
From Non-determinism to Goroutines:
A Fair Implementation of Curry in Go

Jonas Böhm
CAU Kiel

Institut für Informatik
Kiel, Germany

boehm-jonas@gmx.de

Michael Hanus
CAU Kiel

Institut für Informatik
Kiel, Germany

mh@informatik.uni-kiel.de

Finn Teegen
CAU Kiel

Institut für Informatik
Kiel, Germany

fte@informatik.uni-kiel.de

ABSTRACT
The declarative programming language Curry amalgamates de-
mand-driven evaluation from functional programming with non-
determinism from logic programming. In contrast to Prolog, the
search strategy for non-deterministic computations is not fixed
so that complete or parallel strategies are reasonable for Curry.
In particular, a desirable option is a fair strategy which frees the
programmer from considering the influence of the search strategy
to the success of a computation. In this paper we describe an im-
plementation with this property. Based on recent developments on
operational models for functional logic programming, we present a
new implementation which transforms Curry programs in several
transformation steps into Go programs. By exploiting lightweight
threads in the form of goroutines, we obtain a complete and fair im-
plementation which automatically uses multi-processing to speed
up non-deterministic computations. This has the effect that, in some
cases, non-deterministic algorithms are more efficiently evaluated
than deterministic ones.

CCS CONCEPTS
• Software and its engineering→Multiparadigm languages;
Functional languages; Constraint and logic languages; Com-
pilers.

KEYWORDS
Declarative programming, implementation, parallelism
ACM Reference Format:
Jonas Böhm, Michael Hanus, and Finn Teegen. 2021. From Non-determinism
to Goroutines: A Fair Implementation of Curry in Go. In 23rd International
Symposium on Principles and Practice of Declarative Programming (PPDP
2021), September 6–8, 2021, Tallinn, Estonia. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3479394.3479411

1 INTRODUCTION
Declarative programming languages are based on the idea to ex-
press properties about a given problem in a high-level, execution-
independent manner, e.g., equations in functional programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPDP 2021, September 6–8, 2021, Tallinn, Estonia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8689-0/21/09. . . $15.00
https://doi.org/10.1145/3479394.3479411

or implications (Horn formulas) in logic programming. Ideally, the
implementation of such languages should ensure that results are
computed when they exist. In functional programming, a result is a
value (data term) equivalent to an initial expression w.r.t. the given
equations. In logic programming, a result is a substitution of the
variables occurring in the initial goal so that the goal instantiated
with this substitution is a logical consequence of the program. In a
combined functional logic language, such as Curry [32], results are
values with possibly constraints on the free variables in the initial
expression.

The practice of declarative programming is, however, a bit dif-
ferent. For instance, functional programs, e.g., written in Haskell
[44], are sets of functions defined by equations, but the meaning
of equations depends on a non-trivial pattern matching translator.
For instance, consider the Haskell program
f x True = 0

f True y = 1

Although the second equation might indicate that the value of
f True True is 1, Haskell returns only the value 0, since rules are
tried from top to bottom and only the first matching rule is applied.
Although one gets at least a result in this case, it can be worse.
Consider the function definitions
g True True = 0 loop = loop

g x False = 1

and the expression g loop False. The second equation defining g

indicates that 1 is a value equivalent to this expression. However,
Haskell does not return any result due to its pattern matching
strategy.

On the other hand, the same definitions interpreted in Curry
return the expected values, since Curry is based on a complete
and optimal evaluation strategy [4, 6]. In the case of the expres-
sion f True True, Curry returns both possible values 0 and 1. Hence,
operations can have more than one result on a fixed input. Concep-
tually, operations have a set-valued semantics and they are often
termed non-deterministic operations [23], an important concept of
contemporary functional logic languages (see [11, 23] for discus-
sions of this concept). As a consequence, Curry interprets equations
as rewrite rules which are applied from left to right. In the case of
overlapping rules, as the rules for f above, all rules are tried in a
non-deterministic manner, similarly to the resolution principle of
logic programming. This raises the question about the search strat-
egy in the case of non-deterministic steps. Consider the expression
f True loop. If the first rule of f should be applied, it is necessary to
evaluate the second argument loopwhich does not terminate. If the
second rule of f should be applied, it is not necessary to evaluate

https://orcid.org/0000-0002-4953-8202
https://orcid.org/0000-0002-7905-3804
https://doi.org/10.1145/3479394.3479411
https://doi.org/10.1145/3479394.3479411


PPDP 2021, September 6–8, 2021, Tallinn, Estonia Jonas Böhm, Michael Hanus, and Finn Teegen

loop to apply this rule so that we obtain the result 1. Hence, the
order of rule applications might influence the computed results. The
logic programming language Prolog uses a backtracking strategy
based on a sequential ordering of program rules. It is well known
that this causes operational incompleteness, i.e., results might not
be computed. Hence, a Prolog programmer has to take into account
the influence of the backtracking search strategy on the computed
results. Actually, there are implementations of functional logic lan-
guages that compile into Prolog, like PAKCS [7, 29] or TOY [40].
Such implementations inherit the operational incompleteness from
Prolog.

In this work we are interested in an operationally complete
implementation. This frees the programmer from thinking about
details of pattern matching or search, thus, supporting a stronger
declarative programming view.1 This also yields a tight integration
between specifications and code where (non-deterministic) speci-
fications and more efficient implementations can be written in a
single language [12] in order to enable automatic testing [27] or
verification [28].

In order to achieve this goal, we develop a new implementation
based on recent developments in operational models for functional
logic programming. The main aspect of this implementation is to
represent all non-deterministic choices in a single graph structure.
This is also the basis of other implementations that are intended to
support better search strategies rather than backtracking, e.g., KiCS
[20], KiCS2 [19], or Sprite [18]. Similarly to implementations of
non-strict functional languages, this graph structure is constructed
on demand. However, a semantically correct implementation of
demand-driven non-deterministic computations requires some ad-
ditional structures that could lead to a considerably increased com-
plexity of computations compared to backtracking (this will be
explained later in more detail). A solution to this problem has
been presented in [31] where the graph structure is enriched with
information to memoize non-deterministic computations, called
memoized pull-tabbing. In this paper we present an implementa-
tion of these ideas with a run-time system implemented in Go. In
particular, we make the following contributions.

• We present a formal specification of memoized pull-tabbing
which is the basis of our implementation.
• We show that the model of memoized pull-tabbing enables
a flexible choice of various search strategies.
• In our concrete implementation, we exploit “goroutines”
(lightweight threads supported in Go) for tasks representing
non-deterministic computations. As a result, our implemen-
tation is complete and fair w.r.t. non-determinism. Fairness
means that all the values of an expression are eventually pro-
duced, even if some branches of a computation run forever.
• We demonstrate that non-deterministic algorithms are some-
times more efficiently evaluated than deterministic ones.
This is due to the fact that, in our implementation, non-
deterministic computations automatically exploit several
processors, if available, to speed up the evaluation of expres-
sions.

1Of course, details about the evaluation strategy might be relevant to analyze the
complexity of a concrete execution, but this is outside the scope of this paper.

This paper is structured as follows. The next section reviews some
necessary details about functional logic programming and Curry.
The intermediate languages used in our implementation are re-
viewed in Sect. 3 and 4. Section 5 introduces the basic operational
mechanism to deal with non-determinism in our implementation.
Since this has some drawbacks, we describe in Sect. 6 our opera-
tional model and provide a formal specification of it. This is the
basis of our implementation which is sketched in Sect. 7. We eval-
uate it in Sect. 8 with a couple of benchmarks before we discuss
related work and conclude.

2 FUNCTIONAL LOGIC PROGRAMMING AND
CURRY

This section reviews some aspects of functional logic programming
and the multi-paradigm declarative language Curry that are neces-
sary to understand the contents of this paper. More details can be
found in surveys on functional logic programming [11, 26] and in
the language report [32].

Curry combines features from functional programming (demand-
driven evaluation, strong typing with parametric polymorphism,
higher-order functions) and logic programming (non-determinism,
computing with partial information, constraints). The syntax of
Curry is close to Haskell2 [44] but allows free (logic) variables in con-
ditions and right-hand sides of defining rules. Since free variables
can be replaced by non-deterministic generator operations [9], we
concentrate in the following on the handling of non-determinism,
which is the main implementation challenge compared to purely
functional languages. The operational semantics is based on an
optimal evaluation strategy [4, 6]—a conservative extension of lazy
functional programming and logic programming.

Similarly to functional programming, a Curry program defines
data types, introducing data constructors, and functions or operations
on these types. For instance, the data types for Boolean values and
polymorphic lists are as follows:
data Bool = False | True

data List a = [] | a : List a -- [a] denotes "List a"

Operations are defined by sets of rules as already presented in the
introduction. Expressions might contain operations, constructors,
and variables, whereas a value is an expression without defined
operations. The objective of a computation is to reduce a given
expression to some value by applying program rules.

As mentioned in Sect. 1, an important feature of contemporary
functional logic languages are non-deterministic operations [23], i.e.,
operations that yield more than one result for a given argument.
Curry defines an archetypal choice operation “?” by
x ? _ = x

_ ? y = y

so that the expression “False ? True” has two values: False and
True.

2Variables and function names usually start with lowercase letters and the names of
type and data constructors start with an uppercase letter. The application of f to e is
denoted by juxtaposition (“f e”).



A Fair Implementation of Curry in Go PPDP 2021, September 6–8, 2021, Tallinn, Estonia

P ::= D1 . . .Dm (program)
D ::= f (x1, . . . ,xn ) = e (function definition)
e ::= x (variable)

| c(e1, . . . , en ) (constructor call)
| f (e1, . . . , en ) (function call)
| case e of {p1 → e1; . . . ;pn → en } (case expression)
| e1 or e2 (disjunction)
| let {x1 = e1; . . . ;xn = en } in e (let binding)
| let x1, . . . ,xn free in e (free variables)

p ::= c(x1, . . . ,xn ) (pattern)

Figure 1: Abstract syntax of the intermediate language FlatCurry

Although non-deterministic operations have a set-valued se-
mantics [23], they return (non-deterministically) individual val-
ues rather than sets of values. This has the advantage that a non-
deterministic operation can be used as any other operation, in
particular, as an argument or in definitions of other operations. For
instance, consider the following operation that inserts an element
at an unspecified position into a list:
insert :: a → [a] → [a]

insert x ys = x : ys

insert x (y:ys) = y : insert x ys

Hence, the expression insert 0 [1,2] non-deterministically evalu-
ates to one of the values [0,1,2], [1,0,2], or [1,2,0]. Based on this
operation, one can easily define permutations:
perm :: [a] → [a]

perm [] = []

perm (x:xs) = insert x (perm xs)

Although perm is defined by non-overlapping rules, the use of insert
has the effect that perm [1,2,3,4] non-deterministically evaluates
to all 24 permutations of the input list.

