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Abstract
Functional logic programming languages, such as Curry, integrate

features of functional and logic paradigms, in particular, demand-

driven deterministic evaluation from functional programming with

non-deterministic search from logic programming. Though useful

for programming, this combination can lead to unintended results

and subtle bugs. To support programming with this powerful com-

putation model, this paper proposes a method to detect unintended

non-determinism at compile time. For this purpose, we propose

determinism types to approximate the determinism behavior of

functions and expressions. In contrast to standard types in strongly

typed languages, determinism types do not restrict the set of ad-

missible programs but support the programmer and programming

tools in reasoning about functional logic programs, e.g., to enforce

determinism in top-level I/O operations. We present the motivation

behind this approach, discuss core concepts of functional logic pro-

gramming and Curry, and outlinemethods to check for determinism

through type-based analysis.
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1 Introduction
Functional logic programming [10, 21] combines the demand-driven

and, for particular classes of programs, optimal [29] evaluation

model from functional programming with the expressiveness and

flexibility of logic programming. This synergy, exemplified by the
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language Curry [27], introduces powerful programming abstrac-

tions, including higher-order functions, unification with evaluable

functions, and non-deterministic computations. However, these

strengths also bring challenges in reasoning about program behav-

ior, especially concerning determinism.

Determinism refers to the property that a program or opera-

tion always produces the same output for the same input, without

involving any implicit choices or ambiguity. In functional logic lan-

guages, non-determinism is a first-class feature, but many programs

are intended to be deterministic. Accidental non-determinism can

lead to subtle bugs, unpredictable results, or even run-time errors,

especially when interacting with I/O.

For instance, consider the following definition from the Haskell

library Data.Maybe:

isNothing :: Maybe a → Bool

isNothing Nothing = True

isNothing _ = False

Although the last equation defining isNothing does not seemmean-

ingful on its own, it is reasonable in Haskell due to its sequential

pattern matching from top to bottom. This is different in Curry

where all rules defining an operation are taken into account in order
to search for values or answers, as in logic programming. Conse-

quently, isNothing Nothing returns both True and False in Curry,

where the order is unspecified. Hence, the top-level evaluation of

print (isNothing Nothing)

leads to a run-time error since one cannot duplicate the world to

enable non-deterministic printing.

To avoid such errors and to express determinism behavior in pro-

grams, we propose to add determinism type signatures as an optional
language extension to Curry. These signatures allow developers

to annotate functions with their expected determinism behavior

which is statically checked by the compiler. For example, in the

following Curry code snippet, the operation append is annotated

to indicate that it is deterministic:

append :? Det → Det → Det

append :: [a] → [a] → [a]

append [] ys = ys

append (x:xs) ys = x : append xs ys

Since the result of a call to append contains the values of both

arguments, the result of append is deterministic only if the input

lists are deterministic as well. That is why the determinism signa-

ture (annotated by “:?”) contains a Det for both arguments, which

are separated by the arrow →. The similarity to the standard type

signature is intentional and helps programmers reason about both

the shape and the determinism of their functions in a uniform way.

When append is called with free variables, Curry’s demand-driven

evaluation strategy instantiates these variables only as much as
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required for the pattern matching on the arguments. Although

this leads to more than one result, we consider free variables as

(potentially) non-deterministic. Thus, the signature of append still

holds.

For some functions, the determinism status of the result does

not depend on the arguments. For example, the operation const is

deterministic even if its second argument is non-deterministic:

const :? Det → Any → Det

const :: a → b → a

const x _ = x

Here, the second argument can be non-deterministic (Any), but

since it is not used in the result, the operation as a whole remains

deterministic. In order to avoid the definition of multiple determin-

ism types for a single operation, we assume that Det is a subtype of

Any so that we can also apply const to a second argument of type

Det.

The disuse of arguments is not the only possibility to deal with

non-deterministic arguments in deterministic operations. An im-

portant feature of logic-oriented languages is the encapsulation

of non-deterministic computations. Similarly to Prolog’s findall

predicate, Curry supports an operation allValues [5] which re-

turns the list of all values of the argument. With our proposal, the

signature of allValues is

allValues :? Any → Det

allValues :: a → [a]

Similarly, one can also specify the determinism behavior of set

functions [9] which provide an alternative method to encapsulate

search.

Another use of determinism types is to enforce determinism

in instances of type classes [46]. For example, it is reasonable to

require that the function show that converts a value to a string is

deterministic, since data is usually shown in I/O operations. This

might be expressed by the type class definition

class Show a where

show :? Det → Det

show :: a → String

Now, providing an instance of Show with a non-deterministic im-

plementation like the following would be rejected by the compiler:

instance Show Bool where

show True = "True"

show _ = "False"

This instance is non-deterministic since it returns "True" and

"False" for the input True due to the overlapping patterns, sim-

ilarly to the operation isNothing discussed above. This is a com-

mon mistake in Curry by Haskell programmers, where one intends

to define a deterministic function but accidentally created a non-

deterministic one by using the underscore pattern as a catch-all

case.

Non-determinism is essential for problems involving search, in-

ference, and symbolic computation so that we do not wish to restrict

its use. However, in practice, many operations are intended to be

deterministic—even in languages that support non-determinism.

Detecting when operations inadvertently exhibit non-deterministic

behavior is valuable both for correctness and efficiency. This is

our main motivation to add determinism types to functional logic

programs.

Adding determinism information to the type system offers mul-

tiple benefits:

• Intentional clarity: Determinism type annotations serve

as documentation of intent, signaling to other developers

and tools that an operation should behave deterministically.

• Static guarantees: The determinism checker can detect

violations early, reducing the need for dynamic debugging.

• Optimization opportunities: Knowing an operation is

deterministic allows compilers to generate more efficient

code and eliminate some run-time checks.

• Safe I/O: Ensuring determinism in I/O contexts prevents

run-time crashes due to undefined behavior. We can achieve

this by emitting a warning or error when the program entry

point (e.g., the main function) does not have type Det.

Ultimately, determinism types and their analysis aim to pro-

vide a compositional and reliable way to reason about program

behavior without sacrificing the flexibility of non-deterministic

programming. Because our proposal is lightweight, compositional,

and compatible with existing Curry implementations, it is suitable

for practical use in both interactive and compiled environments.

In the next section, we review the core concepts of functional

logic programming and Curry. Section 3 introduces a typed kernel

language which is used in this paper. The syntax of determinism

types and their meaning is shown in Section 4. Section 5 presents

the rules for determinism typing. Some formal results about deter-

minism typing and properties of programs with determinism types

are given in Section 6. We also provide a full formalization of these

results in the Rocq proof assistant [13]. Section 7 surveys potential

applications of determinism types. Section 8 presents some exten-

sions of the current framework. An implementation of determinism

types is sketched in Section 9 before we conclude with a survey of

related work in Section 10.

2 Functional Logic Programming and Curry
Functional logic programming languages unify the most important

principles from functional programming (demand-driven evalua-

tion, strong typing with parametric polymorphism, higher-order

functions) and logic programming (non-determinism, computing

with partial information, constraints). The functional logic lan-

guage Curry
1
has a Haskell-like syntax, while its operational se-

mantics [1] incorporates ideas from logic programming such as

non-determinism and handling of free variables. The combination

of reduction and instantiation of free variables is called narrowing

[36, 40]. Curry is based on the needed narrowing strategy [6] which

is optimal w.r.t. number of evaluation steps and computed solutions.

