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In this 
hapter, we propose a framework for logi
 programming with di�erent type

systems. In this framework a typed logi
 program 
onsists of a type spe
i�
ation

and a Horn 
lause program whi
h is well-typed with respe
t to the type spe
i-

�
ation. The type spe
i�
ation de�nes all types whi
h 
an be used in the logi


program. Relations between types are expressed by equations on the level of types.

This permits the spe
i�
ation of many-sorted, order-sorted, polymorphi
 and poly-

morphi
ally order-sorted type systems.

We present the de
larative semanti
s of our framework and two proof pro
edures

(dedu
tion and resolution) for typed logi
 programs. An interesting appli
ation is

a type system that 
ombines parametri
 polymorphism with order-sorted typing

and permits higher-order logi
 programming. Moreover, our framework sheds some

new light on the rôle of types in logi
 programming.

3.1 Overview and Examples

The absen
e of types in logi
 programming languages is a disadvantage for the de-

velopment of large software systems. It have been also argued that logi
 programs

often make impli
it assumptions about types and a logi
 program only satis�es the

1
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intended meaning if type information is added to the program [Nai87℄. Therefore

mu
h resear
h has been 
arried out in order to integrate types into logi
 pro-

gramming languages. The proposed integrations 
an be 
lassi�ed into two groups:

inferen
e-based and de
laration-based approa
hes.

The inferen
e-based approa
hes try to 
ompute a superset of the su

ess set of

the program. If this superset is empty (for some goal), then the goal 
annot su

eed

whi
h is usually a hint for a type error in the program. Examples for inferen
e-

based approa
hes 
an be found in [Mis84℄ [Zob87℄ [XW88b℄ [BG89℄ (among others).

The 
omputation of the superset of the su

ess set is guided by term patterns

representing sets of terms. The term patterns are 
onsidered as types, i.e., types

are interpreted as sets of (ground) terms. The advantage of the inferen
e-based

approa
h is simpli
ity for the programmer sin
e he need not de
lare any types: The

type inferen
e system dedu
es type information from an untyped logi
 program.

This information 
an be used by the 
ompiler to perform optimizations in the target

program [GZ86℄.

But there are several problems with the inferen
e-based approa
h: First, the

semanti
s of types is only based on Herbrand interpretations, i.e., types are viewed

as sets of ground terms. But Herbrand models are not suÆ
ient for 
hara
terizing

the de
larative semanti
s of a logi
 program (e.g., if a and b are the only ground

terms in a program and the program 
onsists of the fa
ts p(a) and p(b), then 8X

p(X) is true in all Herbrand models but not a logi
al 
onsequen
e of the program

[Llo87℄). In order to give types a de
larative semanti
s, types must have a meaning

in all interpretations and not only in Herbrand interpretations, similarly to fun
-

tion and predi
ate symbols. Therefore Barbuti and Gia
obazzi [BG89℄ use term

interpretations with variables as the semanti
 foundation of their type inferen
e

system.

The main problem of inferen
e-based approa
hes is that the inferen
e of types

from a 
ompletely untyped program yields only in a few 
ases the types expe
ted

by the programmer. For instan
e, assume list denotes the set of all terms of the

form [℄ or [E|L℄ where L is a term from list. Then the inferred type for the

predi
ate append de�ned by

append([℄,L,L)  

append([E|R℄,L,[E|RL℄)  append(R,L,RL)

may be \list� �� � [ list� � � list" [XW88a℄, where � and � denote arbitrary

types. But the type expe
ted by the programmer is \list� list� list" sin
e append

should be only used to 
on
atenate lists. The problem in this example is the �rst


lause whi
h de�nes append to be true not only for lists but also for other terms.

E.g., append([℄,2,2) is true but usually 
onsidered as an ill-typed goal. In order

to obtain the expe
ted type \list� list� list", append must be de�ned by

append([℄,[℄,[℄)  
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append([℄,[E|R℄,[E|R℄)  append([℄,R,R)

append([E|R℄,L,[E|RL℄)  append(R,L,RL)

(the exa
t de�nition depends on the type inferen
e system).

