
Higher-Order Narrowing with De�nitional Trees

Mi
hael Hanus

1

and Christian Prehofer

2

1

Informatik II, RWTH Aa
hen, D-52056 Aa
hen, Germany

hanus�informatik.rwth-aa
hen.de

2

Fakult�at f�ur Informatik, TU M�un
hen, D-80290 M�un
hen, Germany

prehofer�informatik.tu-muen
hen.de

In Pro
. Seventh Intern. Conferen
e on Rewriting Te
hniques and Appli
ations

(RTA'96), New Brunswi
k (USA), Springer LNCS 1103, pp. 138{152, 1996

Abstra
t. Fun
tional logi
 languages with a sound and
omplete opera-

tional semanti
s are mainly based on narrowing. Due to the huge sear
h

spa
e of simple narrowing, steadily improved narrowing strategies have

been developed in the past. Needed narrowing is
urrently the best nar-

rowing strategy for �rst-order fun
tional logi
 programs due to its opti-

mality properties w.r.t. the length of derivations and the number of
om-

puted solutions. In this paper, we extend the needed narrowing strategy to

higher-order fun
tions and �-terms as data stru
tures. By the use of def-

initional trees, our strategy
omputes only in
omparable solutions. Thus,

it is the �rst
al
ulus for higher-order fun
tional logi
 programming whi
h

provides for su
h an optimality result. Sin
e we allow higher-order logi
al

variables denoting �-terms, appli
ations go beyond
urrent fun
tional and

logi
 programming languages.

1 Introdu
tion

Fun
tional logi
 languages [7℄ with a sound and
omplete operational semanti
s

are mainly based on narrowing. Narrowing, originally introdu
ed in automated

theorem proving [20℄, is used to solve goals by �nding appropriate values for vari-

ables o

urring in arguments of fun
tions. A narrowing step instantiates variables

in a goal and applies a redu
tion step to a redex of the instantiated goal. The

instantiation of goal variables is usually
omputed by unifying a subterm of the

goal with the left-hand side of some rule.

Example 1. Consider the following rules de�ning the less-or-equal predi
ate on

natural numbers whi
h are represented by terms built from 0 and s:

0 � X ! true

s(X) � 0! false

s(X) � s(Y)! X � Y

To solve the goal s(X) � Y , we perform a �rst narrowing step by instantiating Y

to s(Y

1

) and applying the third rule, and a se
ond narrowing step by instantiating

X to 0 and applying the �rst rule:

s(X) � Y ;

fY 7!s(Y

1

)g

X � Y

1

;

fX 7!0g

true

Sin
e the goal is redu
ed to true, the
omputed solution is fX 7! 0; Y 7! s(Y

1

)g.

Due to the huge sear
h spa
e of simple narrowing, steadily improved narrowing

strategies have been developed in the past. Needed narrowing [2℄ is based on the

idea to evaluate only subterms whi
h are needed in order to
ompute some result.

For instan
e, in a goal t

1

� t

2

, it is always ne
essary to evaluate t

1

(to some head

normal form) sin
e all three rules in Example 1 have a non-variable �rst argument.

On the other hand, the evaluation of t

2

is only needed if t

1

is of the form s(� � �).

Thus, if t

1

is a free variable, needed narrowing instantiates it to a
onstru
tor,

here 0 or s. Depending on this instantiation, either the �rst rule is applied or the

se
ond argument t

2

is evaluated. Needed narrowing is the
urrently best narrowing

strategy for �rst-order fun
tional logi
 programs due to its optimality properties

w.r.t. the length of derivations and the number of
omputed solutions [2℄. More-

over, it
an be eÆ
iently implemented by pattern-mat
hing and uni�
ation due to

its lo
al
omputation of a narrowing step (see, e.g., [8℄).

In this paper, we extend the needed narrowing strategy to higher-order fun
-

tions and �-terms as data stru
tures. We introdu
e a
lass of higher-order in-

du
tively sequential rewrite rules whi
h
an be de�ned via de�nitional trees. Al-

though this
lass is a restri
tion of general higher-order rewrite systems, it
overs

higher-order fun
tional languages. As higher-order rewrite steps
an be expensive

in general, we show that �nding a redex with indu
tively sequential rules
an be

performed as in the �rst-order
ase.

Sin
e our narrowing
al
ulus LNT is oriented towards previous work on higher-

order narrowing [19℄, we show in the �rst part that LNT
oin
ides with needed

narrowing in the �rst-order
ase. For the higher-order
ase, we show soundness

and
ompleteness with respe
t to higher-order needed redu
tions, whi
h we de�ne

via de�nitional trees. Furthermore, we show that the
al
ulus is optimal w.r.t. the

solutions
omputed, i.e., no solution is produ
ed twi
e. Optimality of higher-order

redu
tions is subje
t of
urrent resear
h. It is however shown that higher-order

needed redu
tions are in fa
t needed for redu
tion to a
onstru
tor normal form.

This strategy is the �rst
al
ulus for higher-order fun
tional logi
 programming

whi
h provides for optimality results. Moreover, it falls ba
k to the optimal needed

narrowing strategy if the higher-order features are not used, i.e., our
al
ulus is a

onservative extension of an optimal �rst-order narrowing
al
ulus. Sin
e we allow

higher-order logi
al variables denoting �-terms, appli
ations go beyond
urrent

fun
tional and logi
 programming languages. In general, our
al
ulus
an
ompute

solutions for variables of fun
tional type. Although this is very powerful, we show

that the in
urring higher-order uni�
ation
an sometimes be avoided by te
hniques

similar to [4℄. Due to la
k of spa
e, some details and the proofs are omitted. They

an be found in [9℄.

2 Preliminaries

We brie
y introdu
e the simply typed �-
al
ulus (see e.g. [10℄). We assume the

following variable
onventions:

{ F;G;H; P;X; Y denote free variables,

{ a; b;
; f; g (fun
tion)
onstants, and

2

{ x; y; z bound variables.