A distinguishing feature of Curry, different from Haskell, is the

selection of rules. Whereas Haskell applies the (from top to bot-

tom) first matching rule to reduce a subexpression, Curry uses all

applicable rules. Thus, the choice operator “?” is predefined by

(?) :: a → a → a

x ? y = x

x ? y = y

1
www.curry-lang.org

www.curry-lang.org
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so that the values of “True ? False” are False and True.

In order to encapsulate non-deterministic computations and to

return all values of an expression involving non-determinism in

a single data structure, there is an operation allValues already

introduced in Section 1. Since the result of this operation depend on

the concrete evaluation strategy [15], Curry provides set functions
[9] to encapsulate search in an evaluation-independent manner. For

each defined operation 𝑓 , 𝑓𝑆 denotes its corresponding set function.

𝑓𝑆 encapsulates the non-determinism caused by evaluating 𝑓 except

for the non-determinism caused by evaluating the arguments to

which 𝑓 is applied. For instance, consider the operation

hamlet b = b ? not b

Then the expression hamlet True non-deterministically yields both

values True and False, whereas the expression hamlet𝑆 True eval-

uates to (an abstract representation of) the set {True,False}. Since

the non-determinism of arguments is not encapsulated by a set

function, the expression hamlet𝑆 (hamlet True) evaluates to the

equivalent sets {True,False} and {False,True}.

To support the implementation of larger applications, Curry has

many additional features not described here, like modules, which

are similar to Haskell, and monadic I/O [45] for declarative in-

put/output. The latter is based on the idea that operations perform-

ing I/O are considered as functions manipulating the state of the

external world (or environment). Since a non-deterministic choice

duplicates the state of a computation but the “world” (terminal,

file system, etc.) cannot be duplicated, non-determinism and I/O

are incompatible. Thus, Curry implementations emit a run-time

error when non-deterministic I/O operations are applied. The ex-

act mechanism for detecting this error is implementation-specific

and often involves checking for multiple results during evaluation.

Such errors can be avoided by encapsulating non-deterministic

expressions.

Example 1 (Non-determinism and I/O). Consider the following
definitions:

coin :: Int

coin = 0 ? 1

f :: Int → Int

f x = x + coin

main = print (f coin)

Since f coin has more than one value (0, 1, or 2), it is unclear which

of the values should be printed. Therefore, as discussed above, the

execution of main leads to a run-time error. To avoid this, one has

to encapsulate the argument of print, where it must be decided

by the programmer which of the values (e.g., all, one, minimum)

should be printed. For instance,

main = print (allValues (f coin))

prints the list of all values. Note that the use of the set function of

f, as in

main = print (f𝑆 coin)

is not sufficient, since the non-determinism of the argument coin

is not encapsulated.

This example shows that it would be helpful to have a tool which

helps to encapsulate the right expressions. This is the motivation

for adding determinism types to Curry.

3 A Typed Kernel Functional Logic Language
Curry is a powerful language with a lot of syntactic sugar — influ-

enced by Haskell but with additional features, like functional pat-

terns [7] and set functions as mentioned above. Moreover, Curry’s

type system is inspired by Haskell so that it offers parametric poly-

morphism and type (constructor) classes. In order to reduce the

features covered by determinism typing, we consider a restricted

kernel language similarly to operational descriptions [1], implemen-

tations [24], and analyses [25] of functional logic programs. This

kernel language, called FlatCurry, consists of top-level operations

without patterns, i.e., patterns are translated into case expressions

and choice operators. Although we defined “?” by two rules with

overlapping left-hand sides in the previous section, one can also

consider “?” as a primitive choice operator and translate overlap-

ping rules into non-overlapping rules with explicit choice operators

“?” in the right-hand sides. For instance, overlapping rules like

f True = True

f _ = False

can be translated to the single non-overlapping rule

f x = case x of True → True

False → True ? False

Since any functional logic program can be transformed into this

form [3], FlatCurry can be and is often used as an intermediate

language to compile Curry programs. The syntax of FlatCurry as

used in this paper is summarized in Figure 1. It is a standard higher-

order language with case expressions for pattern matching and

choices and introduction of free variables for logic programming.

For instance, the operation append shown in Section 1 can be

represented in FlatCurry as

append = 𝜆xs →
𝜆ys → case xs of

{ [] → ys

; z:zs → z : append zs ys }

An intricate point with determinism types is the handling of func-

tional values. For instance, consider the following operations which

use the identity operation id and the Boolean negation not in two

different ways.

idNot1 x = id x ? not x

idNot2 = id ? not

When these operations are applied to a Boolean value, both values

True and False are non-deterministically returned. What should

be the determinism type of these operations? The type of idNot1

is clearly

idNot1 :? Det → Any

The determinism type of idNot2 is not obvious. It could be

idNot2 :? Det → Any

(since it is a functional value returning different values when it is

applied) or also
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𝑃 ::= 𝐹1 . . . 𝐹𝑚 (program)

𝐹 ::= 𝑓 = 𝑒 (function definition)

𝑒 ::= 𝑥 (variable)

| 𝐶 (data constructor)

| 𝑒1 𝑒2 (application)

| 𝜆𝑥 → 𝑒 (abstraction)

| 𝑒1 or 𝑒2 (choice)

| let 𝑥 free in 𝑒 (free variable)

| case 𝑒 of {𝑝1 → 𝑒1; . . . ;𝑝𝑘 → 𝑒𝑘 } (case expression, 𝑘 > 0)

𝑝 ::= 𝐶 𝑥1 . . . 𝑥𝑛 (pattern, 𝑛 ≥ 0)

Figure 1: Syntax of the kernel language FlatCurry

idNot2 :? Any

(since it returns non-deterministically two functional values). Since

the operational behavior of both definition is the same, one could

consider the determinism types Det → Any and Any as equivalent.

However, one can distinguish the two different non-deterministic

definitions by encapsulation. The expression allValues idNot1 re-

turns a list with the single element idNot1 (since the argument

cannot be further evaluated), whereas allValues idNot2 encapsu-

lates the non-deterministic choice of idNot2 so that a list with two

elements (id and not) is returned. Hence, we get different results

when we apply these two expressions to the list [True] with the

operator <*> of the class Applicative [33]:

allValues idNot1 <*> [True] { [True] ? [False]

allValues idNot2 <*> [True] { [True ,False]

This is also one of the reasonswhy allValues is considered “unsafe”

from a declarative point of view, whereas set functions, which do

not encapsulate higher-order values, are a declarative method to

encapsulate non-deterministic computations [9].

These complications can be avoided by using determinism types

only for values of first-order data types. Interestingly, this restric-

tion fits to the Data proposal for Curry [26]: the type of free vari-

ables must satisfy the Data class constraint which expresses that

such variables do not contain functional values. This ensures a

constructive method to non-deterministically enumerate values for

free variables.

In the following, we consider a typed intermediate language

which distinguishes between first-order and higher-order values.

For the sake of simplicity, we do not consider polymorphic types but

refer to Section 8.2 for a discussion about polymorphism. First-order
types are Booleans and lists:

𝐷 ::= Bool | List 𝐷

These can be easily extended to other types, like integers, pairs,

etc. Note that types in 𝐷 are types without functional components,

i.e., in Curry these are the types which are instances of class Data

[26] (see also Section 8.1). For some of our examples, we assume

an extension of the type system with some additional first-order

types.

