tness proof is not provided in their paper.

The main 
ontribution of this paper is to provide an a

urate analysis of nonlinear 
onstraints

together with a rigorous soundness proof of the analysis. The use of normalization rules on ab-

stra
tions has simpli�ed the 
orre
tness proof in 
omparison to a dire
t de�nition of an \abstra
t


onstraint solver". However, further work needs to be done in order to implement our algorithm

in an eÆ
ient way. For instan
e, sophisti
ated data stru
tures are required for the representation

of our abstra
t domain in order to perform the normalization rules eÆ
iently.

Although our algorithm yields quite good results for pra
ti
al programs, the pre
ision of the

uniqueness analysis 
an be improved in various ways. For instan
e, we do not 
onsider the free

variables in 
onstraints and thus we do not dete
t the uniqueness of these variables in some 
ases.

E.g., the 
onstraint 3=5*X-2*X restri
ts variable X to the unique value 1. But our analysis algorithm
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does not infer that X is unique sin
e the information that both subexpressions 
ontain the same free

variable is not present in the 
orresponding abstra
tion. Hen
e the analysis 
an be improved if the

abstra
t domain is re�ned to store information about variables in expressions. Another possibility

for improving the pre
ision of the analysis is to derive information about possible values of variables.

This would allow to dete
t that the 
onstraints X=3,6=X*Y restri
ts Y to a unique value or that the


onstraints X>2,Z=1,X<Z are unsolvable.

A
knowledgements. The author is grateful to Peter Barth, Veroniek Dumortier and Frank

Zartmann for dis
ussions and their 
areful reading of a previous version of this paper, and to two

anonymous referees for their suggestions to improve its readability.

Referen
es

[1℄ S. Abramsky and C. Hankin, editors. Abstra
t Interpretation of De
larative Languages. Ellis

Horwood, 1987.

[2℄ A. Aiba, K. Sakai, Y. Sato, D.J. Hawley, and R. Hasegawa. Constraint Logi
 Programming

Language CAL. In Pro
. Int. Conf. on Fifth Generation Computer Systems, pp. 263{276,

1988.

[3℄ N. Baker and H. S�ndergaard. De�niteness Analysis for CLP(R). Te
hni
al Report 92/25,

Univ. of Melbourne, 1992.

[4℄ M. Bruynooghe. A Pra
ti
al Framework for the Abstra
t Interpretation of Logi
 Programs.

Journal of Logi
 Programming (10), pp. 91{124, 1991.

[5℄ A. Colmerauer. An Introdu
tion to Prolog III. Communi
ations of the ACM, Vol. 33, No. 7,

pp. 69{90, 1990.

[6℄ A. Cortesi, G. File, and W. Winsborough. Prop revisited: Propositional Formula as Abstra
t

Domain for Groundness Analysis. In Pro
. IEEE Symposium on Logi
 in Computer S
ien
e,

pp. 322{327, 1991.

[7℄ P. Cousot and R. Cousot. Abstra
t interpretation: A uni�ed latti
e model for stati
 analysis of

programs by 
onstru
tion of approximation of �xpoints. In Pro
. of the 4th ACM Symposium

on Prin
iples of Programming Languages, pp. 238{252, 1977.

[8℄ S.K. Debray. Stati
 Inferen
e of Modes and Data Dependen
ies in Logi
 Programs. ACM

Transa
tions on Programming Languages and Systems, Vol. 11, No. 3, pp. 418{450, 1989.

[9℄ M. Gar
��a de la Banda and M. Hermenegildo. A Pra
ti
al Approa
h to the Global Analysis

of CLP Programs. In Pro
. International Logi
 Programming Symposium, Van
ouver, pp.

437{455. MIT Press, 1993.

[10℄ M. Hanus. Parametri
 Order-Sorted Types in Logi
 Programming. In Pro
. of the TAPSOFT

'91, pp. 181{200. Springer LNCS 494, 1991.