Compared to approaches where sets or lists of values are passed
between operations, as in the “list of successes” approach in purely
functional programming [48], the use of non-deterministic opera-
tions could lead to simpler program structures. Moreover, it has also
operational advantages: since expressions are evaluated on demand,
non-deterministic operations as arguments result in a demand-
driven construction of the search space, leading to considerable
smaller search spaces (see [11, 23] for more detailed discussions).
Thus, it is important to keep in mind that any evaluation of an ex-
pression might lead to a non-deterministic choice between several
expressions or values. This demands for specific implementation
techniques which will be discussed later.

If non-deterministic operations occur as arguments to be eval-
uated, there is a semantical ambiguity which has to be fixed in
a concrete programming language. To discuss this, consider the
operations
xor False x = x not False = True

xor True x = not x not True = False

xorSelf x = xor x x aBool = False ? True

and the expression “xorSelf aBool”. If we just apply program rules
from left to right, as in term rewriting, we could have the derivation

xorSelf aBool → xor aBool aBool

→ xor True aBool

→ xor True False

→ not False

→ True

The result True is unintended for the operation xorSelf. This value
cannot be obtained with a strict strategy where arguments are
evaluated prior to the function calls. To avoid dependencies on the
evaluation strategy and exclude such unintended results, González-
Moreno et al. [23] proposed the rewriting logic CRWL as a logical
(execution- and strategy-independent) foundation for declarative
programming with non-strict and non-deterministic operations.
CRWL specifies the call-time choice semantics [37], where values of
the arguments of an operation are determined before the operation
is evaluated. This can be enforced in a lazy strategy by sharing
actual arguments. For instance, the expression above can be lazily
evaluated provided that all occurrences of aBool are shared so that
all of them reduce either to False or to True consistently.

Sharing is used in implementations of non-strict functional lan-
guages in order to support optimal evaluation [36], i.e., typical
implementations are based on graph rewriting [43]. We will also
base our implementation on graph structures and consider pro-
grams as graph rewriting systems [45] so that rewrite steps are
graph replacements. To support non-deterministic computation
steps, we will represent non-deterministic choices as graph nodes.
The precise evaluation of arguments is influenced by the patterns
in the left-hand side of program rules. We already discussed in
Sect. 1 how the pattern matching strategy influences the success of
computations. In order to make this strategy explicit and precise,
we discuss in the next sections intermediate languages that are
relevant for our implementation.

3 FLATCURRY
Curry has many more features than described so far. Since it is
conceptually intended as an extension of Haskell (although not
all features are included), Curry also supports higher-order fea-
tures, scoping with local definitions, modules, monadic I/O [49],
as well as specific functional logic programming features, like set
functions [10] to encapsulate non-deterministic search, functional
patterns [8], or default rules [13]. Due to the complexity of the
source language, language processing tools for Curry, like com-
pilers, analyzers, optimization or verification tools, often use an



PPDP 2021, September 6–8, 2021, Tallinn, Estonia Jonas Böhm, Michael Hanus, and Finn Teegen

D ::= f = blck (function definition)
blck ::= decl1 . . .declk asдn1 . . . asдnn stm (block)
decl ::= declare x (local variable declaration)
asдn ::= v = exp (variable assignment)
stm ::= return exp (return statement)

| exempt (failure statement)
| case x of {c1 → blck1; . . . ; cn → blckn } (case statement)

exp ::= v (variable)
| NODE(l , exp1, . . . , expn ) (node construction)
| exp1 or exp2 (disjunction)

v ::= x (local variable)
| v[i] (node access)
| ROOT (root of function call)

l ::= c (constructor symbol)
| f (function symbol)

Figure 2: Abstract syntax of function definitions in ICurry

intermediate language, called FlatCurry. The operational semantics
of Curry is also specified with FlatCurry [2] by extending Launch-
bury’s natural semantics for lazy evaluation [39] with rules to cover
non-determinism. Since we will use FlatCurry in our compilation
chain, as various other Curry systems (like PAKCS [29], KiCS [20],
KiCS2 [19], or Sprite [18]), we sketch its structure.

The abstract syntax of FlatCurry is summarized in Fig. 1. Data
declarations are omitted since they are almost identical to the source
language. Thus, a FlatCurry program is a sequence of function defi-
nitions, where each function is defined by a single rule with a linear
left-hand side, i.e., the argument variables x1, . . . ,xn are pairwise
different. The right-hand side of the definition consists of variables,
constructor or function calls, case expressions, disjunctions (writ-
ten with or in infix notation), let bindings, or introduction of free
variables. The patterns pi in a case expression are pairwise differ-
ent constructors applied to variables. Therefore, complex function
definitions with overlapping or deep patterns in source programs
are represented by disjunctions and nested case expressions.

To omit the syntactic sugar of the source language, various trans-
formations are applied to generate FlatCurry programs. Local defi-
nitions are eliminated by lambda lifting [38], patterns are compiled
into simple case expressions, and overlapping rules are represented
by or expressions (see [32] for a precise description of these trans-
formations). For instance, the non-deterministic operation insert

defined above is represented in FlatCurry as
insert(x,xs) = (x:xs)

or
case xs of { y:ys → y : insert(x,ys) }

The operation g defined in Sect. 1 is transformed into FlatCurry as
g(x,y) = case y of

{ True → case x of
{ True → 0 } ;

False → 1

}

Due to this transformation, the first branch is on the second argu-
ment so that Curry returns 1 for the expression g loop False. This

kind of pattern matching, which is slightly different from Haskell,
is the basis of Curry’s complete and optimal evaluation strategy
[4, 6].

Any Curry program can be translated into a FlatCurry program.
There exists a front end, used by various compilers and tools, to
process and compile Curry programs into FlatCurry. The front end
can also be accessed in Curry programs by a Curry package to
represent FlatCurry programs.3

4 ICURRY
FlatCurry is useful when Curry is compiled into Prolog [7, 29] or
Haskell [19, 20]. However, when compiling Curry into typical im-
perative languages, like C, C++, Go, or Python, FlatCurry is less
appropriate since some constructs cannot be directly mapped into
imperative code, as discussed in [15]. This motivated the intro-
duction of another intermediate language, called ICurry, which is
the basis of our implementation. In the following, we review the
structure of ICurry. More details can be found in [15].

The abstract syntax of operations in ICurry is summarized in
Fig. 2 (similarly to FlatCurry, data declarations are omitted). In con-
trast to FlatCurry, where the body of a function is just an expression,
a function definition in ICurry consists of (optional) variable decla-
rations, assignments, and a final statement. The statement either
returns an expression, marks a failure (exempt), or performs a case
distinction on a given variable. This is oriented towards imperative
languages where switches or case distinctions are control structures
rather than expressions. In contrast to FlatCurry, a case in ICurry
compares only the tag of the discriminating variable with the tag
of the constructors available for the data type (although we write
constructor names in examples, ICurry uses unique tags, e.g., num-
bers, for the constructors). The arguments of the constructors must
be accessed by explicit assignments to local variables. Hence, an
ICurry case statement can be directly mapped into a typical switch
statement available in many imperative languages. To do this easily,
the constructors c1, . . . , cn in the branches of a case statement are
all the constructors of the data definition and in the same order.
3https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/flatcurry.html

https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/flatcurry.html


A Fair Implementation of Curry in Go PPDP 2021, September 6–8, 2021, Tallinn, Estonia

Local variable declarations and assignments are used to access
arguments of a function call as well as the constructor arguments
in case expressions. The values of local variables can be used to
construct a new expression to be returned as the result of a func-
tion call. Such an expression is either a variable, an application
of a constructor or function symbol to argument expressions, or
a disjunction. In order to support various search strategies, non-
determinism is not implemented as control code (like backtracking
in Prolog), but explicitly represented in the graph structure (see
below for more details). A variable in an expression is either the
value of a local variable, the root of the function call (stored in a
specific register ROOT when the function code is invoked), or v[i],
the i-th successor of a node identified by v .

For instance, a textual representation of the ICurry code for the
operation xor, defined in Sect. 2, could be as follows (arguments
are indexed starting with 0):
function xor

declare x1

declare x2

x1 = ROOT[0]

x2 = ROOT[1]

case x1 of

False → return x2

True → return NODE(not, x2)

In order to translate a FlatCurry program into an ICurry program,
branches in case expressions must be ordered and completed, nested
case and let constructs are eliminated by introducing new opera-
tions, etc. (see [15] for details). For instance, the translation of the
operation insert, defined in Sect. 2, requires the introduction of a
new auxiliary operation:
function insert

declare x1

declare x2

x1 = ROOT[0]

x2 = ROOT[1]

return NODE(:, x1, x2) or NODE(insert_CASE, x2, x1)

function insert_CASE

declare x2

declare x1

x2 = ROOT[0]

x1 = ROOT[1]

case x2 of

[] → exempt

: → declare x3

declare x4

x3 = x2[0]

x4 = x2[1]

return NODE(:, x3, NODE(insert, x1, x4))

Note that an exempt statement has been introduced in the comple-
tion of the case statement in order to indicate the failure on empty
lists of the operation insert-CASE.

A representation of ICurry programs together with a compiler
from FlatCurry to ICurry is available as a Curry package.4 ICurry

4https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/icurry.html

has been used for various approaches to compile Curry into imper-
ative target languages, like C, Python, Java, JavaScript, or native
code [15, 18, 52]. Although the meaning of most constructs is ob-
vious, the complete operational semantics contains some freedom
w.r.t. the implementation of non-determinism. Since this is one of
the main aspects of our work, we will fix the concrete evaluation
strategy in the next two sections.