Another problem of inferen
e-based approa
hes is the strong dependen
e from

the synta
ti
 form of the 
lauses: A type inferen
e system may dedu
e di�erent

types for two de
laratively equivalent programs if the 
lauses are synta
ti
ally

di�erent. For instan
e, assume the type system allows polymorphi
 data stru
tures

[XW88b℄ and list(�) denotes the set of all terms of the form [℄ or [E|L℄ where E

and L are terms from � and list(�), respe
tively, and � is an arbitrary type. Then

the type inferred for the predi
ate member de�ned by

member(E,[E|L℄)  

member(E,[F|L℄)  member(E,L)

is \� � list(�)", i.e., member 
an be used on lists of arbitrary types. The literal

member(2,[1,2,3℄) is a logi
al 
onsequen
e of the 
lauses for member (we assume

that the natural numbers are always 
ontained in our programs). Hen
e we 
an

add this literal as a new fa
t and obtain the de
laratively equivalent program

member(2,[1,2,3℄)  

member(E,[E|L℄)  

member(E,[F|L℄)  member(E,L)

The type inferred by an ML-based inferen
e system [DM82℄ is \nat � list(nat)"

sin
e almost all polymorphi
 type systems for logi
 programming require that the

left-hand sides of all 
lauses for a predi
ate must have equivalent types [MO84℄

[DH88℄ [Smo89℄.

These examples show that in many 
ases the inferen
e of types from a 
om-

pletely untyped program does not yield suÆ
ient results sin
e an untyped logi


program does not 
ontain the type information whi
h has the programmer in mind

(see also [Nai87℄). A type system should allow user de
larations for types. These

de
larations are not a burden on the programmer but do
uments the expe
ted

meaning of predi
ates and improves the readability of large programs. Another

advantage of extending logi
 programs by type de
larations is the possibility to

give types a true de
larative meaning, i.e., types 
an be interpreted as subsets of

the 
arrier sets in all interpretations. This will be done in our approa
h.

The important question whi
h has to be answered by a de
laration-based type

system is: Whi
h kind of type stru
tures 
an be spe
i�ed? Several answers have

been given in the literature: The type system of Turbo-Prolog is 
omparable to

many-sorted Horn logi
 [Pad88℄ and many-sorted logi
 programs 
an be exe
uted

with the same eÆ
ien
y as untyped logi
 programs, but this type system is too

restri
ted for a lot of appli
ations [Han87℄. A more 
exible type system motivated

from ML was proposed by My
roft and O'Keefe [MO84℄. It o�ers parametri
 poly-
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morphism [DM82℄, needs no type-
he
king at run time and enables the writing of


ompa
t and reusable programs. The restri
tions of My
roft/O'Keefe's type sys-

tem have been dropped in [Han89a℄: The result is a type system whi
h allows the

appli
ation of higher-order programming te
hniques. In general it is ne
essary to


onsider the types at run time, but it has been shown that for Prolog-like appli
a-

tions of higher-order programming all type information 
an be omitted at run time

[Han89b℄. This type system 
an also be applied to a language that 
ombines fun
-

tional and logi
 programming [Han90℄. Another dire
tion for typing logi
 programs

are order-sorted type systems where di�erent types may be related by an in
lusion

relation [SNGM89℄. Su
h in
lusion relations o

ur in Prolog (for instan
e, the set

of all 
onstants is the union of the set of numbers and the set of atoms) and there-

fore a lot of inferen
e-based type systems o�er in
lusion polymorphism ([Mis84℄

[Zob87℄ [XW88b℄ among others). In order-sorted logi
 programming [HV87℄ types

are present at run time, but the type information 
an be used to avoid unne
es-

sary 
omputations and redu
e the sear
h spa
e [SS85℄ [HV87℄. Smolka [Smo89℄ has

proposed the 
ombination of parametri
 polymorphism and order-sorted typing for

a logi
 programming language. There are several restri
tions in his type system

so that higher-order programming te
hniques 
annot be used. One parti
ular in-

stan
e of the framework proposed in this 
hapter is a type system that 
ombines

parametri
 polymorphism with order-sorted typing and allows the appli
ation of

higher-order logi
 programming te
hniques.

Type systems with parametri
 polymorphism have been extensively studied in

the 
ontext of fun
tional programming languages [DM82℄ [CW85℄. Therefore sev-

eral proposals for polymorphi
 type systems for logi
 programming are based on

these ideas [MO84℄ [DH88℄ [Smo89℄. But we think that logi
 programming lan-

guages need other type systems than fun
tional programming languages be
ause:

1. The data 
ow is not �xed in logi
 programs sin
e there are no \input" and

\output" parameters in 
ontrast to fun
tional programs.