[11℄ M. Hanus. On the Completeness of Residuation. In Pro
. of the 1992 Joint International

Conferen
e and Symposium on Logi
 Programming, pp. 192{206. MIT Press, 1992.

25



[12℄ M. Hanus. Analysis of Nonlinear Constraints in CLP(R). In Pro
. Tenth International Con-

feren
e on Logi
 Programming, pp. 83{99. MIT Press, 1993.

[13℄ N. Heintze, J. Ja�ar, S. Mi
haylov, P. Stu
key, and R. Yap. The CLP(R) Programmer's

Manual, Version 1.1. IBM Thomas J. Watson Resear
h Center, Yorktown Heights, 1991.

[14℄ H. Hong. Non-linear Real Constraints in Constraint Logi
 Programming. In Pro
. of the 3rd

International Conferen
e on Algebrai
 and Logi
 Programming, pp. 201{212. Springer LNCS

632, 1992.

[15℄ J. Ja�ar and J.-L. Lassez. Constraint Logi
 Programming. In Pro
. of the 14th ACM Sympo-

sium on Prin
iples of Programming Languages, pp. 111{119, Muni
h, 1987.

[16℄ J. Ja�ar, S. Mi
haylov, P.J. Stu
key, and R.H.C. Yap. An Abstra
t Ma
hine for CLP(R).

In Pro
. SIGPLAN Conferen
e on Programming Language Design and Implementation, pp.

128{139. SIGPLAN Noti
es, Vol. 27, No. 7, 1992.

[17℄ J. Ja�ar, S. Mi
haylov, P.J. Stu
key, and R.H.C. Yap. The CLP(R) Language and System.

ACM Transa
tions on Programming Languages and Systems, Vol. 14, No. 3, pp. 339{395,

1992.

[18℄ J. Ja�ar, S. Mi
haylov, and R.H.C. Yap. A Methodology for Managing Hard Constraints in

CLP Systems. In Pro
. ACM SIGPLAN'91 Conferen
e on Programming Language Design and

Implementation, pp. 306{316. SIGPLAN Noti
es, Vol. 26, No. 6, 1991.

[19℄ N. J�rgensen, K. Marriott, and S. Mi
haylov. Some Global Compile-Time Optimizations for

CLP(R). In Pro
. 1991 International Logi
 Programming Symposium, pp. 420{434. MIT Press,

1991.

[20℄ B. Le Charlier, K. Musumbu, and P. Van Hentenry
k. A Generi
 Abstra
t Interpretation Algo-

rithm and its Complexity Analysis. In Pro
. International Conferen
e on Logi
 Programming,

pp. 64{78. MIT Press, 1991.

[21℄ K. Marriott and H. S�ndergaard. Analysis of Constraint Logi
 Programs. In Pro
. of the 1990

North Ameri
an Conferen
e on Logi
 Programming, pp. 531{547. MIT Press, 1990.

[22℄ K. Marriott, H. S�ndergaard, and P. Dart. A Chara
terization of Non-Floundering Logi


Programs. In Pro
. of the 1990 North Ameri
an Conferen
e on Logi
 Programming, pp. 661{

680. MIT Press, 1990.

[23℄ C.S. Mellish. Some Global Optimizations for a Prolog Compiler. Journal of Logi
 Programming

(1), pp. 43{66, 1985.

[24℄ U. Nilsson. Towards a Framework for the Abstra
t Interpretation of Logi
 Programs. In

Pro
. of the Workshop on Programming Language Implementation and Logi
 Programming,

pp. 68{82, Orl�eans, 1988. Springer LNCS 348.

[25℄ U. Nilsson. Systemati
 Semanti
 Approximations of Logi
 Programs. In Pro
. of the 2nd Int.

Workshop on Programming Language Implementation and Logi
 Programming, pp. 293{306.

Springer LNCS 456, 1990.