5 PULL-TABBING
As mentioned in the introduction, our implementation works on a
graph structure where non-deterministic choices are represented
as graph nodes. This allows to use various, in particular, fair search
strategies [17] to evaluate a program. Since a disjunction (or node) is
not a defined operation, its evaluation must be fixed by the run-time
system. We discuss this in the following.

In principle, there are various options to deal with non-deter-
ministic choices (“don’t know non-determinism”) in declarative
programming languages:
• Backtracking implements a choice by selecting one alterna-
tive and proceeding. If a computation is finished (with failure
or success) and the next alternative should be explored, the
state before a choice is restored and a next untried alterna-
tive is taken. This is used in Prolog implementations and
also in implementations of functional logic languages that
compile into Prolog, like PAKCS [7, 29] or TOY [40], or use
Prolog-like implementation techniques [41]. Due to a pos-
sible non-termination of an alternative, some values might
not be computed.
• Copying or cloning evaluates alternatives in parallel or by
interleaving steps on different copies of the computation
space that are made when a choice occurs. This ensures
completeness (if the interleaving is fair) but can be costly
when a choice occurs deeply in an expression. Thus, it has
been used only in experimental implementations, e.g., [16].
• Pull-tabbing avoids the cost of cloning by keeping all alter-
natives in one graph structure and duplicating nodes on
demand. It was first sketched in [3] and formally explored in
[5]. A pull-tab step moves a choice in a demanded argument
outside by copying the node representing the operation. For
instance,
not (False ? True) → (not False) ? (not True)

is a pull-tab step. Since evaluation steps are performed in
place in a graph-based implementation [43, 45], such a step
sets the tag of the initial “not” node to the new tag “?” and
creates two new nodes tagged with “not.” Since pull-tabbing
avoids the disadvantage of cloning and does not require a
fixed backtracking strategy, it is used in implementations
targeting complete search strategies, e.g., KiCS [20], KiCS2
[19], or Sprite [18]. Therefore, we will also use pull-tabbing
but in a considerably improved form.

A problem of pure pull-tabbing is its unsoundness w.r.t. the call-
time choice semantics sketched in Sect. 2. Consider the definition
of xorSelf in Sect. 2. The expression xorSelf (False ? True) will be
evaluated to
(False ? True) ? (True ? False)

https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/icurry.html


PPDP 2021, September 6–8, 2021, Tallinn, Estonia Jonas Böhm, Michael Hanus, and Finn Teegen

by pure pull-tabbing. According to the call-time choice semantics,
True is not a valid result. To avoid the extraction of such unintended
values, each choice has a specific identifier [5]. When a choice is
introduced in an expression, a fresh identifier is assigned to this
choice. Pull-tab steps keep the identifier of the choice. Hence, the
expression xorSelf (False ?1 True) will be evaluated to
(False ?1 True) ?1 (True ?1 False)

so that all choices have the same identifier. Furthermore, each task
evaluating some branch of a computation has a fingerprint [18],
i.e., a (partial) mapping from choice identifiers to choice alterna-
tives (Left or Right). When a task evaluates a choice at the root, it
proceeds as follows:
• If the fingerprint of the task contains a selection for this
choice, the corresponding branch of this choice is selected.
• Otherwise, two new tasks for evaluating the left and right
alternative are created, where the fingerprint is extended for
this choice with L and R, respectively.

With this extension, the value True will not be extracted from the
choice structure above.

By scheduling the tasks in various orders, pull-tabbing supports
the application of various search strategies. Nevertheless, it has a
serious drawback. As shown above, a single choice might result in
multiple copies of this choice that need to be explored by tasks with
their fingerprints. This could lead to a considerable overhead when-
ever a non-deterministic expression is shared multiple times during
a computation, as discussed in [25]. A solution to this problem,
recently sketched in [31], is the addition of a kind of memoization
to pull-tabbing. In the next section, we formalize this strategy that
is the basis of our implementation.

6 OPERATIONAL SEMANTICS
As already mentioned, the execution model of Curry is based on
graph rewriting, i.e., a program is considered as a graph rewriting
system [22, 45]: a rewrite step applies a rule to some subgraph by
replacing the subgraph with the instantiated right-hand side of the
rule. In the following, we extend a graph-based model for ICurry
computations [15] with a refinement of pull-tabbing sketched in
[31].

We review some notions of graph rewriting and fix our notation.
We write f (x) = ⊥ if the (partial) function is undefined on x .
ok denotes a sequence of objects o1, . . . ,ok . ok [o]j denotes the
sequence o1, . . . ,oj−1,o,oj+1, . . . ,ok where the object at position j
is replaced by o.

A graph G is a set of nodes, where each node has a label (a
constructor or function symbol) and a sequence of successors. Later
we will add a fewmore attributes to nodes. We writeG[n] = s(nk ) if
n is a node ofG with label s and k successor nodes nk . Graph nodes
correspond to expressions so that we use them interchangeably. A
graph might also contain choice nodes of the form ?c (n1,n2). c is a
choice identifier, e.g., an integer or another element from an infinite
set of constants [19], and the expressions n1,n2 are the alternatives.

We denote the update of a node n of G by G[n ← s(nk )]. This
replaces the label of n by s and the successors by nk . In order to
implement sharing, it is sometimes necessary to redirect a graph
node n to a node n′ of a graph G, e.g., when a collapsing rule
like “id x = x” is applied. We denote the redirection of node n to

n′ by G[n ← n′]. This can be implemented either by a specific
“redirection node” or by redirecting all edges pointing to n so that
they point to n′. Finally, we denote the extension of a graph G with
a new node n by G ⊎ {n : s(nk )}. The node n, which does not exist
in G, has label s and k successors nk .

To deal with non-deterministic computations in a flexible man-
ner, the run-time system works with a set or queue of computation
tasks, where each task evaluates one expression. A task is a tuple
(C, S, F , t) with:

• C is the control which is either a graph noden to be evaluated
or a pair (b,E) consisting of an ICurry block (see Fig. 2) and
an environment E (a mapping from local variables to graph
nodes).
• S is a stack where each stack element is a node n labeled by
a function symbol. The stack contains the functions to be
evaluated by a task.
• F is a fingerprint: a (partial) mapping from choice identifiers
to {1, 2} (the indexes of alternatives).
• t is a task identifier to uniquely identify a task, e.g., a number
or another constant taken from a conceptually infinite set.
Task identifiers are used to store task-specific information
in graph nodes.

Thus, the state of a computation is a triple (G,T ,R) with:

• G is a graph.
• T is a set of tasks.
• R is a set of graph nodes representing the computed results.5

In the following, we use ϕ[x 7→ v] to denote an update of a map-
ping ϕ for some argument v . If ϕ ′ = ϕ[x 7→ v], then ϕ ′(x) = v
and ϕ ′(y) = ϕ(y) for all y , x . Furthermore, we use Curry’s list
notation in states, e.g., we denote the set of tasks as a list (options to
implement the set of tasks will be discussed later). Thus, an initial
state of a computation has the form

(G, [(n, [], {}, t0)], {})

where the graph G contains the initial expression with root node n
and t0 is the identifier of the initial task. An initial state contains
only one task with an empty stack and fingerprint and an empty
set of results.

A final state of a computation has the form:

(G, [],R)

There are no tasks left and the set R contains the root nodes of all
computed results.

The operational semantics is specified by a set of transformation
rules on computation states. We will use an auxiliary operation
extend to extend a graph with the graph representation of an ex-
pression occurring in an ICurry program. Informally, extend(G,E, e)
extends a graph G with an ICurry expression e w.r.t. an environ-
ment E and returns the pair (G ′,n) consisting of the extended graph
and the root node n of the added expression. To define extend, we
use an auxiliary function lookup to retrieve a graph node w.r.t. an

5We specify the evaluation to head normal forms, i.e., graphs with a constructor at
the root. This is sufficient since the evaluation to normal form can be implemented by
auxiliary operations.



A Fair Implementation of Curry in Go PPDP 2021, September 6–8, 2021, Tallinn, Estonia

environment:

lookup(G,E,v) =


E(v) if v = x or v = ROOT

ni
if v = v ′[i], lookup(G,E,v ′) = n
and G[n] = l(n1, . . . ,nk )

Now we can define extend(G,E, e) by a case distinction on the
ICurry expression e . If e is a variable, the graph is not extended and
the binding of the variable is looked up in the environment E:

extend(G,E,v) = (G, lookup(G,E,v))

If e is a disjunction e1 or e2, new subgraphs for e1 and e2 are created
and connected by a new choice node:

extend(G,E, e1 or e2) = G ′′ ⊎ {n : ?c (n1,n2)}
if extend(G,E, e1) = (G ′,n1) and extend(G ′,E, e2) = (G ′′,n2)

Here, c is a new choice identifier. We assume the existence of a
global set of choice identifiers so that new unique choice identifiers
can be obtained during the computation [19].

If e is a node constructor, new subgraphs for the argument ex-
pressions are created together with a new node connecting these
subgraphs:

extend(G,E,NODE(l , ek )) = G
′ ⊎ {n : l(nk )}

where ni is the root node for the subgraph created for ei (i =
1, . . . ,k) and G ′ is the graph containing G and the new subgraphs.