2. In fun
tional languages a unary fun
tion f is de�ned by an equation of the

form

f(A) = E

(multiple equations for di�erent argument patterns 
an be seen as synta
ti


sugar). There is no doubt about the type of f: The argument type is the most

general type of A and the result type is the most general type of E. But in

logi
 languages the semanti
s of a predi
ate is de�ned by several independent


lauses that should be satis�ed by any model for the predi
ate, i.e., a logi


program is a spe
i�
ation of the predi
ate's properties. If a unary predi
ate

p is de�ned by n 
lauses whi
h 
hara
terizes di�erent properties of p, i.e.,



3.1. OVERVIEW AND EXAMPLES 5

p(A

1

)  � � �

� � �

p(A

n

)  � � �

then the type of p is un
lear if the arguments A

1

; : : : ; A

n

have di�erent types.

Sin
e the type system in [MO84℄ is in
uen
ed from the ML system, My
roft

and O'Keefe require the argument types in di�erent 
lause heads to be equiv-

alent (equal up to type variable renaming). But this restri
tion prevents a

useful logi
 programming te
hnique: Optimization of the resolution pro
ess

by lemma generation. In untyped logi
 programming it is possible to add a

new fa
t L to a program without 
hanging the program semanti
s if L is a

logi
al 
onsequen
e of the program. The new fa
t L 
an be used to obtain

shorter proofs for subsequent goals that in
lude L. For instan
e, the literal

append([1,2℄,[3,4℄,[1,2,3,4℄) is a logi
al 
onsequen
e of the program

append([℄,L,L)  

append([E|R℄,L,[E|RL℄)  append(R,L,RL)

and therefore it may be added at the beginning of the program. If append

has type \list(�); list(�); list(�)", then the new fa
t is ill-typed w.r.t. My-


roft/O'Keefe's type system. From a de
larative point of view there is no

reason to forbid su
h spe
ialized 
lauses. Therefore our language allows su
h


lauses sin
e any instan
e of the de
lared predi
ate type is allowed in the

left-hand side of the 
lause.

Summarizing our dis
ussion of various type systems for logi
 programming we think

that de
laration-based type systems are adequate for logi
 programming be
ause

in these type systems the types of fun
tions and predi
ates are independent of the

synta
ti
 form of the 
lauses and it is possible to give types a pure de
larative

meaning. Sin
e typing all variables, fun
tions and predi
ates in a logi
 program


an be tedious, it should be allowed to omit some of the type de
larations in the

program, but su
h a program is viewed as a short-hand for a fully typed program.

This point of view simpli�es the semanti
s of the language sin
e only well-typed

expressions must have a meaning (see [MH88℄ for a more detailed dis
ussion in the


ontext of ML). In some 
ases a type inferen
e pro
edure 
an be used to insert the

omitted type de
larations (the existen
e of su
h inferen
e pro
edures depends on

the restri
tions of the type system). For instan
e, in ML [HMM86℄ the programmer

has to de
lare the argument and result types of data type 
onstru
tors. The types

of all variables and fun
tions in an ML program are inferred by a type inferen
e

pro
edure [DM82℄.

A further requirement to a type system for logi
 programming is 
exibility: In

logi
 programming it is possible to de�ne one predi
ate whi
h 
an be applied to
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arguments of di�erent types (e.g., append 
an be applied to lists where the elements

have an arbitrary type). Therefore a type system should support some sort of

polymorphism, i.e., a predi
ate may have several types. Furthermore, the type

system should also support logi
 programming te
hniques like lemma generation

and the use of higher-order predi
ates.

This 
hapter proposes a framework for su
h 
exible type systems. We present a

general me
hanism for the spe
i�
ation of type systems where parti
ular instan
es

of this framework are order-sorted, polymorphi
 or polymorphi
ally order-sorted

type systems. Our proposal generalizes previous approa
hes sin
e it allows the

appli
ation of typi
al logi
 programming te
hniques, i.e., it is in
uen
ed but more

general than type systems for fun
tional languages. Sin
e all predi
ates, fun
tions,

variables and 
lauses are expli
itly typed in our approa
h, the well-typedness of a

program is de
idable. For pra
ti
al appli
ations it should be allowed to omit some

of the type de
larations in the program whi
h should be automati
ally inserted

by a type inferen
e pro
edure. But su
h pro
edures are only known for parti
ular

instan
es of our general framework. The development of more powerful type infer-

en
e pro
edures and ne
essary restri
tions to the programs is a topi
 for further

resear
h.