General types are first-order types combined with functional

types:

𝑇 ::= 𝐷 | 𝑇 → 𝑇

Since we are not interested in type inference, we assume that vari-

ables introduced in FlatCurry programs (as parameters in abstrac-

tions or free variables) are annotated with a type. The typing rules

for this language are shown in Figure 2. There, we denote by Γ
a type environment which is a (partial) mapping from identifiers

(taken from a set of names 𝑋 ) to types:

Γ : 𝑋 → 𝑇

As usual, we denote by Γ[𝑥 ↦→ 𝜏] the type environment Γ′ with
Γ′ (𝑥) = 𝜏 and Γ′ (𝑦) = Γ(𝑦) for all 𝑥 ≠ 𝑦.

Note that Figure 2 contains separate case typing rules for each

first-order type. Although Figure 2 defines the type of a case ex-

pression with a complete list of branches, one can also omit some

branches if they are undefined (as in the case of partially defined

operations). Note that our system can be easily extended to support

more data types.

A program 𝑃 = 𝑓1 = 𝑒1; . . . ; 𝑓𝑘 = 𝑒𝑘 is type correct if there is a
type environment

Γ = {𝑓1 ↦→ 𝜏1, . . . , 𝑓𝑘 ↦→ 𝜏𝑘 }

such that Γ ⊢ 𝑒𝑖 :: 𝜏𝑖 (𝑖 = 1, . . . , 𝑘) is derivable by the typing rules in

Figure 2. In the following, we consider only type-correct programs.

4 Determinism Types
Similarly to standard types in strongly typed programming lan-

guages, expressions and operations can be annotated with deter-

minism types. Whereas standard types approximate the set of pos-

sible values to which an expression evaluates, a determinism type

approximates the determinism behavior. For instance, if an expres-

sion is correctly annotated as deterministic (𝐷𝑒𝑡 ), its evaluation

will never yield a choice between two expressions. Otherwise, the

expression is annotated with Any meaning that it is potentially

non-deterministic. The determinism type system propagates these

annotations through applications and abstractions in order to an-

notate every expression and operation with a determinism type.

In order to associate meaningful determinism types to operations,

we allow also function arrows in determinism types. Thus, the

syntax of determinism types is:

Δ ::= 𝐷𝑒𝑡 | Any | Δ → Δ

Note that the type Any → Any is formally allowed but has the

same information as 𝐷𝑒𝑡 → Any (see below). Hence it will never
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Var Γ ⊢ 𝑥 :: Γ(𝑥)

True Γ ⊢ True :: Bool

False Γ ⊢ False :: Bool

Nil Γ ⊢ [] :: List 𝜏 𝜏 ∈ 𝐷

Cons Γ ⊢ (:) :: 𝜏 → List 𝜏 → List 𝜏 𝜏 ∈ 𝐷

App
Γ ⊢ 𝑒1 :: 𝜏1 → 𝜏2 Γ ⊢ 𝑒2 :: 𝜏1

Γ ⊢ 𝑒1 𝑒2 :: 𝜏2

Abs
Γ [𝑥 ↦→ 𝜏1] ⊢ 𝑒 :: 𝜏2

Γ ⊢ 𝜆𝑥 : 𝜏1 → 𝑒 :: 𝜏1 → 𝜏2

Choice
Γ ⊢ 𝑒1 :: 𝜏 Γ ⊢ 𝑒2 :: 𝜏

Γ ⊢ 𝑒1 ? 𝑒2 :: 𝜏

Free
Γ [𝑥 ↦→ 𝜏] ⊢ 𝑒 :: 𝜏 ′

Γ ⊢ let 𝑥 : 𝜏 free in 𝑒 :: 𝜏 ′
𝜏 ∈ 𝐷

CaseBool
Γ ⊢ 𝑒 :: Bool Γ ⊢ 𝑒1 :: 𝜏 Γ ⊢ 𝑒2 :: 𝜏

Γ : case 𝑒 of {True → 𝑒1; False → 𝑒2} :: 𝜏

CaseList
Γ ⊢ 𝑒 :: List 𝜏 Γ ⊢ 𝑒1 :: 𝜏 ′ Γ [𝑥1 ↦→ 𝜏, 𝑥2 ↦→ List 𝜏] ⊢ 𝑒2 :: 𝜏 ′

Γ : case 𝑒 of {[] → 𝑒1; x1:x2 → 𝑒2} :: 𝜏 ′
𝜏 ∈ 𝐷

Figure 2: Type system of FlatCurry

be inferred by our inference system. The intended meaning of these

types is:

𝐷𝑒𝑡 : The expression evaluation (w.r.t. standard Curry seman-

tics, see Section 6) is deterministic, i.e., it never yields a

choice between two values.

Any → 𝐷𝑒𝑡 : If a function of this type is applied to some ar-

gument, its evaluation is deterministic, either because the

argument is not used or all non-determinism is encapsulated.

𝐷𝑒𝑡 → 𝐷𝑒𝑡 : If a function of this type is applied to a 𝐷𝑒𝑡 argu-

ment, its evaluation is deterministic, otherwise the evalua-

tion is arbitrary

𝐷𝑒𝑡 → Any: If a function of this type is applied to some argu-

ment, its evaluation is arbitrary.

Any → Any: As stated before, this type behaves like the previ-

ous 𝐷𝑒𝑡 → Any.
Any: The expression evaluates (w.r.t. standard Curry semantics)

in a possibly non-deterministic manner, i.e., it possibly yields

choices between values. It might also be a function that

behaves in such a way.

As discussed above, we do not associate the determinism type 𝐷𝑒𝑡

to a functional value, i.e., an expression of type 𝜏1 → 𝜏2 has deter-

minism type Any or is of the form 𝛿1 → 𝛿2. We say a determinism

type 𝛿 is compatible to a type 𝜏 ∈ 𝑇 if 𝛿 has the same shape as 𝜏

(except for Any) but first-order types are replaced by determinism

types:

• For a type 𝜏 ∈ 𝐷 , 𝐷𝑒𝑡 or Any is compatible to 𝜏 .

• Any is compatible to type 𝜏1 → 𝜏2.

• The determinism type 𝛿1 → 𝛿2 is compatible to 𝜏1 → 𝜏2 ∈ 𝑇

if 𝛿𝑖 is compatible to 𝜏𝑖 (𝑖 = 1, 2).

Note that if one were to extend the type system with more first-

order types, the compatibility relation needs to be extended accord-

ingly.

The motivation for allowing compatibility between Any and

types of the form 𝜏1 → 𝜏2 is that we want the determinism type

of idNot2 to be Any. Consequently, Any must be considered as

compatible to its type Bool → Bool. This design choice has the

advantage of keeping the determinism typing of a choice simple:

we always assign the determinism type Any to a choice, regardless

of whether the result is a function or a first-order value. If, instead,

we require idNot2 to have the determinism type 𝐷𝑒𝑡 → Any, the
determinism typing of choices become unnecessarily complex due

to the consideration of functional types. As we will see, we consider

in the determinism typing of applications that the function to be

applied might have type Any.
Here are some examples for determinism types. Consider the

identity operation id defined by

id x = x

with type 𝜏 → 𝜏 for some type 𝜏 ∈ 𝐷 .

id :? 𝐷𝑒𝑡 → 𝐷𝑒𝑡

is a possible determinism type for id. The determinism type

id :? 𝐷𝑒𝑡 → Any

is also possible but less precise.