[26℄ F. Pfenning, editor. Types in Logi
 Programming. MIT Press, 1992.

[27℄ P. Van Hentenry
k. Constraint Satisfa
tion in Logi
 Programming. MIT Press, 1989.

26



Appendix

Theorem 4.4 (Corre
tness of abstra
t 
onstraint solving) Let A be an abstra
tion, 
 be a


at 
onstraint (as de�ned in Se
tion 4.1) with var(
) � dom(A). Then C [ f
g 2 
(ai-
on(A; 
))

for all C 2 
(A).

Proof: First we prove the theorem for equational 
onstraints. Let A be an abstra
tion, X=t be a


at 
onstraint with fXg [ var(t) � dom(A), and C 2 
(A). We prove the theorem for ea
h of the

possible 
ases for t.

t = Y: Then

A

0

:= ai-
on(A; X=Y) = A [ ffXg)Y; fYg)Xg

We have to show: C

0

:= C [ fX=Yg 2 
(A

0

).

1. fYg)X 2 A

0

: Let �

1

; �

2

2 Sol(C

0

) with �

1

(Y) = �

2

(Y). Sin
e �

i

is a solution of X=Y,

�

i

(X) = �

i

(Y) (i = 1; 2). This implies �

1

(X) = �

2

(X).

2. fXg)Y 2 A

0

: Symmetri
 to the previous 
ase.

3. V)Z 2 A: Let �

1

; �

2

2 Sol(C

0

) with �

1

=

V

�

2

. Sin
e �

1

; �

2

2 Sol(C) and C 2 
(A),

�

1

(Z) = �

2

(Z). Hen
e V

C

0

)Z.

Therefore C

0

satis�es all variable 
onditions of A

0

.

4. Let Z=Z

1

*Z

2

2 C

0

with Z

1

; Z

2

2 dom(A) and Z

1

*Z

2

nonlinear in C

0

. Clearly, Z

1

*Z

2

is also

nonlinear in C. Thus C 2 
(A) implies that delay 2 A � A

0

or delay(Z

1

or Z

2

) 2 A � A

0

. In

any 
ase the nonlinear term Z

1

*Z

2

is also 
overed by A

0

.

t = f(Y

1

,...,Y

n

) with f an uninterpreted fun
tor symbol: Then

A

0

:= ai-
on(A; X=f(Y

1

,...,Y

n

)) = A [ ffY

1

,...,Y

n

g)X; fXg)Y

1

; : : : ; fXg)Y

n

g

We have to show: C

0

:= C [ fX=f(Y

1

,...,Y

n

)g 2 
(A

0

).

1. fY

1

,...,Y

n

g)X 2 A

0

: Let �

1

; �

2

2 Sol(C

0

) with �

1

=

fY

1

,...,Y

n

g

�

2

. Sin
e �

1

and �

2

are

solutions of X=f(Y

1

,...,Y

n

),

�

1

(X) = �

1

(f(Y

1

,...,Y

n

)) = �

2

(f(Y

1

,...,Y

n

)) = �

2

(X)

2. fXg)Y

i

2 A

0

for some i 2 f1; : : : ; ng: Let �

1

; �

2

2 Sol(C

0

) with �

1

(X) = �

2

(X). Sin
e �

1

and

�

2

are solutions of X=f(Y

1

,...,Y

n

),

�

1

(f(Y

1

,...,Y

n

)) = �

1

(X) = �

2

(X) = �

2

(f(Y

1

,...,Y

n

))

This equation implies �

1

(Y

i

) = �

2

(Y

i

) be
ause f is an uninterpreted fun
tor symbol in the

domain of CLP(R).