Each task evaluates an expression to head normal form, i.e., a
constructor-rooted expression. It starts evaluating the function at
the root by applying its defining rule. However, when the rule
contains a case statement, the discriminating argument must be
evaluated first. To do so, the current node is pushed onto the stack
of the task and the discriminating node is evaluated. To simplify
this process, we assume that each ICurry function contains at most
one case statement, which can be obtained by replacing nested case
statements by auxiliary operations (as also done in some implemen-
tations of Curry, e.g., [29]). Therefore, we denote by f d an ICurry
function which demands its d-th argument in a case statement,
otherwise the superscript is omitted.6

The notion of graph rewriting is used to perform updates in
place: if a node n containing a function call f (. . .) is reduced to
some expression e , node n is replaced by e . This is important to
avoid repeated evaluations of the same subexpression, e.g., the
argument (not True) in the expression
xorSelf (not True)

Since the argument of xorSelf is shared (rather than duplicated),
the update-in-place of the not node avoids a repeated evaluation.
While this is the usual implementation of non-strict functional
languages [43], the extension to non-deterministic languages is
more involved. Consider the definition
and True x = x

and False x = False

and the expression

6In principle, one can extend the operational model of ICurry to more than one
demanded position. However, our practical experiences showed a considerable run-
time improvement when considering only one demanded operation since this allows
to generate more efficient code. In general, operations with more than one demanded
position are seldom so that it is difficult to obtain an operational advantage from
considering them.

let x = aBool in . . . (and x x) . . .

If some task evaluates the argument x to False, it would be wrong
to replace (and x x) by False, since another task might evaluate x

to True so that the replacement is wrong w.r.t. this task. This is the
reason why pull-tabbing moves every choice to the top before some
task selects one of the alternatives. As mentioned above, this could
lead to a substantial overhead if a non-deterministic expression,
like x, is shared and some task evaluates it several times: due to
non-determinism, sharing is lost. For instance, consider a function
f x = C[x, . . . , x ]

where the argument x occurs n times in the right-hand side and
every occurrence of x is demanded by the contextC . If we evaluate
f (e1 ? e2), pull-tabbing moves every demanded occurrence of
the choice to the root so that approximately n · d pull-tab steps
are performed if the n occurrences of x in C are at depth d . Since
each pull-tab step duplicates nodes, a complex choice structure is
introduced and finally processed to extract the two different values.

A solution is sketched asmemoized pull-tabbing in [31]: function
nodes are not updated in place but contain a store for task-specific
updates. For this purpose, each graph node representing a function
call contains a task result map tr which is a partial mapping from
task identifiers to graph nodes. To formalize this idea, we denote by
trG [n] the task result map of node n in graphG , and by trG (n)[t 7→
n′], where t is a task identifier and n′ a node in graphG , the update
of the task result map of node n so that trG [n](t) = n′.

Now we have all elements to specify the operational semantics
of ICurry w.r.t. the memoized pull-tabbing strategy. The rules, sum-
marized in Fig. 3, describe the steps to transform a non-final state
of a computation. We explain these transformation rules in the
following.

Control rules. The first block of rules organize the control to deal
with choices and results and to invoke functions.

split choice: If the control contains a choice node and an empty
stack, the choice is at the top. Since the fingerprint does not contain
a selection for this choice, the choice is evaluated for the first time
so that both alternatives need to be evaluated by independent tasks.
Thus, the current task is replaced by two new tasks where the
fingerprint of each task is extended accordingly. We assume the
existence of a global set of task identifiers so that fresh ones can
be obtained during the computation. In principle, one can use any
strategy to add the new tasks to the existing ones. Here we put
them at the end which corresponds to a breadth-first strategy in
the search tree. Putting them at the front of T corresponds to a
depth-first search strategy. One can also evaluate the tasks in parallel.
Due to this flexibility, our implementation supports the selection
of different search strategies.

select choice: If the control contains a choice node and an empty
stack, i.e., the choice is at the top, and the fingerprint has already a
selection for this choice, the choice node in the control is simply
replaced by the selected branch.

pull tab: This rule describes a pull-tab step as discussed in Sect. 5.
If the control contains a choice node and the stack is not empty, the
choice is at a demanded argument position d of some function f
referenced by the graph node n contained in the top of the stack.
Then two new nodes are created by duplicating this function call



PPDP 2021, September 6–8, 2021, Tallinn, Estonia Jonas Böhm, Michael Hanus, and Finn Teegen

OVERALL CONTROL

(split choice) (G, (n, [], F , t) : T ,R) →
(G,T ++ [(n1, [], F [c 7→ 1], t1), (n2, [], F [c 7→ 2], t2)],R)

if G[n] = ?c (n1,n2), F (c) = ⊥
and t1, t2 are new task identifiers

(select choice) (G, (n, [], F , t) : T ,R) → (G, (nj , [], F , t) : T ,R) if G[n] = ?c (n1,n2) and F (c) = j (, ⊥)

(pull tab) (G, (n0,n : S, F , t) : T ,R) →
(G ′[n ← ?c (n′1,n

′
2)], (n, S, F , t) : T ,R)

if G[n0] = ?c (n1,n2), F (c) = ⊥, G[n] = f d (nk ),
G ′ = G ⊎ {n′1 : f

d (nk [n1]d ),n
′
2 : f

d (nk [n2]d )}

(memo pull tab) (G, (n0,n : S, F , t) : T ,R) →
(G ′, (n, S, F , t) : T ,R)

if G[n0] = ?c (n1,n2), F (c) = j, G[n] = f d (nk ),
G ′ = G ⊎ {n′ : f d (nk [nj ]d )}, trG′(n)[t 7→ n′]

(follow task result) (G, (n, S, F , t) : T ,R) → (G, (n′, S, F , t) : T ,R) if trG [n](t) = n′ (, ⊥)

(case function) (G, (n, S, F , t) : T ,R) → (G, (nd ,n : S, F , t) : T ,R) if trG [n](t) = ⊥ and G[n] = f d (nk )

(non-case function) (G, (n, S, F , t) : T ,R) → (G, ((b, {ROOT 7→ n}), S, F , t) : T ,R) if trG [n](t) = ⊥, G[n] = f (· · · ),
and f defined by f = b

(global result) (G, (n, [], F , t) : T ,R) → (G,T ,R ∪ {n}) if G[n] = c(· · · ) for some constructor c

(argument result) (G, (n0, (n : S, F , t) : T ,R) →
(G, ((b, {ROOT 7→ n′}), S, F , t) : T ,R)

if G[n0] = c(· · · ) for some constructor c ,
G[n] = f d (nk ), f d defined by f d = b,
G ′ = G ⊎ {n′ : f d (nk [n0]d )}, trG′(n)[t 7→ n′]

EVALUATION OF BLOCKS

(variable declaration) (G, ((declare x ;b,E), S, F , t) : T ,R) → (G, ((b,E[x 7→ null]), S, F , t) : T ,R)

(local assign) (G, ((x = e;b,E), S, F , t) : T ,R) →
(G ′, ((b,E[x 7→ n]), S, F , t) : T ,R) if extend(G,E, e) = (G ′,n)

(successor assign) (G, ((v[i] = e;b,E), S, F , t) : T ,R) →
(G ′[n ← l(ni [n

′]i )], ((b,E), S, F , t) : T ,R)
if lookup(G,E,v) = n, G[n] = l(nk ),
extend(G,E, e) = (G ′,n′)

(return) (G, ((return e,E), S, F , t) : T ,R) →
(G ′[E(ROOT ) ← n], (n, S, F , t) : T ,R) if extend(G,E, e) = (G ′,n)

(exempt) (G, ((exempt,E), S, F , t) : T ,R) → (G,T ,R)

(case) (G, ((case x of {c1 → b1; . . . ; cn → bn },E), S, F , t) : T ,R) →
(G, ((bi ,E) : S, F , t) : T ,R)

if E(x) = n and G[n] = ci (· · · )

Figure 3: Operational semantics of ICurry with memoized pull-tabbing

but replacing the d-th argument by the two alternatives of the
choice. The actual node at the top of the stack is replaced by a
choice (with the same identifier) containing these two nodes and
becomes the new control.

memo pull tab: This rule is an important part of the improved
memoized pull-tabbing strategy. If the control contains a choice
node at a demanded argument position and the actual task has a
selection for this choice in its fingerprint, the choice is not moved
to the top as in pure pull-tabbing. Instead, the selected alternative
is put into the demanded argument. Since, due to sharing, it would
be wrong to update the actual function node, a new function node
is created with this update and the task result map of this original
node refers to the new node for the current task identifier. Thanks
to this rule, only the first occurrence of a choice is moved to the
root by pull-tab steps.

follow task result: This rule is responsible to follow the correct
alternative for shared non-deterministic expressions in a compu-
tation. If the task result map for a node contains an entry for the
current task, the node referred by this entry becomes the new
control element.

case function: If the control contains a graph node labeled with
a defined function but no entry in its task result map, and its d-th
argument is demanded, the function node is put onto the stack and
the control is replaced by the d-th argument.

non-case function: If the control contains a graph node labeled
with a defined function but no entry in its task result map and no
demanded argument, the function is ready for evaluation. Hence, its
body is put into the control together with an environment initialized
with the specific variable ROOT set to the graph node with this
function.



A Fair Implementation of Curry in Go PPDP 2021, September 6–8, 2021, Tallinn, Estonia

global result: If the control contains a graph node labeled with a
constructor symbol and the stack is empty, a constructor-rooted
term (head normal form) has been computed. This is added to the
set of computed results and the current task is removed.

argument result: If the control contains a graph node labeled
with a constructor symbol and the stack is not empty, then the top
of the stack contains a function where the argument at position d
is demanded and now evaluated. Since this result might be valid
only for the current task, a new function node with this argument
is introduced and remembered in the task result map (this could be
relevant if the function is shared in the subsequent computation).
After this preparation, the function is invoked similarly to rule
(non-case function).

Evaluation of blocks. The remaining rules are responsible to eval-
uate the body of a single function contained in the control. It should
be noted that these rules describe elementary computational activi-
ties so that they can be directly mapped into imperative programs.

variable declaration: If the control starts with a declaration of a
local variable, it is initialized as a null pointer in the environment.
The compilation scheme from FlatCurry into ICurry ensures that
each variable will be assigned before its first use [15] so that null
can be replaced by any other value.

local assign: If the control starts with an assignment to a local
variable, the graph is extended with the expression and the envi-
ronment is updated for this variable.

successor assign: If the control starts with an assignment to a
successor of a node (such assignments might occur in the case of
cyclic structures), the graph is extended with the expression and
the successor is set to the created subgraph.

return: If the control contains a return statement, the graph is
extended with the returned graph and the root node containing the
current function is updated with the returned node.

exempt: If the control contains an exempt statement, the current
computation is removed from the list of tasks.

case: If the control contains a case statement, the corresponding
branch is selected. This selection is always possible since the case
argument is demanded so that it has been evaluated before invoking
the function and all case branches are complete.