The choice operation returns one of its arguments so that its

evaluation is always non-deterministic:

(?) :? 𝐷𝑒𝑡 → 𝐷𝑒𝑡 → Any
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𝛿1 ⊑ 𝛿2 :=


true if 𝛿2 = Any ∨ 𝛿1 = 𝛿2 = 𝐷𝑒𝑡

𝛿21 ⊑ 𝛿11 ∧ 𝛿12 ⊑ 𝛿22 if 𝛿1 = 𝛿11 → 𝛿12 ∧ 𝛿2 = 𝛿21 → 𝛿22

false otherwise

𝛿1 ⊔ 𝛿2 :=


𝛿2 if 𝛿1 ⊑ 𝛿2

𝛿1 if 𝛿2 ⊑ 𝛿1

Any otherwise

Figure 3: Subtyping relation and supremum of determinism types

Note that this is the type if the choice operation has first-order types

as arguments, otherwise the 𝐷𝑒𝑡 must be replaced by a compatible

determinism type.

As discussed above, the operation allValues encapsulates all

non-determinism of its argument, but we have to be careful with

functional values. Hence, we allow only the encapsulation of first-

order values, i.e., allValues has the type

allValues :: 𝜏 → 𝜏

for some 𝜏 ∈ 𝐷 (we could also consider a family of operations

allValues𝜏 for each 𝜏 ∈ 𝐷). Then its determinism type is

allValues :? Any → 𝐷𝑒𝑡

Consider a function 𝑓 with type 𝜏1 → · · · → 𝜏𝑛 → 𝜏 and 𝜏𝑖 ∈
𝐷 (𝑖 = 1, . . . , 𝑛). Then its set function f𝑆 encapsulates the non-

determinism caused by f but not the non-determinism occurring

in the arguments. Hence, its determinism type is

f𝑆 :? 𝐷𝑒𝑡 → · · · → 𝐷𝑒𝑡 → 𝐷𝑒𝑡

independent of the determinism type of f (which has usually the

target type Any).
These examples illustrate how determinism types can precisely

capture the intended behavior of functions, and how they interact

with higher-order functions and encapsulation.

5 Determinism Typing
Determinism typing is defined w.r.t. an environment which asso-

ciates determinism types to identifiers, e.g., bound variables or

operations defined in the program. For this purpose, we denote by a

determinism type environment Δ a (partial) mapping from identifiers

(taken from a set of names 𝑋 ) to determinism types:

Δ : 𝑋 → Δ

We assume that the determinism types associated to operations

defined in a program are compatible to the types defined in Section 3,

i.e., if Γ(𝑓 ) = 𝜏 , for some 𝜏 ∈ 𝑇 , then Δ(𝑓 ) is compatible to 𝜏 . With

respect to such a determinism type environment, the determinism

typing rules (Figure 4) derive judgements of the form

Δ ⊢ 𝑒 : 𝛿

stating that the expression 𝑒 has determinism type 𝛿 with respect

to the determinism type environment Δ.
For the application of an operation to an argument, it must be

checked whether the argument’s determinism type satisfies the

requirements of the operation on its argument. For this purpose,

we define a subtyping relation on determinism types in Figure 3.

For example, if a non-deterministic operation of type 𝐷𝑒𝑡 → Any
is required, we can also use an operation of type 𝐷𝑒𝑡 → 𝐷𝑒𝑡 or

Any → 𝐷𝑒𝑡 . However, we cannot use a non-deterministic operation

of type 𝐷𝑒𝑡 → Any where a deterministic operation of type 𝐷𝑒𝑡 →

𝐷𝑒𝑡 is expected. Note that any operation can be used where Any is

required. This simplifies the typing of the choice operator as shown

below.

We explain the intended meaning of the various rules for deter-

minism typing shown in Figure 4. To keep the rules compact, we

sometimes denote by 𝑜𝑛 a sequence of objects 𝑜1, . . . , 𝑜𝑛 .

Rule Var is obvious. The requirement that 𝑥 is in the domain

of Δ is to ensure that every variable needs to have a correspond-

ing binding site. This is always the case for correct (FlatCurry)

programs.

Constructors (rule Cons) are deterministic but might become

non-deterministic when applied to some non-deterministic argu-

ment, see the subsequent rules for application.

Rule AppAny covers the case when there is no precise informa-

tion about the operation, in particular, if the expression 𝑒1 involves

a choice between two operations. App is the usual application rule

where determinism subtyping on arguments is required for the rea-

sons discussed above. For instance, the well-known operation map

takes a function as a first argument and applies it to all elements of

the list provided as the second argument. The FlatCurry definition

typed for Boolean lists is

map :: (Bool → Bool) → List Bool → List Bool

map =

𝜆f : Bool → Bool →
𝜆xs : List Bool →

case xs of { [] → []

; y:ys → f y : map f ys }

If Δ(map) = (𝐷𝑒𝑡 → 𝐷𝑒𝑡) → 𝐷𝑒𝑡 → 𝐷𝑒𝑡 and 𝑒 is the right-hand

side of the definition of map, thenwe derive with the rules in Figure 4

that Δ ⊢ 𝑒 :? Δ(map). We denote this judgement by the determinism

type

map :? (Det → Det) → Det → Det

Similarly, we derive that map not [True] has determinism type

𝐷𝑒𝑡 . The operation hamlet, as defined in Section 2, has determinism

type

hamlet :? Det → Any

Since 𝐷𝑒𝑡 → Any is not a subtype of 𝐷𝑒𝑡 → 𝐷𝑒𝑡 required by

map, rule App infers the determinism type Any for the expression

map hamlet [True].

Rule Choice simply infers the determinism type Any. It could
be made more precise by considering different kinds of function

types, but such a more complex technical treatment does not pay

off in realistic examples. Rule Free considers the case of a free

(logic) variable. Since such a variable evaluates or can be bound to

different values, it is typed as non-deterministic. One could make

it more precise for the special case that the type 𝜏 contains only a
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Var Δ ⊢ 𝑥 :? 𝛿 if 𝑥 ∈ 𝐷𝑜𝑚(Δ) and 𝛿 = Δ(𝑥)

Cons Δ ⊢ 𝐶 :? 𝐷𝑒𝑡 → · · · → 𝐷𝑒𝑡 → 𝐷𝑒𝑡 if 𝐶 is an 𝑛-ary constructor

AppAny

Δ ⊢ 𝑒1 :? Any Δ ⊢ 𝑒2 :? 𝛿
Δ ⊢ 𝑒1 𝑒2 :? Any

App

Δ ⊢ 𝑒1 :? 𝛿11 → 𝛿12 Δ ⊢ 𝑒2 :? 𝛿2
Δ ⊢ 𝑒1 𝑒2 :? 𝛿3

𝛿3 =

{
𝛿12 if 𝛿2 ⊑ 𝛿11
Any otherwise

Abs

Δ[𝑥 ↦→ 𝛿1] ⊢ 𝑒 :? 𝛿2
Δ ⊢ 𝜆𝑥 : 𝜏 → 𝑒 :? 𝛿1 → 𝛿2

𝛿1 is compatible to 𝜏

Choice

Δ ⊢ 𝑒1 :? 𝛿1 Δ ⊢ 𝑒2 :? 𝛿2
Δ ⊢ 𝑒1 ? 𝑒2 :? Any

Free

Δ[𝑥 ↦→ Any] ⊢ 𝑒 :? 𝛿
Δ ⊢ let 𝑥 : 𝜏 free in 𝑒 :? 𝛿

Case

Δ ⊢ 𝑒 :? 𝛿 Δ[𝑥𝑛𝑖 ↦→ 𝛿] ⊢ 𝑒𝑖 :? 𝛿𝑖 (𝑖 = 1, . . . , 𝑘)
Δ ⊢ case 𝑒 of {𝑝𝑘 → 𝑒𝑘 } :? 𝛿 ⊔ 𝛿1 ⊔ . . . ⊔ 𝛿𝑘

where 𝑝𝑖 = 𝐶 𝑥𝑛𝑖 and 𝛿 ∈ {𝐷𝑒𝑡,Any}

Figure 4: Determinism typing rules

single value. Since such a use of free variables does not occur in

real programs, we omit this slight improvement.