Type judgments are written as t : � . Further, we often use s and t for terms and

u; v; w for
onstants or bound variables. The set of types T for the simply typed

�-terms is generated by a set T

0

of base types (e.g., int, bool) and the fun
tion

type
onstru
tor !. The syntax for �-terms is given by

t = F j x j
 j �x:t j (t

1

t

2

)

A list of synta
ti
 obje
ts s

1

; : : : ; s

n

where n � 0 is abbreviated by s

n

. For in-

stan
e, n-fold abstra
tion and appli
ation are written as �x

n

:s = �x

1

: : : �x

n

:s

and a(s

n

) = ((� � � (a s

1

) � � �) s

n

), respe
tively. Substitutions are �nite mappings

from variables to terms, denoted by fX

n

7! t

n

g, and extend homomorphi
ally from

variables to terms. Free and bound variables of a term t will be denoted as FV(t)

and BV(t), respe
tively. A term t is ground if FV(t) = fg. The
onversions in

�-
al
ulus are de�ned as:

{ �-
onversion: �x:t =

�

�y:(fx 7! ygt),

{ �-
onversion: (�x:s)t =

�

fx 7! tgs, and

{ �-
onversion: if x =2 FV(t), then �x:(tx) =

�

t.

The long ��-normal form [14℄ of a term t, denoted by tl

�

�

, is the �-expanded

form of the �-normal form of t. It is well known [10℄ that s =

���

t i� sl

�

�

=

�

tl

�

�

.

As long ��-normal forms exist for typed �-terms, we will in general assume that

terms are in long ��-normal form. For brevity, we may write variables in �-normal

form, e.g., X instead of �x

n

:X(x

n

). We assume that the transformation into long

��-normal form is an impli
it operation, e.g., when applying a substitution to a

term.

A substitution � is in long ��-normal form if all terms in the image of � are in

long ��-normal form. The
onvention that �-equivalent terms are identi�ed and

that free and bound variables are kept disjoint (see also [5℄) is used in the following.

Furthermore, we assume that bound variables with di�erent binders have di�erent

names. De�ne Dom(�) = fX j �X 6= Xg and Rng(�) =

S

X2Dom(�)

FV(�X).

Two substitutions are equal on a set of variables W , written as � =

W

�

0

,

if �� = �

0

� for all � 2 W . The restri
tion of a substitution to a set of variables

W is de�ned as �

jW

� = �� if � 2 W and �

jW

� = � otherwise. A substitution

� is idempotent i� � = ��. We will in general assume that substitutions are

idempotent. A substitution �

0

is more general than �, written as �

0

� �, if � = ��

0

for some substitution �. We des
ribe positions in �-terms by sequen
es over natural

numbers. The subterm at a position p in a �-term t is denoted by tj

p

. A term t

with the subterm at position p repla
ed by s is written as t[s℄

p

.

A term t in �-normal form is
alled a higher-order pattern if every free o

ur-

ren
e of a variable F is in a subterm F (u

n

) of t su
h that the u

n

are �-equivalent

to a list of distin
t bound variables. Uni�
ation of patterns is de
idable and a

most general uni�er exists if they are uni�able [12℄. Examples are �x; y:F (x; y)

and �x:f(G(�z:x(z))).

A rewrite rule [14℄ is a pair l ! r su
h that l is a higher-order pattern but

not a free variable, l and r are long ��-normal forms of the same base type, and

3

FV(l) � FV(r). Assuming a rule l ! r and a position p in a term s in long

��-normal form, a rewrite step from s to t is de�ned as

s �!

l!r

p;�

t , sj

p

= �l ^ t = s[�r℄

p

:

For a rewrite step we often omit some of the parameters l ! r; p and �. It is

a standard assumption in fun
tional logi
 programming that
onstant symbols

are divided into free
onstru
tor symbols and de�ned symbols. A symbol f is

alled a de�ned symbol or operation, if a rule f(� � �)! t exists. A
onstru
-

tor term is a term without de�ned symbols. Constru
tor symbols and
onstru
tor

terms are denoted by
 and d. A term f(t

n

) is
alled operation-rooted (respe
-

tively
onstru
tor-rooted) if f is a de�ned symbol (respe
tively
onstru
tor). A

higher-order rewrite system (HRS) R is a set of rewrite rules. A term is in

R-normal form if no rule from R applies and a substitution � is R-normalized

if all terms in the image of � are in R-normal form.

By applying rewrite steps, we
an
ompute the value of a fun
tional expression.

However, in the presen
e of free variables, we have to
ompute values for these free

variables su
h that the instantiated expression is redu
ible. This is the motivation

for narrowing whi
h will be pre
isely de�ned in the following se
tions. Narrowing is

intended to solve goals, where a goal is an expression of Boolean type that should

be redu
ed to the
onstant true. This is general enough to
over the equation

solving
apabilities of
urrent fun
tional logi
 languages with a lazy operational

semanti
s, like BABEL [13℄ or K-LEAF [6℄, sin
e the stri
t equality �

1

an be

de�ned as a binary operation by a set of orthogonal rewrite rules (see [2, 6, 13℄ for

more details about stri
t equality). An important
onsequen
e of this restri
tion

on goals is the fa
t that during the su

essful rewriting of a goal the topmost

symbol is always an operation or the
onstant true. This property will be used to

simplify the narrowing
al
ulus.

Noti
e that a subterm sj

p

may
ontain free variables whi
h used to be bound

in s. For rewriting it is possible to ignore this, as only mat
hing of a left-hand

side of a rewrite rule is needed. For narrowing, we need uni�
ation and hen
e we

use the following
onstru
tion to lift a rule into a binding
ontext to fa
ilitate the

te
hni
al treatment. An x

k

-lifter of a term t away from W is a substitution � =

fF 7! (�F)(x

k

) j F 2 FV(t)g where � is a renaming su
h that Dom(�) = FV(t),

Rng(�) \W = fg and �F : �

1

! � � � ! �

k

! � if x

1

: �

1

, . . . , x

k

: �

k

and F : � .