Discussion. This operational model avoids repeated pull-tab steps
for shared non-deterministic expressions by the use of task result
maps for function nodes. The first occurrence of a non-deterministic
choice is moved to the root by repeated applications of rule (pull tab).
Then the computation is split into two tasks by rule (split choice).
Each of these new tasks directly selects any further occurrence of
the same choice to the appropriate branch by rule (memo pull tab).
Since the further computation with this choice is valid only for
the current task, the computed results are remembered in the task
result maps.

The use of task result maps causes some overhead for determin-
istic computations, i.e., computations where choices do not occur.
This overhead can be avoided by attaching task identifiers in nodes
in order to identify the task which created a node. This information
can be used in rule (argument result) to create the new node n′ and
update the task result map of n only if the computed result comes
from a task “younger” than the current task. Since there is only one

task for deterministic computations, the updates of the task result
map are avoided.

This improvement is sketched in [31]. Since a detailed specifica-
tion would be quite technical, we omit it in this formal model.

7 COMPILATION TO GO
After fixing the operational semantics of the intended implemen-
tation, we are ready to compile Curry programs into an existing
target language. Since the transformation of Curry programs into
ICurry programs via FlatCurry already exists, as specified in [15],
we focus on the compilation of ICurry programs. We recapitulate
the main issues of such an implementation:

(1) Implement the graph structure containing all expressions
and choices under evaluation.

(2) Implement the overall control, i.e., the management of tasks.
(3) Implement the evaluation of single functions, i.e., pattern

matching via case distinctions, assignments, and construc-
tion of new graphs.

In order to do this with limited efforts (which was one of the motiva-
tion of designing ICurry), an imperative target language supporting
dynamic data structures and garbage collection is an appropriate
choice. Moreover, to support fair evaluation of non-determinism
and exploiting multi-processor architectures for running Curry pro-
grams, the target language should also support lightweight threads.

Due to these considerations, we choose Go7 as the target lan-
guage of our implementation. Go is a statically typed language with
garbage collection and direct support for CSP-like concurrency [35].
New threads can be started as procedure calls prefixed by the key-
word “go” so that they are also called goroutines. They run in the
same address space (shared memory). Go also offers channels to
communicate between goroutines. We will use channels to send
computed results from the tasks to the main program presenting the
results to the user. Since goroutines are multiplexed onto operating-
system threads, multi-core processors are automatically exploited
(if not explicitly restricted by some compiler option).

In the following, we sketch our implementation, called Curry2Go,
with some simplifications to keep it readable. The complete imple-
mentation is available as a Curry package8 and contains a compiler
and an interactive environment (“REPL”) in the style of Haskell,
Prolog, or other Curry systems. Since the compiler and REPL are
written in Curry, the initial installation requires another existing
Curry compiler. Subsequently, it can be compiled with itself (boot-
strapping).

7.1 Run-Time Structures
The main data structure of our run-time system is the graph repre-
senting expressions and choices occurring during the evaluation of
the main expression. For this purpose, we have to define a structure
for graph nodes. The various concrete kinds of nodes are distin-
guished by the following enumeration type in Go:
type NodeType uint8

const(

FCALL NodeType = iota

7https://golang.org/
8https://github.com/curry-language/curry2go

https://golang.org/
https://github.com/curry-language/curry2go


PPDP 2021, September 6–8, 2021, Tallinn, Estonia Jonas Böhm, Michael Hanus, and Finn Teegen

CONSTRUCTOR

CHOICE

REDIRECT

EXEMPT

. . .

)

Hence, a node could be a function call (FCALL), a constructor applica-
tion (CONSTRUCTOR), a choice (CHOICE), a redirection node (REDIRECT),
or a failure (EXEMPT) (further alternatives are different kinds of liter-
als, which are omitted here). Note that the operational semantics
described in Sect. 6 has no failure nodes but specifies ICurry’s
exempt statement by dropping the current task. Since Curry2Go
uses a separate layer for managing tasks and sending computed
results, we implement exempt by creating an EXEMPT node which is
processed by the task manager.

We use the following Go structure to implement graph nodes:
type Node struct{

Children []*Node

node_type NodeType

int_value int

function func(*Task)

arity int

name *string

lock sync.Mutex

tr map[int]*Node

}

Each node has an array Children, the successors of the node, i.e.,
pointers to other nodes, and a tag node-type. The use of the further
components depends on the kind of node. For constructor nodes,
int-value contains the index of the constructorwhich is used for the
efficient implementation of case selection according to rule (case).
For choice nodes, int-value contains the identifier of the choice
(see Sect. 5). For function nodes, int-value contains the index of the
demanded argument (or -1 when the body of the function does not
contain a case statement), and function refers to the Go function
invoked to evaluate the function node (the reference to the task is
necessary since it is relevant which task evaluates a function). In the
case of function or constructor nodes, arity contains the number of
required arguments: if the number of successors is smaller than the
arity, the node represents a partial application. name refers to the
textual representation of the constructor or function and is used
for debugging or printing results. tr is the task result map used
to implement memoized pull-tabbing as discussed in Sect. 6. To
avoid the construction of a map structure for all graph nodes, this
component will be initialized on demand, i.e., a new map structure
is created when it is set for some value for the first time. Finally,
lock is a mutual exclusion lock which is necessary to synchronize
concurrent tasks evaluating and updating the graph (see below).

The representation of tasks in our run-time system has a direct
correspondence to the operational semantics specified in Sect. 6:
type Task struct{

id int

control *Node

stack []*Node

fingerprint map[int]int

}

id is the task identifier (used in the task result maps), control refers
to the node in the control, stack refers to the nodes in the stack of
the task, and fingerprint maps choice identifiers into the indexes
of children of choice nodes.

The ICurry block and environment, mentioned in the operational
semantics, are not part of the task structure since they are repre-
sented as Go code which implements the rules to evaluate blocks
as specified in Fig. 3. The structure and generation of this code is
described below in Sect. 7.3.

7.2 Search Control
The overall control (i.e., the operation implementing the evalua-
tion of an expression) uses a Go channel result-chan to receive
evaluated results from individual tasks (this corresponds to the
component R of the computation state of the operational seman-
tics) and a queue of tasks. It is based on a function toHNF which
evaluates the control node of a task to a head normal form or a
failure. This is done by repeatedly invoking the code of defined
operations. If a choice occurs and the fingerprint of the task has no
selection for the choice, a new task is created by copying the current
task and extending the fingerprints of the current and new task for
this choice. In the case of a depth-first search (DFS) strategy, the
new task is put into the front of the queue of tasks and we proceed
with the current task. In the case of a breadth-first search (BFS)
strategy, the current task and the new task is put at the end of the
queue of tasks and we proceed with the first task in the queue. If
the evaluation of a task terminates, the result is ignored in the case
of an EXEMPT node or send to result-chan so that the overall control
can print it. If the queue of tasks is not empty, the next task is taken
from the queue and executed.

So far we have described a sequential search strategy where the
user can choose between DFS and BFS. However, a main motivation
of this work is to provide an operationally complete implementation.
For instance, consider the following contrived example:
idND :: a → a

idND n = loop ? n ? loop

Semantically, idND is the identity function but, operationally, it is
non-deterministically defined with looping alternatives. Although
0 is a value of idND 0, both DFS and BFS do not return any value
but loop. To avoid such kind of incompleteness, we implemented a
fair search (FS) strategy. FS evaluates each task concurrently as a
goroutine: the Go function fsRunner(t,result-chan), which evalu-
ates a task t by toHNF and sends a non-failure result to result-chan,
is started by
go fsRunner(t,result_chan)

This is done by the task handler implementing FS. After starting a
new runner, the task handler waits for new tasks put by the runners
into the queue of tasks (which is also implemented as a Go channel)
and starts them (there is also an option to set a maximum for
concurrent tasks). Thus, each non-deterministic branch is evaluated
as a separate goroutine.

Note that all these goroutines work on the same global graph
structure. Although they usually evaluate different parts of this
graph, due to sharing it is possible that different goroutines evaluate
the same node and update them in place, e.g., replacing a function



A Fair Implementation of Curry in Go PPDP 2021, September 6–8, 2021, Tallinn, Estonia

node by a constructor or by a choice node in a pull-tab step. In
order to avoid inconsistencies due to concurrent updates, graph
nodes have to be locked. This is the purpose of the component lock
of a graph node. If some node has to be evaluated, it will be locked
by the task so that at most one thread accesses the node or its task
result map. If it is a choice node, the parent node must be locked
since a possible pull-tab step will update the parent.

7.3 Code Generation
The implementation of the run-time structures and control routines
described so far form the run-time system of our implementation.
All components of the run-time system are bundled in a Go package
named gocurry. Our compiler generates for each Curry module
a corresponding Go package which imports gocurry and further
compiled Curry modules.

As already mentioned, a concrete Curry module is transformed
via FlatCurry into an ICurry program so that the actual compiler
transforms ICurry programs into Go programs. For this purpose,
each ICurry function is compiled into a Go function which has a
single parameter: the task evaluating this function. The task pa-
rameter is used to initialize a local variable root with a reference
to the control node. The values of all further local variables are
accessed via root. Then the translation of an ICurry block into
Go statements is straightforward: case is translated into a switch

instruction, NODE, or , exempt into constructors for the correspond-
ing graph nodes, and a return sets the root node before returning
from the Go function. Furthermore, expressions are translated into
statements which create new graph nodes. In the following, we
sketch this compilation process.

In order to simplify the Go code to create graph nodes, the
Curry2Go compiler generates a Go function for each kind of node
occurring in an ICurry expression. For this purpose, the run-time
system contains a generic function which sets a given node (first
argument) to a constructor node where the index, arity, name, and
children of the constructor are passed as further arguments:
func ConstCreate(root *Node,

constructor int, arity int,

name *string,

args ...*Node) *Node {

root.Children = root.Children[:0]

root.node_type = CONSTRUCTOR

root.int_value = constructor

root.arity = arity

root.name = name

root.Children = append(root.Children, args...)

return root

}

Similarly, there are further functions in the run-time system to set
nodes to function nodes, choice nodes, etc.