To understand rule Case, consider the determinism type 𝛿 of

the discriminating argument. Since we assume that the source pro-

gram is well-typed, case distinctions over functional values are not

allowed. Under the assumption that determinism types are com-

patible to standard types (see Section 6), a functional determinism

type cannot occur for the discriminating argument 𝑒 . Thus, the side

condition 𝛿 ∈ {𝐷𝑒𝑡,Any} is not a real restriction but only written

for clarity.

Concerning the determinism types for pattern variables, note

that lists (type List) contain only first-order values as elements.

Even if we extend the simple type system to allow general data

structures with functional values as components (as in Curry source

programs), any constructor applied to a function will still be as-

signed Any (see rules Cons and the subtyping in App). Therefore,

the pattern variables in a case expressions will always have deter-

minism types 𝐷𝑒𝑡 or Any, i.e., there is no need to consider other

determinism types for them in rule Case. Therefore, rule Case

checks the determinism type of each branch under the assumption

that the pattern variables have the same determinism type (𝐷𝑒𝑡

or Any) as the discriminating argument 𝑒 . Under these assump-

tions, the determinism types of 𝑒 and the right-hand sides 𝑒𝑖 of all

branches are combined by the least upper bound operation w.r.t.

the subtyping relation. In particular, if the determinism type of 𝑒 is

Any, the entire case expression must have type Any as well. Thus,

one could add a simpler inference rule for this specific case, but we

put the general rule Case since this is advantageous to establish

the formal results about determinism typing presented in Section 6.

Given a program 𝑃 = 𝑓1 = 𝑒1; . . . ; 𝑓𝑘 = 𝑒𝑘 , we say 𝑓𝑖 :?𝛿𝑖 (𝑖 =

1, . . . , 𝑘) are correct determinism types if Δ ⊢ 𝑒𝑖 :?𝛿𝑖 (𝑖 = 1, . . . , 𝑘)

can be inferred by the rules of Figure 4 w.r.t. the determinism type

environment

Δ = {𝑓1 ↦→ 𝛿1, . . . , 𝑓𝑘 ↦→ 𝛿𝑘 }

Aswewill see later, there always exists a correct determinism typing

for a well-typed program. Thus, determinism typing is optional and

not a restriction on admissible programs—in contrast to standard

typing.

We discuss the determinism typing of a few more examples. We

have already shown the determinism typing of map above. Consider

the expression

map (id ? not) [True]

By rule Choice, (id ? not) has type Any. Since Any is not a sub-

type of the type 𝐷𝑒𝑡 → 𝐷𝑒𝑡 required for the first argument of

map, rule App infers the type Any for map (id ? not). Now rule

AppAny infers the type Any for the entire expression. This shows

how we can apply operations with a deterministic type also on

non-deterministic operations and obtain the type Any.
As a final example, consider the expression

map not (allValues (hamlet True))

Due to the determinism type of hamlet shown above, the subterm

(hamlet True) has typeAny. Since this is a subtype of the argument

type required by allValues, the subterm allValues (hamlet True)

has type 𝐷𝑒𝑡 by rule App. Due to the deterministic types of map and

not, the entire expression has type 𝐷𝑒𝑡 . Actually, this expression

evaluates to the single result [False,True].

6 Correctness of Determinism Typing
The inference system for determinism typing possesses several

desirable properties, ensuring that it behaves predictably and is

suitable for compile-time program analysis. As mentioned above,

we consider in the following programs and expressions which are

correctly typed w.r.t. the rules in Figure 2 under a type environment

Γ. In the formal statements, we need to extend the notion of type

compatibility to type contexts. Therefore, we define a determinism

type context Δ to be compatible to a type context Γ if, for all variable
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AppAbs

(𝜆𝑥 : 𝜏 → 𝑒) 𝑣 ⇒ 𝑒 [𝑥 ↦→ 𝑣]
AppOr

(𝑒1 ? 𝑒2) 𝑒3 ⇒ (𝑒1 𝑒3) ? (𝑒2 𝑒3)
AppStep

𝑒1 ⇒ 𝑒′
1

𝑒1 𝑒2 ⇒ 𝑒′
1
𝑒2

CaseOr

case (𝑒1 ? 𝑒2) of 𝑏𝑟 ⇒ (case 𝑒1 of 𝑏𝑟 ) ? (case 𝑒2 of 𝑏𝑟 )
CaseNil

case [] of [] → 𝑒1; x:xs → 𝑒2 ⇒ 𝑒1

CaseCons

case (y:ys) of [] → 𝑒1; x:xs → 𝑒2 ⇒ 𝑒2 [x ↦→ y, xs ↦→ ys]
CaseTrue

case True of True → 𝑒1; False → 𝑒2 ⇒ 𝑒1

CaseFalse

case False of True → 𝑒1; False → 𝑒2 ⇒ 𝑒2
CaseStep

𝑒 ⇒ 𝑒′

case 𝑒 of 𝑏𝑟 ⇒ case 𝑒′ of 𝑏𝑟
OrStepL

𝑒1 ⇒ 𝑒′
1

𝑒1 ? 𝑒2 ⇒ 𝑒′
1
? 𝑒2

OrStepR

𝑒2 ⇒ 𝑒′
2

𝑒1 ? 𝑒2 ⇒ 𝑒1 ? 𝑒′
2

FreeStep

let 𝑥 : 𝜏 free in 𝑒 ⇒ 𝑒 [𝑥 ↦→ 𝑔𝑒𝑛𝜏 ]

Figure 5: Small-step evaluation rules for expressions

names 𝑣 where Γ(𝑣) is defined, Δ(𝑣) is compatible to Γ(𝑣). That is,
the two functions Δ and Γ need to be pointwise compatible.

The first important property is the completeness of determinism

typing. This property ensures that the inference system can assign

a determinism type to every valid expression in the language. This

is crucial since our extension is not meant to restrict the set of

admissible programs but rather provides a way to annotate and

analyze expressions. Note that this property is not entirely trivial

since not every expression can be assigned type Any.

Theorem 2 (Typing Completeness). For all contexts Δ that are
compatible to Γ, and all expressions 𝑒 that are well-typed under Γ,
there exists a determinism type 𝛿 such that Δ ⊢ 𝑒 :? 𝛿 is derivable
w.r.t. the determinism typing rules.

The next interesting property is the preservation of type annota-

tions. The preservation property guarantees that type annotations

are stable under evaluation, i.e., evaluation does not introduce any

non-determinism not captured by determinism types. The formal

statement of this property requires the notion of an evaluation step

from an expression 𝑒 to 𝑒′, denoted 𝑒 ⇒ 𝑒′. The formal definition

of this relation is shown in Figure 5.