A term t (rewrite rule l ! r) is x

k

-lifted if an x

k

-lifter has been applied to t (l

and r). For example, fG 7! G

0

(x)g is an x-lifter of g(G) away from any W not

ontaining G

0

.

3 First-Order De�nitional Trees

De�nitional trees are introdu
ed in [1℄ to de�ne eÆ
ient normalization strategies

for (�rst-order) term rewriting. The idea is to represent all rules for a de�ned

1

The stri
t equality t � t

0

holds if t and t

0

are redu
ible to the same ground
onstru
tor

term. Note that normal forms may not exist in general due to non-terminating rewrite

rules.

4

symbol in a tree and to
ontrol the sele
tion of the next redex by this tree. This

te
hnique is extended to narrowing in [2℄. We will extend de�nitional trees to the

higher-order
ase in order to obtain a similar strategy for higher-order narrowing.

To state a
lear relationship between the �rst-order and the higher-order
ase, we

review the �rst-order
ase in this se
tion and present the needed narrowing
al
ulus

in a new form. Thus, we assume in this se
tion that all terms are �rst-order, i.e.,

�-abstra
tions and fun
tional variables do not o

ur.

Traditionally [7℄, a term t is narrowed into a term t

0

if there exist a non-

variable position p in t (i.e., tj

p

is not a free variable), a variant l! r of a rewrite

rule with FV(t) \ FV(l ! r) = fg and a most general uni�er � of tj

p

and l

su
h that t = �(t[r℄

p

). In this
ase we write t ;

�

t

0

. We write t

0

;

�

�

t

n

if there

is a narrowing derivation t

0

;

�

1

t

1

;

�

2

� � � ;

�

n

t

n

with � = �

n

� � ��

2

�

1

.

In order to
ompute all solutions by narrowing, we have to apply all rules at all

non-variable subterms in parallel. Sin
e this simple method leads to a huge and

often in�nite sear
h spa
e, many improvements have been proposed in the past

(see [7℄ for a survey). A narrowing strategy determines the position where the

next narrowing step should be applied. As shown in [2℄, an optimal narrowing

strategy
an be obtained by dropping the requirement for most general uni�ers

and
ontrolling the instantiation of variables and sele
tion of narrowing positions

by a data stru
ture,
alled de�nitional tree. T is a de�nitional tree with pattern

� i� its depth is �nite and one of the following
ases holds:

T = rule(l! r), where l! r is a variant of a rule in R su
h that l = �.

T = bran
h(�; o; T

k

), where o is an o

urren
e of a variable in �,

k

are di�erent

onstru
tors of the type of �j

o

(k > 0), and, for i = 1; : : : ; k, T

i

is a de�nitional

tree with pattern �[

i

(X

n

i

)℄

o

, where n

i

is the arity of

i

and X

n

i

are new

distin
t variables.

A de�nitional tree of an n-ary fun
tion f is a de�nitional tree T with pattern

f(X

n

), whereX

n

are distin
t variables, su
h that for ea
h rule l! r with l = f(t

n

)

there is a node rule(l

0

! r

0

) in T with l variant of l

0

.

2

For instan
e, the rules in

Example 1
an be represented by the following de�nitional tree:

bran
h(X � Y; 1; rule(0 � Y ! true);

bran
h(s(X

0

) � Y; 2; rule(s(X

0

) � 0! false);

rule(s(X

0

) � s(Y

0

)! X

0

� Y

0

)))

A de�nitional tree starts always with the most general pattern for a de�ned symbol

and bran
hes on the instantiation of a variable to
onstru
tor-headed terms, here

0 and s(X

0

). It is essential that ea
h rewrite rule o

urs only on
e as a leaf of the

tree. Thus, when evaluating the arguments of a term f(t

n

) to
onstru
tor terms,

the tree
an be in
rementally traversed to �nd the mat
hing rule.

A fun
tion f is
alled indu
tively sequential if there exists a de�nitional

tree of f su
h that ea
h rule node
orresponds to exa
tly one rule of the rewrite

system R. The term rewriting system R is
alled indu
tively sequential if ea
h

fun
tion de�ned by R is indu
tively sequential.

2

This
orresponds to Antoy's notion [1℄ ex
ept that we ignore exempt nodes.

5

A de�nitional tree de�nes a strategy to apply narrowing steps.

3

To narrow a

term t, we
onsider the de�nitional tree T of the outermost fun
tion symbol of t

(note that, by our restri
tion on goals, the outermost symbol is always a Boolean

fun
tion). If T = rule(l! r), we apply the rule l ! r to t. If T = bran
h(�; o; T

k

),

we
onsider the subterm tj

o

. If tj

o

has a fun
tion symbol at the top, we narrow

this subterm (to a head normal form) by re
ursively applying our strategy to tj

o

.

If tj

o

has a
onstru
tor symbol at the top, we narrow t with T

j

, where the pattern

of T

j

uni�es with t. If tj

o

is a variable, we non-deterministi
ally sele
t a subtree

T

j

, instantiate tj

o

to the
onstru
tor of the pattern of T

j

at position o, and narrow

this instan
e of t with T

j

. This strategy is
alled needed narrowing [2℄ and is

the
urrently best narrowing strategy due to its optimality w.r.t. the length of

derivations (if terms are shared) and the number of
omputed solutions.

In order to extend this strategy to higher-order fun
tions, another representa-

tion is required sin
e it is shown in [17℄ that the dire
t appli
ation of narrowing

steps to inner subterms should be avoided in the presen
e of �-bound variables.