Each data type is translated into an array containing the textual
representation of each constructor and operations to create con-
structor nodes. For instance, for the data type of Boolean values
(defined in the Preludemodule), the following Go code is generated:
var Prelude_Bool_names []string =

[]string{ "False", "True" }

func Prelude_CREATE_False(root *Node) *Node {

ConstCreate(root, 0, 0, &Prelude_Bool_names[0])

return root

}

func Prelude_CREATE_True(root *Node) *Node {

ConstCreate(root, 1, 0, &Prelude_Bool_names[1])

return root

}

The use of a global string array T -names for the textual represen-
tation of the constructors of a type T reduces memory and time
compared to the direct storage of strings in constructor nodes. Sim-
ilarly, the names of all operations occurring in some module are
stored in a string array.

Note that different constructors of a data type can be distin-
guished by the component int-value in the constructor nodes (in
the previous example: 0 for False and 1 for True). This enables the
straightforward translation of case expressions into Go switch in-
structions. For instance, the Curry operation not, defined in the
Prelude as in Sect. 2, is transformed via FlatCurry into the following
ICurry code:
function not

declare x1

x1 = ROOT[0]

case x1 of

False → return NODE(True)

True → return NODE(False)

The translation of this definition into Go code is basically a switch

instructionwhere in each branch the node representing the function
call is replaced by True and False, respectively.
func Prelude_not(task *Task) () {

root := task.control // get root of function call

var x1 *Node

x1 = root.Children[0]

switch x1.int_value {

case 0:

Prelude_CREATE_True(root)

return

case 1:

Prelude_CREATE_False(root)

return

}

}

The Go code shown above has been simplified for the sake of read-
ability, e.g., package qualifiers are omitted. Nevertheless, it shows
that ICurry is an appropriate abstraction to generate imperative
code from Curry programs, which was the main motivation to
introduce ICurry, as discussed in [15].

7.4 Extensions
After sketching the main aspects of Curry2Go, we discuss some
extensions necessary to support a complete Curry implementation.

Since Curry is intended to amalgamate functional and logic pro-
gramming features, the usual higher-order constructs of functional
programming must be supported. This is already prepared during



PPDP 2021, September 6–8, 2021, Tallinn, Estonia Jonas Böhm, Michael Hanus, and Finn Teegen

the transformation from Curry into FlatCurry: lambda abstractions
are transformed into top-level functions with new names, and each
application of an expression e1 of functional type to some argument
e2 (if this is not a full or partial application of a defined operation or
constructor) is transformed into the expression apply(e1,e2) where
apply is a predefined operation. This technique is known as “defunc-
tionalization” [47] and also used in logic programming to support
higher-order features [50]. Therefore, Curry2Go interprets partially
applied function calls as non-evaluable (which is the purpose of the
component arity in graph nodes) and the operation apply is imple-
mented by adding an argument and, if all arguments are provided,
calls the actual function with all arguments.

So far we ignored free variables since, from a declarative point
of view, they can be considered as non-deterministic operations
generating their values [9]. For instance, the Curry expression
let x free in (x, not x)

can be replaced by
let x = aBool in (x, not x)

where the non-deterministic value generator aBool is defined as in
Sect. 2.

Although such a transformation could be used to compile Curry
into a deterministic language if a mechanism to interpret non-
deterministic computation is provided, as done in KiCS2 with
Haskell as a target languge [19], this approach has some drawbacks.
If the possible set of values for free variables is infinite, compu-
tations with value generators might have larger or even infinite
search spaces compared to Prolog, where free variables are treated
as run-time objects and unification is used to solve term equations.
In particular, unification can bind variables without instantiating
them. Thus, unification can be considered as an optimized equality
predicate where constraints between variables are stored instead of
concrete variable bindings [14]. In order to get the same effect for
Curry2Go, we have to represent free variables and their binding
constraints at run time. This can be done by extending FlatCurry
and ICurry with free variables (which is actually the case in the
corresponding packages) and representing free variables as specific
graph nodes. We implement a free variable as a constructor with-
out successors and int-value “-1”. This allows for an immediate
implementation of narrowing, i.e., instantiating free variable argu-
ments [46]. If an argument of some function is demanded, there is
a switch instruction in the function’s body. This switch instruction
is extended with a case for -1: since this branch is selected if the
demanded argument is a free variable, this branch binds the free
variable to a graph representing a choice of the various construc-
tors. Since this binding is valid only for the current task, the free
variable node is not updated in place but the binding is stored in
the task result map of this node (this has some similarity to bind-
ing arrays used in parallel implementations of Prolog [51] but the
structure is different due to our requirements). With this implemen-
tation, we obtain the advantages of using free variables as in Prolog
implementations while still allowing flexible and complete search
strategies.

8 EVALUATION
The compiler from Curry to Go is written in Curry and based on
existing packages to represent FlatCurry and ICurry in Curry and
generating ICurry programs from Curry source programs. Thanks
to this infrastructure, the size of the actual compiler is less than 400
lines of Curry code. The implementation of the run-time system in
Go is also reasonable: the kernel (without auxiliary operations to
implement predefined operations) consists of less than 500 lines of
Go code.

The main motivation for this work is to explore whether an
operationally complete implementation of Curry (and, thus, logic
programming) is possible in a way competitive to other existing
implementations. Therefore, the fair search strategy is the default
strategy in Curry2Go. Using Go as a target language is useful to
get a compact and maintainable implementation but it might result
in less efficient code compared to using C or LLVM. Nevertheless,
we compare our current implementation to other implementations
of Curry.

For the benchmarks, we choose two other major Curry imple-
mentations. PAKCS [29], which is part of Debian and Ubuntu Linux
distributions, compiles to Prolog (SWI-Prolog 8.0) and is based on
backtracking. KICS2 [19] compiles to Haskell (GHC 8.4) where
non-determinism is implemented by pure pull-tabbing (without
memoization) so that various search strategies, like depth-first
and breadth-first (default), are offered. Both Curry systems have
been used for larger applications and provide many libraries and
packages for application programming. Sprite [18] is a Curry im-
plementation which uses LLVM to generate efficient target code. It
is also based on pull-tabbing and ICurry and offers a fair evalua-
tion strategy (without concurrency by rotating the queue of tasks
every so often). We could not include it in the benchmarks since a
working implementation is not available at the time of writing.9
The published figures in [18] indicate that Sprite behaves similarly
to KiCS2 (although KiCS2 does not support fair evaluation).

All benchmarks10 were executed on a Linux machine running
Debian 10 with an Intel Core i7-7700K (4.2GHz) processor with
eight cores. We measured the elapsed time in seconds (with the time
command as the average of three runs) of invoking the executable
generated by the Curry compiler. The first table shows the timings
for purely functional programs:

Example PAKCS KiCS2 Curry2Go

nrev_4096 8.25 0.44 1.17
takPeano_24_16_8 54.16 0.32 5.17
takInt_24_16_8 41.19 0.40 5.96
revHO_1M 15.03 0.36 2.31
primesHO_1000 38.81 0.44 4.11
queens_10 203.29 0.59 15.81

nrev-4096 is the quadratic naive reverse algorithm applied to a
list with 4096 elements, takPeano and takInt is a highly recursive
function on naturals [42] applied to arguments (24, 16, 8) in Peano
representation or with built-in integers, respectively. The remaining
benchmarks use higher-order functions: revHO-1M reverses a list
with one million elements in linear time using foldl and flip,

9Personal communication with Andy Jost.
10The benchmark suite is contained in the implementation of Curry2Go.



A Fair Implementation of Curry in Go PPDP 2021, September 6–8, 2021, Tallinn, Estonia

Table 1: Non-deterministic programs with various search strategies

Example PAKCS KiCS2 (DFS) KiCS2 (BFS) C2Go (DFS) C2Go (BFS) C2Go (FS)

psort_13 16.43 0.77 2.89 5.34 5.43 7.79
addNum_2 0.19 0.99 1.78 0.44 0.43 0.36
addNum_5 0.22 3.22 5.15 1.03 1.03 0.52
addNum_10 0.28 10.04 15.49 2.44 2.43 0.69
select_50 0.14 0.62 0.69 0.11 0.09 0.09
select_100 0.45 4.95 5.23 0.14 0.15 0.10
select_150 1.06 21.31 26.11 0.23 0.24 0.12

isort_primes4 15.74 0.42 0.42 1.76 1.76 1.72
psort_primes4 156.28 0.40 0.41 1.71 1.74 0.95

primesHO_1000 computes the 1000th prime number via the sieve of
Eratosthenes, and queens_10 computes the number of safe positions
of 10 queens on a 10 × 10 chess board.

These benchmarks indicate that, for purely functional programs,
Curry2Go is much faster than PAKCS but less efficient than KiCS2.
This is not surprising since Haskell/GHC is highly optimized for
these kinds of programs. Actually, a native implementation of the
naive reverse algorithm in Go, Haskell, and Prolog shows that
Haskell/GHC is more than two times faster than Go and SWI-Prolog
is three times slower than Go. The reason for the even less efficient
behavior of PAKCS on this benchmark is the fact that the imple-
mentation of lazy evaluation in Prolog causes some overhead.

However, the situation becomes different when non-determinism
is used, as shown in Table 1. Whereas KiCS2 is quite efficient on
psort-13, the naive permutation sort applied to a list of 13 elements,
it changeswhen non-deterministic expressions are shared: addNum-n
non-deterministically chooses a number (out of 2000) and adds it
n times, and select-n non-deterministically selects an element in
a list of length n and sums up the element and the list without
the selected element. The duplication of choices, mentioned at the
end of Sect. 5, causes a serious slowdown which is avoided in our
implementation thanks to memoized pull-tabbing. It is also worth
to compare the timings when different search strategies (DFS, BFS,
FS) are used. Whereas KiCS2 shows some overhead of breadth-first
compared to depth-first (possibly due to the additional structures
used to implement a breadth-first tree traversal), the numbers are
almost identical for Curry2Go since the difference between BFS and
DFS is just a different schedule of tasks. Apart from its operational
completeness, the fair search (FS) strategy is sometimes faster than
BFS or DFS thanks to the use of goroutines possibly scheduled on
different processors.