The functional core of evaluation steps is straightforward. The

rules AppAbs, CaseCons, and FreeStep use substitutions on ex-

pressions. Substitution proceeds structurally through the expres-

sion but does not replace occurrences of variables that are bound

by inner declarations. For example, in (𝜆𝑥 → 𝑥) [𝑥 ↦→ 𝑒], the 𝑥
inside the abstraction is not replaced by 𝑒 , since substitution stops

at the binding site of 𝑥 . Note that there are no unbound variables

since free variables are explicitly introduced.

For the evaluation of logical aspects, it should be noted that

evaluation is deterministic, i.e., non-deterministic choices are rep-

resented by choice structures headed by the choice operator “?”

instead of evaluating it to one of its arguments, as in [1]. Thus,

non-deterministic choices are kept in a data structure, similarly to

pull-tabbing [2, 4] or the Verse calculus [12]. If an expression headed

by a choice operator has to be evaluated, as in the rules AppOr and

CaseOr, the choice is moved from the argument position to the top.

Basically, this is the idea of pull-tabbing [2, 4] used in implementa-

tions of Curry which support flexible search strategies [14, 16]. In

functional logic languages based on the call-time choice semantics

[30], such as Curry, it is necessary to annotate choice nodes with

tags in order to restrict the set of sensible values, as discussed in

[4]. For the sake of simplicity, we omit this additional machinery

so that our semantics implements the run-time choice semantics

[30]. This causes no problem in our case, since run-time choice

always computes the same or more values than call-time choice.

Hence, if an evaluation is deterministic w.r.t. run-time choice, it is

also deterministic w.r.t. call-time choice.

Another point to mention is the handling of free variables. As

shown in [8, 19], free variables are conceptually equivalent to non-

deterministic operations that evaluate to all values of the type of the

free variable. For instance, a free Boolean variable can be replaced

by the operation

genBool = True ? False

This property is exploited in rule FreeStep, where a free variable of

type 𝜏 is replaced by the operation 𝑔𝑒𝑛𝜏 which generates all values

of type 𝜏 . Here it is essential that 𝜏 is a first-order type so that 𝑔𝑒𝑛𝜏
can be defined constructively.

Based on this operational semantics, we can formally state the

preservation property of determinism typing.

Theorem 3 (Preservation). Let Δ be a determinism type en-
vironment compatible to Γ, 𝑒 , 𝑒′ expressions with 𝑒 ⇒ 𝑒′ and 𝑒

well-typed under Γ. Furthermore, let 𝛿 be a determinism type such
that Δ ⊢ 𝑒 :? 𝛿 is derivable by the determinism typing rules. Then
there exists a determinism type 𝛿 ′ such that 𝛿 ′ ⊑ 𝛿 and Δ ⊢ 𝑒′ :? 𝛿 ′.

Finally, we state the main property of our determinism typing.

The soundness property ensures that expressions typed as deter-

ministic never evaluate to expressions headed by choices, thereby

guaranteeing run-time determinism when promised.

Theorem 4 (Soundness). Let Δ be a determinism type environ-
ment, 𝑒 , 𝑒′ expressions with 𝑒 ⇒∗ 𝑒′, and Δ ⊢ 𝑒 :? 𝐷𝑒𝑡 be derivable
by the determinism typing rules. Then 𝑒′ does not contain a choice at
the root.

If a choice node is evaluated, it is either at the root and its ar-

guments are evaluated, or it will be moved to the top by iterated
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applications of rules AppOr and CaseOr. Thus, the soundness the-

orem ensures that a 𝐷𝑒𝑡-typed expression will never evaluate a

choice. Of course, choice nodes might occur in unevaluated subex-

pressions, for example in unapplied lambda abstractions. However,

these will not be pulled to the top by the evaluation strategy and

are thus not relevant for the soundness property.

Altogether, these properties demonstrate that determinism typ-

ing is a sound and practical foundation for program verification

and optimization. A complete formalization of the determinism

typing rules, along with machine-checked proofs of the properties

discussed above, is available at https://github.com/cau-placc/rocq-

ndtypes. This formalization is carried out in the Rocq proof assis-

tant [13] (formerly known as Coq). In the formal development, we

explicitly track well-typedness, carefully manage variable binding

and name clashes during substitution, and establish a range of aux-

iliary lemmas, such as the preservation of determinism types under

substitution.

7 Applications
Determinism types have various applications ranging from compile-

time debugging to performance enhancement. In the following we

discuss some of the potential applications.

Safe I/O execution. As discussed in the introduction and Exam-

ple 1, the combination of non-determinism and I/O is unsafe since

it is not clear which of the non-deterministic I/O actions should

be applied to some state of the world. Since non-determinism of

expressions is a dynamic property, this problem is not detected

at compile time so that it leads to a run-time error in most Curry

systems. If one requires that expressions of type IO have the de-

terminism type 𝐷𝑒𝑡 , we avoid run-time crashes and unexpected

behavior. For instance, one can execute an interactive I/O operation

main only if it has determinism type main :? Det. As an example,

consider the definition

main = print coin

Since coin, as defined in Example 1, is non-deterministic, the deter-

minism type system infers the judgement main :? Any. Thus, the

compiler can reject this program or issue a warning, preventing a

run-time error. To resolve this issue, the programmer can explic-

itly encapsulate the non-determinism and specify how to handle

multiple results. For example, they could print only the first value.

main = print (head (allValues coin))

If an expression is incorrectly inferred by the compiler as potentially

non-deterministic, encapsulation can also be used to suppress the

warning or error.

Interactive programming environments. Curry systems have an

interactive environment to execute expressions, known as a REPL

(Read-Eval-Print-Loop). The REPL can restrict the evaluation of

I/O expressions based on their determinism type so that run-time

errors cannot occur and the user does not experience unexpected

side effects as in Prolog systems.

More precise warnings. In order to avoid unintended uses of non-

determinism, the front end of Curry systems issue a warning if

an operation is defined by overlapping rules. For instance, when

processing the definition of isNothing as defined in Section 1, the

Curry front end shows

Warning: Function `isNothing ' is potentially

non -deterministic due to overlapping rules

To avoid such warnings in intended uses of overlapping rules (as

in the definition of “?”), one can turn off the warnings (globally or

per module) but then one might miss warnings about unintended

uses of overlapping rules. An elegant resort of these conflicting

goals are determinism types. If the programmer explicitly annotates

an operation with a determinism type, it is checked whether its

definition satisfies this determinism type according to the rules in

Figure 4. Moreover, no overlapping warning is issued when the

target determinism type is Any. Thus, the definition

(?) :? 𝐷𝑒𝑡 → 𝐷𝑒𝑡 → Any
(?) :: a → a → a

x ? y = x

x ? y = y

is accepted without any warning.

Compiler optimizations. Curry implementations that compile to

Haskell like KiCS2 [16] and KMCC [24] use determinism infor-

mation to optimize its code generation. Purely functional (hence,

deterministic) parts of a program can be compiled into more effi-

cient code. For instance, the correct handling of non-determinism

when combined with lazy evaluation requires the threading of

choice identifiers through function calls [4]. This can be avoided if

expressions are known to be deterministic.

Program analysis tools. Determinism types can be used in static

analysis tools to check program invariants or identify unexpected

sources of non-determinism. Determinism analysis is often per-

formed with simple domains for first-order programs, as in [11, 25].

Our determinism types provide a more refined abstraction of de-

terminism information which can be extended in various ways, as

discussed in the following section.