For this purpose we transform the needed narrowing
al
ulus into a lazy narrow-

ing
al
ulus in the spirit of Martelli/Montanari's inferen
e rules. In a �rst step, we

integrate the de�nitional trees into the rewrite rules by extending the language of

terms and providing
ase
onstru
ts to express the
on
rete narrowing strategy. A

ase expression has the form

ase X of

1

(X

n

1

) : X

1

; : : : ;

k

(X

n

k

) : X

k

where X is a variable,

1

; : : : ;

k

are di�erent
onstru
tors of the type of X , and

X

1

; : : : ;X

k

are terms possibly
ontaining
ase expressions. Using su
h
ase expres-

sions, ea
h indu
tively sequential fun
tion symbol
an be de�ned by exa
tly one

rewrite rule. For instan
e, the rules for the fun
tion � de�ned in Example 1 are

represented by the following rule:

X � Y !
ase X of 0 : true; s(X

1

) : (
ase Y of 0 : false; s(Y

1

) : X

1

� Y

1

)

To be more pre
ise, we translate a de�nitional tree T into a term with
ase ex-

pressions by the use of the fun
tion dt
(T) whi
h is de�ned as follows:

dt
(rule(l! r)) = r

dt
(bran
h(�; o; T

k

)) =
ase �j

o

of �

1

j

o

: dt
(T

1

); : : : ; �

k

j

o

: dt
(T

k

)

where �

i

is the pattern of T

i

If T is the de�nitional tree with pattern f(X

n

) of the n-ary fun
tion f , then

f(X

n

)! dt
(T) is the new rewrite rule for f . A
ase expression
ase X of p

n

: X

n

an be
onsidered as a fun
tion with arity 2n+ 1 where the semanti
s is de�ned

by the following n rewrite rules:

4

ase p

i

of p

n

: X

n

! X

i

(i = 1; : : : ; n)

3

Due to la
k of spa
e, we omit a pre
ise de�nition whi
h
an be found in [2℄.

4

To be more pre
ise, di�erent
ase fun
tions are needed for
ase expressions with di�er-

ent patterns, i.e., the
ase fun
tions should be indexed by the
ase patterns. However,

for the sake of readability, we do not write these indi
es and allow the overloading of

the
ase fun
tion symbols.

6

Bind

e!

?

Z;G)

�

�(G)

if e is not a
ase term and � = fZ 7! eg

Case Sele
t

ase
(t

n

) of p

k

: X

k

!

?

Z;G)

�

�(X

i

)!

?

Z; G

where p

i

=
(X

n

) and � = fX

n

7! t

n

g

Case Guess

ase X of p

k

: X

k

!

?

Z;G)

�

�(X

i

)!

?

Z; �(G)

where � = fX 7! p

i

g

Case Eval

ase f(t

n

) of p

k

: X

k

!

?

Z;G)

�

�(X)!

?

X;
ase X of p

k

: X

k

!

?

Z;G

if f(X

n

)! X 2 R

0

is a rule with fresh variables,

� = fX

n

7! t

n

g, and X is a fresh variable

Fig. 1. Cal
ulus LNT for lazy narrowing with de�nitional trees in the �rst-order
ase

In the following, we denote by R an indu
tively sequential rewrite system, by R

0

its translated version
ontaining exa
tly one rewrite rule for ea
h fun
tion de�ned

by R, and by R

the additional
ase rewrite rules. The following theorem states

that needed narrowing w.r.t. R and leftmost-outermost narrowing w.r.t. R

0

[R

are equivalent, where leftmost-outermost means that the sele
ted subterm is

the leftmost-outermost one among all possible narrowing positions.

5

Theorem1. Let t be a term with a Boolean fun
tion at the top. For ea
h needed

narrowing derivation t;

�

�

true w.r.t. R there exists a leftmost-outermost narrow-

ing derivation t;

�

�

0

true w.r.t. R

0

[R

with � =

FV(t)

�

0

, and vi
e versa.

As mentioned above, in the higher-order
ase we need a narrowing
al
ulus

whi
h always applies narrowing steps to the outermost fun
tion symbol whi
h is

often di�erent from the leftmost-outermost narrowing position. For this purpose,

we transform a leftmost-outermost narrowing derivation w.r.t. R

0

[R

into a

derivation on a goal system G (a sequen
e of goals of the form t !

?

X) where

narrowing rules are only applied to the outermost fun
tion symbol of the leftmost

goal. This is the purpose of the inferen
e system LNT shown in Figure 1. The

Bind rule propagates a term to the subsequent
ase expression. The Case rules

orrespond to the
ase distin
tion in the de�nition of needed narrowing, where the

narrowing of a fun
tion is integrated in the Case Eval rule. Note that the only

possible non-determinism during
omputation with these inferen
e rules is in the

Case Guess rule. Sin
e we are interested in solving goals by redu
tion to true,

we assume that the initial goal has always the form
ase t of true : true !

?

T .

We use this representation in order to provide a
al
ulus with few inferen
e rules.

Note that T 7! true if su
h a goal
an be redu
ed to the empty goal system.

5

A position p is leftmost-outermost in a set P of positions if there is no p

0

2 P with

p

0

pre�x of p, or p

0

= q � i � q

0

and p = q � j � q

00

and i < j.

7

Theorem2. Let t be a term with a Boolean fun
tion at the top and X a fresh

variable. For ea
h leftmost-outermost narrowing derivation t;

�

�

true w.r.t. R

0

[

R

there exists a LNT-derivation
ase t of true : true!

?

X

�

)

�

0

true!

?

X

w.r.t. R

0

su
h that �

0

=

FV(t)

�, and vi
e versa.

Theorems 1 and 2 imply the equivalen
e of needed narrowing and the
al
ulus

LNT. Sin
e we will extend LNT to higher-order fun
tions in the next se
tion,

the results in this se
tion show that our higher-order
al
ulus is a
onservative

extension of an optimal �rst-order narrowing strategy.

4 Higher-Order De�nitional Trees

In the following we extend �rst-order de�nitional trees to the higher-order
ase.

To generalize from the �rst-order
ase, it is useful to re
all the main ideas: When

evaluating the arguments of a term f(t

n

) to
onstru
tor terms, the de�nitional tree

an be in
rementally traversed to �nd the (single) mat
hing rule. It is essential

that ea
h bran
hing depends on only one subterm (or argument to the fun
tion)

and that for ea
h rigid term (non-variable headed), a single bran
h
an be
hosen.