An interesting effect of our implementation is shown in the last
two lines of Table 1 (inspired by [19]). It shows the time to sort
[primes!!303, primes!!302, primes!!301, primes!!300]

with the deterministic insertion sort (isort) and the non-deter-
ministic permutation sort (psort) algorithm, respectively, where
primes defines the infinite list of all prime numbers. Due to back-
tracking, identical computations might be repeated if they oc-
cur in different non-deterministic branches. Thus, primes is re-
evaluated by PAKCS several times when the list is passed to the

non-deterministic operation psort. This is not the case in imple-
mentations based on pull-tabbing: due to sharing common subex-
pressions in the global graph, results of deterministic computa-
tions are shared across non-determinism [20]. This property has
the advantage that a user of some library operation must not care
about the internal implementation of the operation, e.g., whether it
exploits non-determinism. With our implementation, where non-
deterministic branches are evaluated by goroutines, it could be even
better to use a non-deterministic implementation since it might map
evaluations of common subexpressions to different computation
nodes, as shown by the results for psort-primes4.

As a final benchmark, we show the timings for psort-primes4 in-
creased to a list of eight prime numbers and executed with different
numbers of processors (by setting the Go variable GOMAXPROCS):

# processors 1 2 4 8

psort_primes8 6.57 3.41 1.99 1.55

The benchmark shows that the presence of multiple processors is
exploited in a non-deterministic programwithout requiring specific
user annotations.

We have seen that KiCS2 generates efficient code for determinis-
tic programs. This could be explained with the highly optimized
Haskell compiler GHC used as a back end (KiCS2 invokes GHC
with option -O2). Since good code generation requires time, we
performed a larger test to compare the compilation times. Since
both KiCS2 and Curry2Go are implemented in Curry, we measured
the time to bootstrap both compilers where the first phase used
the same Curry compiler (PAKCS) and the second phase used the
compiler generated in the first phase. In this experiment, Curry2Go
was more than three times faster than KiCS2. Although the absolute
run times are difficult to compare (due to different compiler source
files and techniques to compile base libraries), it shows that the
generation of good native code requires time, but our compiler
would benefit from future optimization options of the Go compiler.

9 RELATEDWORK
Early implementations of functional logic languages were often
based on Prolog due to the direct support of non-determinism
and free variables [7, 40]. Even implementations which compile
into other target languages use backtracking to implement non-
determinism, since the efficient implementation of backtracking,



PPDP 2021, September 6–8, 2021, Tallinn, Estonia Jonas Böhm, Michael Hanus, and Finn Teegen

known from Prolog [1], can be transferred to other compilation
schemes (e.g., [24, 41]) or simulated with functional programming
techniques [48]. However, the use of backtracking results in the
operational incompleteness of the implementation.

Later on, some approaches use concurrent programming features
for the implementation of functional logic languages. For instance,
an abstract machine for Curry is implemented in Java where choices
are implemented as Java threads [30], but the overall efficiency is
low compared to other sequential implementations. KiCS2 [19]
offers a parallel search strategy based on a parallel tree search
library for Haskell, but operational completeness is not ensured in
the case of infinite deterministic computations.

A systematic approach to operationally complete implementa-
tions of functional logic languages is the fair scheme [17], which is
also the basis of Curry compiler Sprite [18]. Since the fair scheme
is based on pull-tabbing, it suffers from the copying of choices as
discussed in Sect. 5. This motivated our work in order to show that
the fair scheme can be improved and implemented in a way which
can compete with other incomplete schemes.

Related to our work are also parallel implementations of Prolog
[21]. Such implementations might support Or-parallelism [51] (ap-
ply all rules in parallel) or And-parallelism [34] (prove conjunctions
of literals in parallel). Andorra Prolog [33] tries to combine both
kinds of parallelism. The main motivation of these approaches is to
speed up the execution of programs while keeping their sequential
properties. This is in contrast to our work where we aim at an
implementation which frees the programmer from considering the
influence of the evaluation strategy to computed results.

10 CONCLUSIONS
Implementations of declarative programming languages often trade
efficiency for completeness. Although equations, as used in func-
tional programs, have a clear interpretation (“replace equals by
equals until a value is obtained”), functional programmers have to
consider the peculiarities of the concrete programming language
(e.g., strict evaluation of arguments vs. non-strict evaluation of
branches of conditions, order of pattern matching, default rules)
to ensure that intended results are actually computed. Similarly,
logic programs can be interpreted as logic formulas but, due to
backtracking in Prolog, one has to consider the order of search in
concrete programs. Such considerations are somehow contrary to
the idea of declarative programming where one wants to abstract
from execution details. Therefore, an operationally complete imple-
mentation can support a higher-level programming style and has
also advantages for teaching declarative programming.

In this work we presented a new approach towards this ob-
jective. We developed an operationally complete implementation
by using recent advances in operational models for declarative
programming. By representing computational alternatives as data
rather than program code, our implementation supports various
search strategies, in particular, strategies with a fair selection of
non-deterministic choices. By mapping alternative computations
to lightweight threads, i.e., goroutines, we obtain reduced elapsed
times on multi-core processors. We presented a technique to com-
pile Curry source programs into Go target programs by a stepwise
transformation via FlatCurry and ICurry. In order to avoid potential

efficiency problems when demand-driven evaluation is combined
with non-determinism, we used a recent method, memoized pull
tabbing, and provided a formal definition of this strategy. Using
this formal model together with an existing infrastructure for pro-
cessing Curry programs, the actual implementation could be done
with modest efforts. In principle, one can use any other imperative
language as a target language (actually, compilation to C or LLVM
might get more efficient target code), but the choice of Go limits the
implementation efforts due to the direct support of dynamic data
structures with garbage collection and concurrency with threads.

Although our implementation is a first prototype, it has already
been used to compile larger programs, like program analyzers,
browsers, and documentation tools, and it is able to bootstrap the
compiler in order to get a self-hosting system.

For future work, we will look into possibilities to speed up the
target code and add more computational features, like set functions
to encapsulate search [10] or residuation to support concurrency
in source programs [26].

ACKNOWLEDGMENTS
The authors are grateful to the anonymous referees for helpful
comments and suggestions to improve the paper.

REFERENCES
[1] H. Aït-Kaci. 1991. Warren’s Abstract Machine. MIT Press.
[2] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. 2005. Operational Semantics

for Declarative Multi-Paradigm Languages. Journal of Symbolic Computation 40,
1 (2005), 795–829.

[3] A. Alqaddoumi, S. Antoy, S. Fischer, and F. Reck. 2010. The Pull-Tab
Transformation. In Proc. of the Third International Workshop on Graph Com-
putation Models. Enschede, The Netherlands, 127–132. Available at
http://gcm2010.imag.fr/pages/gcm2010-preproceedings.pdf.

[4] S. Antoy. 1997. Optimal Non-Deterministic Functional Logic Computations.
In Proc. International Conference on Algebraic and Logic Programming (ALP’97).
Springer LNCS 1298, 16–30.

[5] S. Antoy. 2011. On the Correctness of Pull-Tabbing. Theory and Practice of Logic
Programming 11, 4-5 (2011), 713–730. https://doi.org/10.1017/S1471068411000263

[6] S. Antoy, R. Echahed, and M. Hanus. 2000. A Needed Narrowing Strategy. J.
ACM 47, 4 (2000), 776–822. https://doi.org/10.1145/347476.347484

[7] S. Antoy and M. Hanus. 2000. Compiling Multi-Paradigm Declarative Programs
into Prolog. In Proc. International Workshop on Frontiers of Combining Systems
(FroCoS’2000). Springer LNCS 1794, 171–185.

[8] S. Antoy and M. Hanus. 2005. Declarative Programming with Function Patterns.
In Proceedings of the International Symposium on Logic-based Program Synthesis
and Transformation (LOPSTR’05). Springer LNCS 3901, 6–22. https://doi.org/10.
1007/11680093_2

[9] S. Antoy andM. Hanus. 2006. Overlapping Rules and Logic Variables in Functional
Logic Programs. In Proceedings of the 22nd International Conference on Logic
Programming (ICLP 2006). Springer LNCS 4079, 87–101.

[10] S. Antoy and M. Hanus. 2009. Set Functions for Functional Logic Programming.
In Proceedings of the 11th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming (PPDP’09). ACM Press, 73–82. https:
//doi.org/10.1145/1599410.1599420

[11] S. Antoy and M. Hanus. 2010. Functional Logic Programming. Commun. ACM
53, 4 (2010), 74–85. https://doi.org/10.1145/1721654.1721675

[12] S. Antoy and M. Hanus. 2012. Contracts and Specifications for Functional Logic
Programming. In Proc. of the 14th International Symposium on Practical Aspects of
Declarative Languages (PADL 2012). Springer LNCS 7149, 33–47. https://doi.org/
10.1007/978-3-642-27694-1_4

[13] S. Antoy andM. Hanus. 2017. Default Rules for Curry. Theory and Practice of Logic
Programming 17, 2 (2017), 121–147. https://doi.org/10.1017/S1471068416000168

[14] S. Antoy and M. Hanus. 2017. Transforming Boolean equalities into constraints.
Formal Aspects of Computing 29, 3 (2017), 475–494. https://doi.org/10.1007/s00165-
016-0399-6

[15] S. Antoy,M. Hanus, A. Jost, and S. Libby. 2020. ICurry. InDeclarative Programming
and Knowledge Management - Conference on Declarative Programming (DECLARE
2019). Springer LNCS 12057, 286–307. https://doi.org/10.1007/978-3-030-46714-
2_18

https://doi.org/10.1017/S1471068411000263
https://doi.org/10.1145/347476.347484
https://doi.org/10.1007/11680093_2
https://doi.org/10.1007/11680093_2
https://doi.org/10.1145/1599410.1599420
https://doi.org/10.1145/1599410.1599420
https://doi.org/10.1145/1721654.1721675
https://doi.org/10.1007/978-3-642-27694-1_4
https://doi.org/10.1007/978-3-642-27694-1_4
https://doi.org/10.1017/S1471068416000168
https://doi.org/10.1007/s00165-016-0399-6
https://doi.org/10.1007/s00165-016-0399-6
https://doi.org/10.1007/978-3-030-46714-2_18
https://doi.org/10.1007/978-3-030-46714-2_18


A Fair Implementation of Curry in Go PPDP 2021, September 6–8, 2021, Tallinn, Estonia

[16] S. Antoy, M. Hanus, J. Liu, and A. Tolmach. 2005. A Virtual Machine for Functional
Logic Computations. In Proc. of the 16th InternationalWorkshop on Implementation
and Application of Functional Languages (IFL 2004). Springer LNCS 3474, 108–125.