8 Extensions
This section describes two different extensions of our basic proposal

to add determinism types to source programs.

8.1 Determinism Types in Type Classes
As discussed in Section 1, an extension of the determinism type

system is to allow the user to specify that a method of a given type

class is only allowed to be deterministic, enforcing instances of that

class to adhere to this restriction. This is reasonable for the method

show of the type class Show due to its intended use in I/O operations.

Another interesting example is discussed in the following.

In [26] the type class Data is proposed with the following defini-

tion:

class Data a where

(===) :: a → a → Bool

aValue :: a

Intuitively, the method “===” denotes syntactic equality between

values of type a, and aValue non-deterministically enumerates all

values of type a. Instances of Data are automatically derived for all

https://github.com/cau-placc/rocq-ndtypes
https://github.com/cau-placc/rocq-ndtypes
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first-order types, i.e., types without functional components, which

correspond to 𝐷 as defined in Section 3. The motivation of this

proposal is to provide syntactic unification and value bindings for

free variables only for reasonable types. Since enumerating func-

tional values is useless (and difficult in a strongly typed language),

free variables, unification, and search operators have a Data con-

text on their types, i.e., they are not parametric polymorphic but

overloaded entities.

Although this extension, available in recent Curry systems, is

useful to provide better compile-time checks for reasonable pro-

grams, it has also a disadvantage for efficient implementations

of Curry. To see this, consider the following example where the

deterministic operation isZero uses the equality operator “===”:

data Peano = Zero | Succ Peano

isZero :: Peano → Bool

isZero p = p === Zero

Both the operation isZero and the operator “===” are deterministic.

However, the type class Data also contains the non-deterministic op-

eration aValue. Since compilers for Curry use dictionary passing to

implement type classes [34], the compiled function for isZero has

an additional argument: a Data dictionary with a non-deterministic

implementation of aValue.

Curry compilers intended to produce efficient code for purely

functional computations, like KiCS2 [16] and KMCC [24], use a

determinism analysis on the intermediate language in order to

compile deterministic operations quite similar to purely functional

languages. In the example of isZero, the code is not considered as

deterministic since it contains as a parameter the Data dictionary

with the non-deterministic operation aValue even though it is not

used. Although this seems to be a tiny problem in this example,

the use of Data contexts in encapsulated subcomputations results

in serious memory problems in larger Curry applications where

the entire application is compiled to potentially non-deterministic

code, although non-determinism is not used or only used in small

subcomputations (see also [24] for benchmarks comparing compiled

code with and without determinism optimizations).

By adding determinism type annotations to the type class Data,

we can ensure that the compiler can infer the correct determinism

annotation for isZero. The new definition of Data with determin-

ism annotations would look like this:

class Data a where

(===) :? Det → Det → Det

(===) :: a → a → Bool

aValue :? Any

aValue :: a

This extension allows the determinism checker to distinguish be-

tween deterministic and non-deterministic operations within the

same type class, even without knowing the code of the instances.

Since this is correct only if the compiler checks all Data instances,

this requires an extensions of the compiler based on our determin-

ism types.

8.2 Polymorphic Determinism Types
A downside of a monomorphic determinism type system is that it

does not always lead to the desired result for some higher-order

functions. For example, consider the following function to flip the

order of arguments of a binary operation:

flip :? (Det → Det → Det) → Det → Det → Det

flip :: (a → b → c) → b → a → c

flip f x y = f y x

The annotation of flip means that the function is deterministic

if the function and other arguments passed to it are determinis-

tic. Now consider the application flip const. The determinism

type of const is 𝐷𝑒𝑡 → Any → 𝐷𝑒𝑡 which is actually 𝐷𝑒𝑡 →
(Any → 𝐷𝑒𝑡) since “→” associates to the right. Since this is a

subtype of the type 𝐷𝑒𝑡 → 𝐷𝑒𝑡 → 𝐷𝑒𝑡 required for the first argu-

ment of flip, rule App infers that flip const has determinism type

𝐷𝑒𝑡 → 𝐷𝑒𝑡 → 𝐷𝑒𝑡 . Hence, we have a loss of precision since the

information about the possibility to pass a first non-deterministic

argument to flip const and still obtain a deterministic result if the

last argument is deterministic is lost.

To solve this problem, we can extend the determinism type sys-

tem to allow for polymorphic types. That way, the determinism an-

notation of flipwould be the same as its type signature and the par-

tially applied flip constwould be inferred as Any → Det → Det.

By introducing determinism type variables (analogous to type vari-

ables), we can express more general determinism signatures:

flip :? (a → b → c) → b → a → c

This allows the determinism of flip f x y to depend precisely on

the determinism of f, x, and y, enabling more accurate inference

and fewer false positives.

The introduction of determinism type variables comes with the

price of a more complex type system and type inference algorithms.

Apart from this specific example, it is not clear whether there are

more realistic situations where this extension yields more precision.

Therefore, we leave this extension for future work.

9 Implementation
We have implemented a prototype of the determinism type sys-

tem as an extension of the Curry front end used by several Curry

systems.
2
The implementation already includes the type class exten-

sion discussed in Section 8.1. Since type inference with subtyping

is quite hard to implement, even for decidable type systems, our im-

plementation uses a best-effort approach (note that one can always

infer a determinism type, though it might lack precision). Our type

system does not guarantee principality of types, i.e., it is possible

that a program has multiple determinism types where one is not

more specific than the other.

Type inference proceeds similar to type inference in a Hindley-

Milner type system with type variables to be unified during the

inference process. Since subtyping is relevant only in rule App, it

is sufficient to check the subtyping relation for function applica-

tions. If during type inference, the type of the applied function is

a metavariable (i.e., a type that is yet to be determined), we delay

2
This implementation is available at https://github.com/cau-placc/curry-frontend/

tree/det_types

https://github.com/cau-placc/curry-frontend/tree/det_types
https://github.com/cau-placc/curry-frontend/tree/det_types
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the subtyping check. In the end, each type gets fully instantiated to

obtain a monomorphic type.

Our type inference is trivially complete, because we can assign

the typeAny (or a function type withAny) whenever inference fails.
However, since we have not yet proven that our inference algorithm

always infers valid types, we currently plan to check the result using

the determinism typing rules in Figure 4 for verification.

The implementation in the existing Curry front end was mini-

mally invasive, as we only needed to add some syntax, a separate

new type checking phase, and some small changes to the interface

files required for modular compilation.

We leave a full exploration of type inference for our determinism

types as future work.

10 Related Work
Our approach relates to various areas: program analysis, since it is

intended to analyze the run-time behavior of programs at compile

time; type systems, since we add non-standard types to a strongly

typed language; gradual typing, since we use a type-based approach

which should not restrict the number of admissible programs but

ensure run-time conditions for particular types; effect systems, since

the non-deterministic behavior of computations can be considered

as computations with effects. In the following, we briefly relate our

approach to these areas.

10.1 Program Analysis
Abstract interpretation is a program-analysis technique based on

computing with abstract domains which classify sets of concrete

values [18]. In this sense, our type𝐷𝑒𝑡 corresponds to a set of values

without a choice at the root, see the evaluation rules in Figure 5,

whereas Any just denote all values. Abstract interpretation has a

long tradition in logic programming to optimize their execution

by approximating information about modes, types, and sharing at

compile time [17]. Information about modes can be used to derive

information about determinism behavior, since a predicate like

append for list concatenation is deterministic if the first argument

is ground. In this case, more efficient code can be generated.