For this purpose, we need further restri
tions in the higher-order
ase, where we

employ �-terms as data stru
ture, e.g., higher-order terms with bound variables

in the left-hand sides. For instan
e, we permit the rules

di�(�y:y;X) ! 1

di�(�y:sin(F (y)); X)!
os(F (X)) � di�(�y:F (y); X)

di�(�y:ln(F (y)); X) ! di�(�y:F (y); X)=F (X)

where di�(F;X)
omputes the di�erential of F at X .

A shallow pattern is a linear term of the form �x

n

:v(H

m

(x

n

)). We will use

shallow patterns for bran
hing in trees. In
ontrast to the �rst-order
ase, v
an

also be a bound variable.

De�nition 3. T is a higher-order de�nitional tree (hdt) i� its depth is �nite

and one of the following
ases holds:

{ T = p

f

:
ase X of T

n

{ T = p

f

: rhs,

where p

f

are shallow patterns with fresh variables, X is a free variable and T

n

are

hdts in the �rst
ase, and rhs is a term (representing the right-hand side of a rule).

Moreover, all shallow patterns of the hdts T

n

must be pairwise non-uni�able.

We write hdts as p

f

: X , where X stands for a
ase expression or a term. To simplify

te
hni
alities, rewrite rules f(X

n

) ! X are identi�ed with the hdt f(X

n

) : X .

With this latter form of a rule, we
an relate rules to the usual notation as follows.

The sele
tor of a tree T of the form T = p

f

: X is de�ned as sel(T) = p

f

. For

a node T

0

in a tree T , the
onstraints in the
ase expressions on the path to it

determine a term, whi
h is re
ursively de�ned by the pattern fun
tion pat

T

(T

0

):

pat

T

(T

0

) =

�

sel(T

0

) if T = T

0

(i.e., T

0

is the root)

fX 7! sel(T

0

)gpat

T

(T

00

) if T

0

has parent T

00

= p

f

:
aseX of T

n

8

Ea
h bran
h variable must belong to the pattern of this node, i.e., for ea
h node

T

0

= p

f

:
ase X of T

n

in a tree T , X is a free variable of pat

T

(T

0

). Furthermore,

ea
h leaf T

0

= p : rhs of a hdt T is required to
orrespond to a rewrite rule l! r,

i.e., pat

T

(T

0

) ! rhs is a variant of l ! r. T is
alled hdt of a fun
tion f if for

all rewrite rules of f there is exa
tly one
orresponding leaf in T .

As in the �rst-order
ase, rewrite rules must be
onstru
tor based. This

means that in a hdt only the outermost pattern has a de�ned symbol. An HRS,

for all of whi
h de�ned symbols hdts exits, is
alled indu
tively sequential.

For instan
e, the rules for di� above have the hdt

di�(F;X)!
ase F of �y:y : 1;

�y:sin(F

0

(y)) :
os(F

0

(X)) � di�(�y:F

0

(y); X);

�y:ln(F

0

(y)) : di�(�y:F

0

(y); X)=F

0

(X)

Note that free variables in left-hand sides must have all bound variables of the

urrent s
ope as arguments. Su
h terms are
alled fully extended. This important

restri
tion, whi
h also o

urs in [16℄, allows to �nd redi
es as in the �rst-order
ase,

and furthermore simpli�es narrowing. For instan
e, Flex-Flex pairs do not arise

here, in
ontrast to the full higher-order
ase [18, 19℄. Consider an example for

some non-overlapping rewrite rules whi
h do not have a hdt:

f(�x:
(x)) ! a

f(�x:H) ! b

The problem is that for rewriting a term with these rules the full term must be

s
anned. For example, if the argument to f is the rigid term �x:
(G(t)), it is not

possible to
ommit to one of the rules (or bran
hes of a tree) before
he
king if

the bound variable x o

urs inside t. In general, this may lead to an unexpe
ted

omplexity w.r.t. the term size for evaluation via rewriting.

We de�ne the x

k

-lifting of hdts by s
hemati
ally applying the x

k

-lifter to all

terms in the tree, i.e., to all patterns, right-hand sides, and free variables in
ases.

5 Narrowing with Higher-Order De�nitional Trees

In the higher-order
ase, the rules of LNT of Se
tion 3 must be extended to a
-

ount for several new
ases. Compared to the �rst-order
ase, we need to maintain

binding environments and higher-order free variables, possibly with arguments,

whi
h are handled by higher-order uni�
ation. For this purpose, the Imitation,

the Fun
tion Guess and the Proje
tion rules have been added in Figure 2. These

three new rules, to whi
h we refer as the Guess Rules, are the only ones to
om-

pute substitutions for the variables in the
ase
onstru
ts. The Case Guess rule of

the �rst-order
ase
an be retained by applying Imitation plus Case Sele
t. The

Imitation and Proje
tion rules are taken from higher-order uni�
ation and
om-

pute a partial binding for some variable. The Fun
tion Guess rule
overs the
ase

of non-
onstru
tor solutions, whi
h may o

ur for higher-order variables. It thus

enables the synthesis of fun
tions from existing ones. Note that the sele
tion of

a binding in this rule is only restri
ted by the types o

urring. For all rules, we

assume that newly introdu
ed variables are fresh, as in the �rst-order
ase.

9

Bind

e!

?

Z;G)

fg

�(G)

where � = fZ 7! eg and e is not a
ase term

Case Sele
t

�x

k

:
ase �y

l

:v(t

m

) of)

fg

�x

k

:�(X

i

)!

?

Z;G

p

n

: X

n

!

?

Z;G

if p

i

= �y

l

:v(X

m

(x

k

; y

l

)) and � = fX

m

7! �x

k

; y

l

:t

m

g

Imitation

�x

k

:
ase �y

l

:X(t

m

) of)

�

�(�x

k

:
ase �y

l

:X(t

m

) of p

n

: X

n

!

?

Z;G)

p

n

: X

n

!

?

Z;G

if p

i

= �y

l

:
(X

o

(x

k

; y

l

)) and � = fX 7! �x

m

:
(H

o

(x

m

))g

Fun
tion Guess

�x

k

:
ase �y

l

:X(t

m

) of)

�

�(�x

k

:
ase �y

l

:X(t

m

) of p

n

: X

n

!