3. V)Z 2 A: This is identi
al to the 
ase t = Y.

4. Let Z=Z

1

*Z

2

2 C

0

with Z

1

; Z

2

2 dom(A) and Z

1

*Z

2

nonlinear in C

0

. This 
ase is also

identi
al to the 
ase t = Y.
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t = 
: This is a parti
ular 
ase of t = f(Y

1

,...,Y

n

).

t = Y

1

+Y

2

: Then

A

0

:= ai-
on(A; X=Y

1

+Y

2

) = A [ ffY

1

,Y

2

g)X; fX,Y

1

g)Y

2

; fX,Y

2

g)Y

1

g

We have to show: C

0

:= C [ fX=Y

1

+Y

2

g 2 
(A

0

).

1. fY

1

,Y

2

g)X 2 A

0

: Let �

1

; �

2

2 Sol(C

0

) with �

1

=

fY

1

,Y

2

g

�

2

. Sin
e �

1

and �

2

are solutions of

X=Y

1

+Y

2

,

�

1

(X) = �

1

(Y

1

) + �

1

(Y

2

) = �

2

(Y

1

) + �

2

(Y

2

) = �

2

(X)

(note that + is the addition fun
tion on real numbers while + is the synta
ti
 denotation for

an addition 
onstraint). Hen
e fY

1

; Y

2

g

C

0

)X.

2. fX,Y

1

g)Y

2

2 A

0

: Let �

1

; �

2

2 Sol(C

0

) with �

1

=

fX,Y

1

g

�

2

. Sin
e �

1

and �

2

are solutions of

X=Y

1

+Y

2

�

1

(Y

2

) = �

1

(X)� �

1

(Y

1

) = �

2

(X)� �

2

(Y

1

) = �

2

(Y

2

)

Hen
e fX; Y

1

g

C

0

)Y

2

.

3. fX,Y

2

g)Y

1

2 A

0

: This is symmetri
 to the previous 
ase.

4. V)Z 2 A: This is identi
al to the 
ase t = Y.

5. Let Z=Z

1

*Z

2

2 C

0

with Z

1

; Z

2

2 dom(A) and Z

1

*Z

2

nonlinear in C

0

. This 
ase is also

identi
al to the 
ase t = Y.

t = Y

1

-Y

2

: Analogous to the 
ase t = Y

1

+Y

2

.

t = Y

1

*Y

2

: Then

A

0

:= ai-
on(A; X=Y

1

*Y

2

) = A [ ffY

1

,Y

2

g)X; delay(Y

1

or Y

2

)g

We have to show: C

0

:= C [ fX=Y

1

*Y

2

g 2 
(A

0

).

1. fY

1

,Y

2

g)X 2 A

0

: Analogous to the 
ase t = Y

1

+Y

2

.

2. V)Z 2 A: This is identi
al to the 
ase t = Y.

3. Let X=Y

1

*Y

2

2 C

0

with Y

1

*Y

2

nonlinear in C

0

. This nonlinear term is 
overed by A

0

be
ause

delay(Y

1

or Y

2

) 2 A

0

.

4. Let Z=Z

1

*Z

2

2 C

0

with Z=Z

1

*Z

2

6= X=Y

1

*Y

2

, Z

1

; Z

2

2 dom(A) and Z

1

*Z

2

nonlinear in C

0

.

This is identi
al to the 
ase t = Y.

It remains to prove the theorem for inequations. Let A be an abstra
tion, X�Y be an inequation

with � 2 f<; >; <=; >=g and X; Y 2 dom(A), and C 2 
(A). Sin
e ai-
on(A; X�Y) = A, we have to

show: C

0

:= C [ fX�Yg 2 
(A).

1. V)Z 2 A: Let �

1

; �

2

2 Sol(C

0

) with �

1

=

V

�

2

. Sin
e �

1

and �

2

are also solutions of C and

C 2 
(A), �

1

(Z) = �

2

(Z). Hen
e V

C

0

)Z.

2. Let Z=Z

1

*Z

2

2 C

0

with Z

1

; Z

2

2 dom(A) and Z

1

*Z

2

nonlinear in C

0

. This 
ase is also

identi
al to the 
orresponding 
ase for X=Y.
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