Modes are exploited in [20] to check and infer functional com-

putations in Prolog which are a generalization of deterministic

computations. There, modes are used to ensure the mutual exclu-

sion of rules of a predicate if a call to this predicate satisfies the

given mode. This information is propagated through a call graph

to infer functional properties of other predicates. The language

Mercury [41] combine modes with a strong type system and de-

terminism annotations to produce highly efficient code. Mercury

classifies predicates as deterministic, semi-deterministic, or non-

deterministic, which parallels our 𝐷𝑒𝑡 and Any classifications but

with finer granularity. A key difference to our approach is that mode

annotations, which are essential to analyze determinism proper-

ties of Mercury programs [28], put strong restrictions on the set

of admissible programs and require additional efforts when pro-

gramming with Mercury. Our approach does not require modes

and is intended to infer determinism types in general so that the

programmer provides determinism type annotations only in certain

cases, e.g., to suppress non-determinism warnings (as discussed

in Section 7) or put restrictions on instances of type classes, see

Section 8.1. Moreover, Mercury is a strict language, while Curry

uses lazy evaluation and, thus, needs to account for potential non-

determinism in function arguments in a more nuanced way.

Similarly to logic programming, abstract interpretation tech-

niques have been also applied to functional logic programming

and Curry. We already mentioned the relevance of information

about deterministic subcomputations to produce efficient code so

that compilers from Curry into deterministic target languages, like

KiCS2 [16] and KMCC [24], integrate a determinism analysis. CASS

[25] is a generic analysis system for Curry and provides more than

30 different kinds of program analyses, including a determinism

analysis. Since CASS is based on a first-order intermediate language,

where partial applications are represented as data constructors by

defunctionalization [37], the determinism information for higher-

order arguments is less precise in CASS.Moreover, CASS is intended

to analyze complete programs whereas determinism types can be

integrated in the standard type inference of the front end. For in-

stance, determinism types can be used in IDEs to immediately point

to problematic uses of non-determinism in I/O operations.

10.2 Extended Type Systems
The idea to encode determinism behavior in a strongly typed lan-

guage with an extended type system is not new. For instance,

Steimann [42] proposed an extension of the lambda calculus, called

simply numbered lambda calculus (SNLC), to include strings of ob-

jects to represent multiple values. In order to distinguish parameter-

passing mechanism for multiple values (comparable to the dif-

ference between call-time choice and run-time choice mentioned

above), parameters in lambda abstractions are annotated with num-

ber specifiers. The basic number specifiers are ! and *, which cor-

respond to our determinism types 𝐷𝑒𝑡 and Any, and their func-

tional combination, called mapping constraints, to cover higher-

order functions. In contrast to our approach, the SNLC requires

precise numbering annotations for higher-order arguments where a

method to infer them is not mentioned (and probably not intended

since the numbering annotations are semantically relevant). This

is different from our approach where we allow more flexibility by

making Any a supertype of any function (see Figure 3). This is

important to avoid restrictions by adding determinism types and

it paves the way towards the determinism typing of polymorphic

operations, as discussed in Section 8. Moreover, we consider a non-

strict operational semantics which is necessary to use determinism

typing for Curry.

A proposal to add determinism information to standard types

can be found in [11] where an operation is considered as determin-

istic if all computed results are identical. This information is used

to improve the efficiency of functional logic programs by avoiding

irrelevant computations. In contrast to our approach, these deter-

minism annotations are based on trust since methods to check them

are not provided.

10.3 Gradual Typing
The requirement that any valid expression can be assigned a de-

terminism type makes our approach similar to gradually typed

languages, where types can be added incrementally. For example,

Type Script has the type any for cases when one does not know
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what type a value might be [35]. In contrast, our determinism types

are not a fallback type but rather an annotation that can be used to

ensure that a function is deterministic. Gradual typing was formally

introduced by Siek and Taha [39] for functional languages, allowing

programs to evolve from dynamic to static typing incrementally.

One of the most mature implementations of this approach is Typed

Scheme (now Typed Racket) [43], which demonstrates how untyped

Scheme programs can be gradually converted to statically typed

programs with minimal disruption. Similar to our approach with de-

terminism types, Typed Scheme maintains backward compatibility

while providing stronger guarantees through optional annotations,

requiring no changes to the underlying run-time system.

Particularly relevant to our work is research on gradual typing

for logic programming languages. For example, Schrijvers et al. [38]

developed a gradual typing system for Prolog. Their system allows

programmers to specify varying levels of type information, from

fully dynamic to fully static typing.While we share the goal of being

able to assign a type to any expression, our approach introduces

an additional type system, orthogonal to the standard Curry type

system.

10.4 Effect Systems
The integration of type systems with effect and determinism track-

ing is a well-established area. Effect systems in functional program-

ming languages, such as those proposed for ML or Haskell (e.g.,

monads), encode side effects in types to control and reason about

program behavior.

Lucassen and Gifford’s foundational work on polymorphic effect

systems [32] introduced the concept of annotating types with ef-

fects to track and control computational behaviors. This approach

enabled precise reasoning about which effects an expression might

produce. Similarly, our determinism types can be viewed as a spe-

cialized effect system focused on non-deterministic choice effects.

Monads, popularized by Wadler [44], offer another mechanism

to encapsulate and reason about effects in functional languages.

While monads in Haskell can represent non-determinism (e.g., via

list monads), this approach differs from ours in that it requires

explicit lifting of operations into the monadic context, whereas

our system naturally extends the existing typing framework of

Curry where non-determinism is implicit in the standard type of a

function.

More recent work on effect systems, such as Leijen’s Koka lan-

guage with row polymorphic effect types [31], provides a frame-

work for tracking diverse computational effects. Koka can express

determinism as one of many possible effects but lacks specialized

support for the specific semantics of functional logic programming

where non-determinism is a first-class feature rather than an op-

tional effect.

While effect systems track side effects such as state or excep-

tions, determinism typing focuses specifically on the presence or

absence of non-deterministic choices. This makes it a lightweight

and focused tool for reasoning about program behavior in languages

where non-determinism is a core feature.

11 Conclusion
In this paper we presented a type-based approach for analyzing

and controlling the determinism behavior of Curry programs. De-

terminism types can be considered as non-standard types which

are attached to defined operations. With determinism typing, we

gain a compositional, static method to ensure the safe execution

of I/O operations so that run-time errors often present in Curry

programs can be caught at compile time.

Our system is lightweight, formally grounded, and compatible

with existing Curry implementations so that it does not restrict

the set of admissible programs. It improves program reliability by

catching an important class of run-time errors, supports optimiza-

tion, and enhances the developer experience in both interactive

and compiled environments.

For future work, it might be interesting to extend determinism

types to approximate other behaviors, like partially defined opera-

tions. Although there exist methods to infer sufficient conditions

so that operations do not fail in Curry [22, 23], explicit annotations

might allow the programmer to express intended partiality so that

the compiler can suppress standard warnings in this case, similarly

to the non-determinism warnings discussed in Section 7. We could

even consider using intervals of determinism types to express the

number of results computed by an operation.

Another direction to be explored is to capture more nuanced non-

deterministic behavior. For instance, we consider the expression

(failed ? True) as non-deterministic, although it has only one

result. There are also situations where more than one result is

computed but all of them are identical, as considered in [11]. A

challenge of these extensions is to find techniques which ensure

the correctness of such a different view of determinism.
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