?

Z;G)

p

n

: X

n

!

?

Z;G

if �x

k

; y

l

:X(t

m

) is not a higher-order pattern,

� = fX 7! �x

m

:f(H

o

(x

m

))g, and f is a de�ned fun
tion

Proje
tion

�x

k

:
ase �y

l

:X(t

m

) of)

�

�(�x

k

:
ase �y

l

:X(t

m

) of p

n

: X

n

!

?

Z;G)

p

n

: X

n

!

?

Z;G

where � = fX 7! �x

m

:x

i

(H

o

(x

m

))g

Case Eval

�x

k

:
ase �y

l

:f(t

m

) of)

fg

�x

k

; y

l

:�(X)!

?

X;

p

n

: X

n

!

?

Z;G �x

k

:
ase �y

l

:X(x

k

; y

l

) of p

n

: X

n

!

?

Z;G

where � = fX

m

7! �x

k

; y

l

:t

m

g, and

f(X

m

(x

k

; y

l

))! X is a x

k

; y

l

-lifted rule

Fig. 2. System LNT for needed narrowing in the higher-order
ase

Noti
e that for goals where only higher-order patterns o

ur, there is no
hoi
e

between Proje
tion and Imitation and furthermore Fun
tion Guess does not apply.

This spe
ial
ase is re�ned later in Se
tion 8.

For a sequen
e)

�

1

� � �)

�

n

of LNT steps, we write

�

)

�

, where � = �

n

� � � �

1

. In

ontrast to the
al
ulus in Se
tion 3 not all substitutions are re
orded for

�

); only

the ones produ
ed by guessing are needed for the te
hni
al treatment. Informally,

all other substitutions only
on
ern intermediate (or auxiliary) variables similar

to [18℄.

As in the �rst-order
ase, we
onsider only redu
tions to the dedi
ated
onstant

true. This is general enough to
over redu
tions to a term without de�ned symbols

, sin
e a redu
tion t

�

�!

an be modeled by f(t)

�

�! true with the additional

rule f(
) ! true and a new symbol f . Hen
e we assume that solving a goal

t!

?

true is initiated with the initial goal I(t) =
ase t of true : true!

?

X .

As an example,
onsider the goal �x:di�(�y:sin(F (x; y)); x) !

?

�x:
os(x)

w.r.t. the rules for di� and the hdt for the fun
tion �:

X � Y !
ase Y of 1 : X; s(Y

0

) : X +X � Y

0

To solve the above goal, we simply add the rule f(�x:
os(x)) ! true to solve the

following goal. Sin
e ea
h
omputation step only a�e
ts the two leftmost goals, we

often omit the others.

ase f(�x:di�(�y:sin(F (x; y)); x)) of true : true!

?

X

1

10

)

Case Eval

ase �x:di�(�y:sin(F (x; y)); x) of
os : true!

?

X

2

;

ase X

2

of true : true!

?

X

1

)

Case Eval

�x:
ase �y:sin(F (x; y)) of : : : ; �y:sin(G(x; y)) : : : : ; : : :!

?

X

3

;

ase X

3

of
os : true!

?

X

2

;
ase X

2

of true : true!

?

X

1

)

Case Sele
t

�x:
os(F (x; x)) � di�(�y:F (x; y); x) !

?

X

3

;
ase X

3

of
os : true!

?

X

2

; : : :

)

Bind

ase �x:
os(F (x; x)) � di�(�y:F (x; y); x) of
os : true!

?

X

2

; : : :

)

Case Eval

�x:
ase di�(�y:F (x; y); x) of 1 :
os(F (x; x)); : : : !

?

X

0

3

; : : :

)

Case Eval

�x:
ase �y:F (x; y) of �y:y : 1; : : :!

?

X

4

; �x:
ase X

4

(x) of 1 :
os(F (x; x)); : : :

)

fF 7!�x;y:yg

Proje
tion

�x:
ase �y:y of �y:y : 1; : : :!

?

X

4

; �x:
ase X

4

(x) of 1 :
os(x); : : :!

?

X

0

3

; : : :

)

Case Sele
t

�x:1!

?

X

4

; �x:
ase X

4

(x) of 1 :
os(x); : : :!

?

X

0

3

; : : :

)

Bind

�x:
ase 1 of 1 :
os(x); : : :!

?

X

0

3

;
ase X

0

3

of
os : true!

?

X

2

; : : :

)

Case Sele
t

)

Bind

)

Case Sele
t

)

Bind

ase true of true : true!

?

X

1

)

Case Sele
t

true!

?

X

1

)

Bind

fg

Thus, the
omputed solution is fF 7! �x; y:yg.

6 Corre
tness and Completeness

As in the �rst-order
ase, we show
ompleteness w.r.t. needed redu
tions. We

�rst de�ne needed redu
tions and then lift needed redu
tions to narrowing. In the

following we assume an indu
tively sequential HRS R and assume LNT is invoked

with the
orresponding de�nitional trees.

For our purpose it is
onvenient to de�ne needed redu
tions via LNT. Then

we show that they are in fa
t needed. For modeling rewriting, the Guess rules are

not needed: For LNT we have S

�

)

fg

LNT

S

0

if and only if no Guess rules are used

in the redu
tion. Hen
e no narrowing is performed. This
an also be seen as an

implementation of a parti
ular rewriting strategy.

In order to relate a system of LNT goals to a term, we asso
iate a position p

with ea
h
ase
onstru
t and a substitution � for all newly introdu
ed variables on

the right. For ea
h
ase expression T =
ase X of : : : in a rule T

0

= f(X

n

)! X

we atta
h the position p of X in the left-hand side of the
orresponding rewrite

rule. Formally, we de�ne a fun
tion l

T

su
h that l

T

(f(X

n

) : X) yields the labeled

tree for a rule T = f(X

n

)! X :

{ l

T

(p

f

:
ase X of T

n

) = p

f

:
ase

p

X of l

T

(T

n

)

where p is the position of X in pat

T

(p

f

:
ase X of T

n

)

{ l

T

(p

f

: r) = p

f

: r

11

We assume in the following that de�nitional trees for some indu
tively sequential

HRS R are labeled.