[17] S. Antoy and A. Jost. 2013. Compiling a Functional Logic Language: The Fair
Scheme. In Proceedings of the 23rd International Symposium on Logic-Based Pro-
gram Synthesis and Transformation (LOPSTR 2013). Springer LNCS 8901, 202–219.
https://doi.org/10.1007/978-3-319-14125-1_12

[18] S. Antoy and A. Jost. 2016. A New Functional-Logic Compiler for Curry: Sprite. In
Proceedings of the 26th International Symposium on Logic-Based Program Synthesis
and Transformation (LOPSTR 2016). Springer LNCS 10184, 97–113. https://doi.
org/10.1007/978-3-319-63139-4_6

[19] B. Braßel, M. Hanus, B. Peemöller, and F. Reck. 2011. KiCS2: A New Compiler
from Curry to Haskell. In Proc. of the 20th International Workshop on Functional
and (Constraint) Logic Programming (WFLP 2011). Springer LNCS 6816, 1–18.
https://doi.org/10.1007/978-3-642-22531-4_1

[20] B. Braßel and F. Huch. 2007. On a Tighter Integration of Functional and Logic
Programming. In Proc. APLAS 2007. Springer LNCS 4807, 122–138.

[21] J. Chassin de Kergommeaux and P. Codognet. 1994. Parallel Logic Programming
Systems. ACM Computing Serveys 26, 3 (1994), 295–336. https://doi.org/10.1145/
185403.185453

[22] R. Echahed and J.-C. Janodet. 1997. On Constructor-based Graph Rewriting Systems.
Research Report IMAG 985-I. IMAG-LSR, CNRS, Grenoble.

[23] J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and M.
Rodríguez-Artalejo. 1999. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming 40 (1999), 47–87.

[24] M. Hanus. 1990. Compiling Logic Programs with Equality. In Proc. of the 2nd
Int. Workshop on Programming Language Implementation and Logic Programming.
Springer LNCS 456, 387–401.

[25] M. Hanus. 2012. Improving Lazy Non-Deterministic Computations by Demand
Analysis. In Technical Communications of the 28th International Conference on
Logic Programming, Vol. 17. Leibniz International Proceedings in Informatics
(LIPIcs), 130–143. https://doi.org/10.4230/LIPIcs.ICLP.2012.130

[26] M. Hanus. 2013. Functional Logic Programming: From Theory to Curry. In
Programming Logics - Essays in Memory of Harald Ganzinger. Springer LNCS
7797, 123–168. https://doi.org/10.1007/978-3-642-37651-1_6

[27] M. Hanus. 2017. CurryCheck: Checking Properties of Curry Programs. In Pro-
ceedings of the 26th International Symposium on Logic-Based Program Synthe-
sis and Transformation (LOPSTR 2016). Springer LNCS 10184, 222–239. https:
//doi.org/10.1007/978-3-319-63139-4_13

[28] M. Hanus. 2020. Combining Static and Dynamic Contract Checking for Curry.
Fundamenta Informaticae 173, 4 (2020), 285–314. https://doi.org/10.3233/FI-2020-
1925

[29] M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau, R.
Sadre, F. Steiner, and F. Teegen. 2020. PAKCS: The Portland Aachen Kiel Curry
System. Available at http://www.informatik.uni-kiel.de/~pakcs/.

[30] M. Hanus and R. Sadre. 1999. An Abstract Machine for Curry and its Concurrent
Implementation in Java. Journal of Functional and Logic Programming 1999, 6
(1999).

[31] M. Hanus and F. Teegen. 2021. Memoized Pull-Tabbing for Functional Logic
Programming. In Proc. of the 28th International Workshop on Functional and
(Constraint) Logic Programming (WFLP 2020). Springer LNCS 12560, 57–73. https:
//doi.org/10.1007/978-3-030-75333-7_4

[32] M. Hanus (ed.). 2016. Curry: An Integrated Functional Logic Language (Vers.
0.9.0). Available at http://www.curry-lang.org.

[33] S. Haridi and P. Brand. 1988. Andorra Prolog: An Integration of Prolog and
Committed Choice Languages. In Proc. Int. Conf. on Fifth Generation Computer
Systems. 745–754.

[34] M.V. Hermenegildo and F. Rossi. 1995. Strict and Non-Strict Independent And-
Parallelism in Logic Programs: Correctness, Efficiency, and Compile-time Condi-
tions. Journal of Logic Programming 22, 1 (1995), 1–45.

[35] C.A.R. Hoare. 1978. Communicating sequential processes. Commun. ACM 21, 8
(1978), 666–677. https://doi.org/10.1145/359576.359585

[36] G. Huet and J.-J. Lévy. 1991. Computations in Orthogonal Rewriting Systems. In
Computational Logic: Essays in Honor of Alan Robinson, J.-L. Lassez and G. Plotkin
(Eds.). MIT Press, 395–443.

[37] H. Hussmann. 1992. Nondeterministic Algebraic Specifications and Nonconfluent
Term Rewriting. Journal of Logic Programming 12 (1992), 237–255. https:
//doi.org/10.1016/0743-1066(92)90026-Y

[38] T. Johnsson. 1985. Lambda Lifting: Transforming Programs to Recursive Func-
tions. In Functional Programming Languages and Computer Architecture. Springer
LNCS 201, 190–203.

[39] J. Launchbury. 1993. A Natural Semantics for Lazy Evaluation. In Proc. 20th
ACM Symposium on Principles of Programming Languages (POPL’93). ACM Press,
144–154.

[40] F. López-Fraguas and J. Sánchez-Hernández. 1999. TOY: A Multiparadigm Declar-
ative System. In Proc. of RTA’99. Springer LNCS 1631, 244–247.

[41] W. Lux. 1999. Implementing Encapsulated Search for a Lazy Functional Logic
Language. In Proc. 4th Fuji International Symposium on Functional and Logic

Programming (FLOPS’99). Springer LNCS 1722, 100–113.
[42] W. Partain. 1993. The nofib Benchmark Suite of Haskell Programs. In Proceedings

of the 1992 Glasgow Workshop on Functional Programming. Springer, 195–202.
[43] S.L. Peyton Jones. 1992. Implementing lazy functional languages on stock hard-

ware: the Spineless Tagless G-machine. Journal of Functional Programming 2, 2
(1992), 127–202.

[44] S. Peyton Jones (Ed.). 2003. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press.

[45] D. Plump. 1999. Term Graph Rewriting. In Handbook of Graph Grammars and
Computing by Graph Transformation, Volume 2: Applications, Languages and Tools,
H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg (Eds.). World Scientific,
3–61.

[46] U.S. Reddy. 1985. Narrowing as the Operational Semantics of Functional Lan-
guages. In Proc. IEEE Internat. Symposium on Logic Programming. Boston, 138–
151.

[47] J.C. Reynolds. 1972. Definitional Interpreters for Higher-Order Programming
Languages. In Proceedings of the ACM Annual Conference. ACM Press, 717–740.

[48] P. Wadler. 1985. How to Replace Failure by a List of Successes. In Functional
Programming and Computer Architecture. Springer LNCS 201, 113–128.

[49] P. Wadler. 1997. How to Declare an Imperative. Comput. Surveys 29, 3 (1997),
240–263.

[50] D.H.D. Warren. 1982. Higher-order extensions to Prolog: are they needed?. In
Machine Intelligence 10. 441–454.

[51] D.H.D. Warren. 1987. The SRI Model for Or-Parallel Execution of Prolog: Abstract
Design and Implementation Issues. In Proc. of the 1987 Internat. Symposium on
Logic Programming. IEEE-CS, 92–102.

[52] M.A. Wittorf. 2018. Generic Translation of Curry Programs into Imperative Pro-
grams (in German). Master’s thesis. Kiel University.

https://doi.org/10.1007/978-3-319-14125-1_12
https://doi.org/10.1007/978-3-319-63139-4_6
https://doi.org/10.1007/978-3-319-63139-4_6
https://doi.org/10.1007/978-3-642-22531-4_1
https://doi.org/10.1145/185403.185453
https://doi.org/10.1145/185403.185453
https://doi.org/10.4230/LIPIcs.ICLP.2012.130
https://doi.org/10.1007/978-3-642-37651-1_6
https://doi.org/10.1007/978-3-319-63139-4_13
https://doi.org/10.1007/978-3-319-63139-4_13
https://doi.org/10.3233/FI-2020-1925
https://doi.org/10.3233/FI-2020-1925
http://www.informatik.uni-kiel.de/~pakcs/
https://doi.org/10.1007/978-3-030-75333-7_4
https://doi.org/10.1007/978-3-030-75333-7_4
http://www.curry-lang.org
https://doi.org/10.1145/359576.359585
https://doi.org/10.1016/0743-1066(92)90026-Y
https://doi.org/10.1016/0743-1066(92)90026-Y

	Abstract
	1 Introduction
	2 Functional Logic Programming and Curry
	3 FlatCurry
	4 ICurry
	5 Pull-Tabbing
	6 Operational Semantics
	7 Compilation to Go
	7.1 Run-Time Structures
	7.2 Search Control
	7.3 Code Generation
	7.4 Extensions

	8 Evaluation
	9 Related Work
	10 Conclusions
	Acknowledgments
	References