The following invariant will allow us to relate a goal system with a term:

Theorem4. For an initial goal with
ase

�

t of true : true!

?

X

1

�

)

fg

LNT

S, S is

of one of the following two forms:

1. �x:
ase

p

n

s of : : :!

?

X

n

; �x:
ase

p

n�1

�y:X

n

(x; y) of : : :!

?

X

n�1

; : : : ;

�x:
ase

p

2

�y:X

3

(x; y) of : : :!

?

X

2

;
ase

p

1

X

2

of true : true!

?

X

1

2. r !

?

X

n+1

; �x:
ase

p

n

�y:X

n+1

(x; y) of : : :!

?

X

n

;

�x:
ase

p

n�1

�y:X

n

(x; y) of : : :!

?

X

n�1

; : : : ;

�x:
ase

p

2

�y:X

3

(x; y) of : : :!

?

X

2

;
ase

p

1

X

2

of true : true!

?

X

1

Furthermore, all X

n+1

are distin
t and ea
h variable X

i

o

urs only as shown

above, i.e. at most twi
e in : : : ; e!

?

X

i

;
ase X

i

of : : :.

Noti
e that the se
ond form in the above theorem is
reated by a Case Sele
t rule

appli
ation, whi
h may redu
e a
ase term to a non-
ase term, or by Case Eval

with a rule f(X

n

) ! r. As only the Bind rule applies on su
h systems, they are

immediately redu
ed to the �rst form. As we will see, the Bind rule
orresponds

to the repla
ement whi
h is part of a rewrite step. Sin
e we now know the pre
ise

form of goal systems whi
h may o

ur, bound variables as arguments and binders

are often omitted in goal systems for brevity.

The next goal is to relate LNT and rewriting. For a goal system S, we write

S# for the normal form obtained by applying Case Eval and Case Sele
t.

De�nition 5. We de�ne an asso
iated substitution for ea
h goal system in-

du
tively on

�

)

LNT

:

{ For an initial goal system of the form S =
ase

�

t of true : true !

?

X , we

de�ne the asso
iated substitution �

S

= fX 7! tg.

{ For the Case Eval rule on S = �x:
ase

p

�y:f(t) of : : :!

?

X;G with

S) �x; y:�(X) !

?

X

0

; �x:
ase

p

�y:X

0

(x; y) of : : :!

?

X;G =: S

0

we de�ne �

S

0

= �

S

[fX

0

7! �x:(�

S

X)j

p

g.

For all other rules, the asso
iated substitution is un
hanged.

For a goal system S we write the asso
iated substitution as �

S

. Noti
e that the

asso
iated substitution is not a \solution" as used in the
ompleteness result and

only serves to re
onstru
t the original term.

We
an translate a goal system produ
ed by LNT into one term as follows. The

idea is that
ase

p

t of : : : !

?

X should be interpreted as the repla
ement of the

ase term t at position p in �

S

X , i.e., (�

S

X)[t℄

p

. Extending this to goal systems

yields the following de�nition:

De�nition 6. For a goal system S of the form

[r !

?

X; ℄ �x:
ase

p

n

s of : : :!

?

X

n

; : : : ;
ase

p

1

X

2

of true : true!

?

X

1

(where [r !

?

X; ℄ is optional) with asso
iated substitution � we de�ne the asso-

iated term T (S) as (�X

1

)[(�X

2

)[: : : (�X

n

(x))[�s℄

p

n

: : :℄

p

2

℄

p

1

.

12

For instan
e, if we start with a goal system S

1

=
ase

�

t of true : true !

?

X ,

then T (S

1

) = t.

For a goal system S, we write Bind(S) to denote the result of applying the

Case Bind rule. Noti
e that the substitution of the Bind rule only a�e
ts the two

leftmost goals.

Lemma7. Let S = I(t). If S# is of the form of Invariant 2, then t = T (S#)

is redu
ible at position p = p

1

� � � p

n

. Furthermore, if t �!

p

t

0

, then I(t

0

)# =

Bind(S#)#.

Now, we
an de�ne needed redu
tions:

De�nition 8. A term t has a needed redex p if I(t)# is of Invariant 2 with p =

p

1

� � � p

n

.

It remains to show that needed redu
tions are indeed needed to
ompute a
on-

stru
tor headed term.

Theorem9. If t redu
es to true, then t has a needed redex at position p and t

must be redu
ed at p eventually. Otherwise, t is not redu
ible to true.

The next desirable result is to show that needed redu
tions are normalizing. This

is suggested from related works [15, 11℄, but is beyond the s
ope of this paper.

For a goal system S, we
all the variables that do not o

ur in T (S) dummies.

In parti
ular, all variables on the right and all variables in sele
tors in patterns of

some tree in S are dummies.

Lemma10. If S

�

)

�

LNT

fg, then �S

�

)

fg

LNT

fg.

Theorem11 (Corre
tness of LNT). If I(t)

�

)

�

LNT

fg for a term t, then �t

�

�!

true.

We �rst state
ompleteness in terms of LNT redu
tions.

Lemma12. If �S

�

)

fg

LNT

fg and � is in R-normal form and
ontains no dummies

of S,

6

then S

�

)

�

0

LNT

fg with �

0

� �.

Theorem13 (Completeness of LNT). If �t

�

�! true and � is in R-normal

form, then I(t)

�

)

�

0

LNT

fg with �

0

� �.

7 Optimality regarding Solutions

We show here another important aspe
t, namely uniqueness of the solutions
om-

puted. Compared to the more general
ase in [19℄, optimality of solutions is possible

here, sin
e we only evaluate to
onstru
tor-headed terms. For this to hold for all

subgoals in a narrowing pro
ess, our requirement of
onstru
tor-based rules is also

essential. For these reasons, we never have to
hose between Case Sele
t and Case

Eval in our setting and optimality follows easily from the
orresponding result of

higher-order uni�
ation.

6

I.e., FV(�) \ FV(S) = FV(T (S))

13

Theorem14 (Optimality). If I(t)

�

)

�

LNT

fg and I(t)

�

)

�

0

LNT

fg are two di�er-

ent derivations, then � and �

0

are in
omparable.

It is also
onje
tured that our notion of needed redu
tions is optimal (this is

subje
t to
urrent resear
h [16, 15, 3℄). Note, however, that sharing is needed for

optimality, as shown for the �rst-order
ase in [2℄.

8 Avoiding Fun
tion Synthesis

Although the synthesis of fun
tional obje
ts by full higher-order uni�
ation in

LNT is very powerful, it
an also be expensive and operationally
omplex. There

is an interesting restri
tion on rewrite rules whi
h entails that full higher-order

uni�
ation is not needed in LNT for (quasi) �rst-order goals.

We show that the
orresponding result in [4℄ is easy to see in our
ontext,

although lifting over binders obs
ures the results somewhat unne
essarily. Lifting

may instantiate a �rst-order variable by a higher-order one, but this is only needed

to handle the
ontext
orre
tly.

A term t is quasi �rst-order if t is a higher-order pattern without free higher-

order variables. A rule f(X

n

)! X is
alledweakly higher-order, if every higher-

order free variable whi
h o

urs in X is in fX

n

g. In other words, higher-order

variables may only o

ur dire
tly below the root and are immediately eliminated

when hdts are introdu
ed in the Case Eval rule.

Theorem15. If I(t)

�

)

LNT

S where t is quasi �rst-order w.r.t. weakly higher-

order rules, then T (S) is quasi �rst-order.

As a trivial
onsequen
e of the last result, Fun
tion Guess and Proje
tion do not

apply and Imitation is only used as in the �rst-order
ase.

9 Con
lusions

We have presented an e�e
tive model for the integration of fun
tional and logi
 pro-

gramming with
ompleteness and optimality results. Sin
e we do not require termi-

nating rewrite rules and permit higher-order logi
al variables and �-abstra
tions,

our strategy is a suitable basis for truly higher-order fun
tional logi
 languages.

Moreover, our strategy redu
es to an optimal �rst-order strategy if the higher-order

features are not used. Further work will fo
us on adapting the expli
it model for

sharing using goal systems from [19℄ to this re�ned
ontext.

Referen
es

1. S. Antoy. De�nitional trees. In Pro
. of the 3rd International Conferen
e on Alge-

brai
 and Logi
 Programming, pages 143{157. Springer LNCS 632, 1992.

2. S. Antoy, R. E
hahed, and M. Hanus. A needed narrowing strategy. In Pro
. 21st

ACM Symposium on Prin
iples of Programming Languages, pages 268{279, Portland,

1994.

14

3. Andrea Asperti and Cosimo Laneve. Intera
tion systems I: The theory of optimal

redu
tions. Mathemati
al Stru
tures in Computer S
ien
e, 4:457{504, 1994.

4. J. Avenhaus and C. A. Lor��a-S�aenz. Higher-order
onditional rewriting and narrow-

ing. In Jean-Pierre Jouannaud, editor, 1st International Conferen
e on Constraints

in Computational Logi
s, M�un
hen, Germany, September 1994. Springer LNCS 845.

5. Hendrik Pieter Barendregt. The Lambda Cal
ulus, its Syntax and Semanti
s. North

Holland, 2nd edition, 1984.

6. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A logi
 plus

fun
tional language. Journal of Computer and System S
ien
es, 42(2):139{185, 1991.

7. M. Hanus. The integration of fun
tions into logi
 programming: From theory to

pra
ti
e. Journal of Logi
 Programming, 19&20:583{628, 1994.

8. M. Hanus. EÆ
ient translation of lazy fun
tional logi
 programs into Prolog. In

Pro
. Fifth International Workshop on Logi
 Program Synthesis and Transformation,

pages 252{266. Springer LNCS 1048, 1995.

9. M. Hanus and C. Prehofer. Higher-order narrowing with de�nitional trees. Te
hni
al

report 96-2, RWTH Aa
hen, 1996.

10. J.R. Hindley and J. P. Seldin. Introdu
tion to Combinators and �-Cal
ulus. Cam-

bridge University Press, 1986.

11. Jan Willem Klop. Combinatory Redu
tion Systems. Mathemati
al Centre Tra
ts

127. Mathematis
h Centrum, Amsterdam, 1980.

12. Dale Miller. A logi
 programming language with lambda-abstra
tion, fun
tion vari-

ables, and simple uni�
ation. J. Logi
 and Computation, 1:497{536, 1991.

13. J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi
 programming with fun
tions

and predi
ates: The language BABEL. Journal of Logi
 Programming, 12:191{223,

1992.

14. Tobias Nipkow. Higher-order
riti
al pairs. In Pro
. 6th IEEE Symp. Logi
 in Com-

puter S
ien
e, pages 342{349, 1991.

15. Vin
ent van Oostrom. Con
uen
e for Abstra
t and Higher-Order Rewriting. PhD

thesis, Vrije Universiteit, 1994. Amsterdam.

16. Vin
ent van Oostrom. Higher-order families, 1996. In this volume.

17. Christian Prehofer. Higher-order narrowing. In Pro
. Ninth Annual IEEE Sympo-

sium on Logi
 in Computer S
ien
e, pages 507{516. IEEE Computer So
iety Press,

1994.

18. Christian Prehofer. A Call-by-Need Strategy for Higher-Order Fun
tional-Logi
 Pro-

gramming. In J. Lloyd, editor, Logi
 Programming. Pro
. of the 1995 International

Symposium, pages 147{161. MIT Press, 1995.

19. Christian Prehofer. Solving Higher-order Equations: From Logi
 to Programming.

PhD thesis, TU M�un
hen, 1995. Also appeared as Te
hni
al Report I9508.

20. J.R. Slagle. Automated theorem-proving for theories with simpli�ers,
ommutativity,

and asso
iativity. Journal of the ACM, 21(4):622{642, 1974.

15