The general idea of our framework is to divide typed logi
 programs into two

parts: a spe
i�
ation of the type stru
ture and a well-typed logi
 program. Sin
e

the se
ond part depends on the �rst part, we may view it as a two-level approa
h.

In the 
ontext of algebrai
 spe
i�
ations, Poign�e [Poi86℄ has proposed a two-level

approa
h for algebrai
 spe
i�
ations with higher-types. Ea
h level 
onsists of an

equational spe
i�
ation where the �rst-level des
ribes a type stru
ture and the

se
ond level is an equational spe
i�
ation with sort expressions from the �rst level.

While he has used the approa
h for the spe
i�
ation of the typed �-
al
ulus, we

will use a similar approa
h for our framework for typed logi
 programming. In our

two-level approa
h the �rst level 
onsists of a spe
i�
ation of a type stru
ture for

the logi
 program and 
ontains all types whi
h will be used inside the logi
 program

and some relations between types spe
i�ed by equational axioms. Hen
e the �rst

level is a many-sorted equational spe
i�
ation [EM85℄ and we 
an use results from

this area for our purposes. The se
ond level is based on the spe
i�ed type stru
ture

and 
onsists of a spe
i�
ation of the types of all variables, 
onstants, fun
tions, and

predi
ates o

urring in the logi
 program and a set of Horn 
lauses whi
h must be

well-typed with respe
t to the type spe
i�
ation. The operational semanti
s, whi
h

is resolution with a uni�
ation pro
edure on well-typed terms, ensures that type

errors do not o

ur while exe
uting well-typed programs. We give some examples

to show the basi
 ideas.

Example 3.1 Parametri
 polymorphism is used for de�ning universal data stru
-

tures whi
h 
an be applied to di�erent 
on
rete types. A 
lassi
al example are poly-

morphi
 lists whi
h 
an be applied to integers giving lists of integers, to Booleans
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giving lists of Booleans, et
. The following signature spe
i�es a type stru
ture for a

program whi
h uses the basi
 types of integers and Booleans and the polymorphi


types of lists and pairs of elements:

TYPEOPS int: ! type

bool: ! type

list: type ! type

pair: type; type ! type

This type stru
ture has only a single sort type. Hen
e all types 
an be used as ar-

guments for the polymorphi
 type 
onstru
tors list and pair. The set of all types

spe
i�ed by this signature is the set of all well-formed terms whi
h may 
ontain

some type variables. For instan
e, types w.r.t. the above spe
i�
ation are

int bool list(int) list(�) pair(bool; �) pair(�; list(�)) � � �

where � and � are type variables. A typed logi
 program 
onsists of type de
-

larations for variables, fun
tions and predi
ates (
onstants are fun
tions without

arguments) and a set of well-typed Horn 
lauses. The following program de�nes

two polymorphi
 predi
ates on lists (throughout this 
hapter we use the Prolog

notation for lists [CM87℄):

fun
 [℄: ! list(�)

fun
 [..|..℄: �; list(�) ! list(�)

pred append: list(�); list(�); list(�)

pred member: �; list(�)

vars L, R, RL:list(�), E, E1:�

append([℄,L,L)  

append([E|R℄,L,[E|RL℄)  append(R,L,RL)

member(E,[E|R℄)  

member(E,[E1|R℄)  member(E,R)

The 
lauses for append and member are well-typed in our sense (
f. Se
tion 3.2)

w.r.t. the type de�nitions.

We view subtyping as the possibility of applying a fun
tion or predi
ate to all

types whi
h are subtypes of the de
lared type of the fun
tion or predi
ate. Hen
e

we spe
ify a type that has some subtypes as a fun
tion whi
h is the identity on the

subtypes. This will be illustrated by the next example.
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Example 3.2 We want to spe
ify a type stru
ture with types nat, zero and posint

where zero and posint are subtypes of nat. Hen
e we spe
ify nat as a fun
tion on

types whi
h is the identity on zero and posint:

TYPEOPS zero: ! type

posint: ! type

nat: type ! type

TYPEAXIOMS nat(zero) = zero

nat(posint) = posint

The type axioms state that nat is not a free type 
onstru
tor like list but is the

identity on the subtypes of nat. It is possible to apply nat to other types than

zero and posint, but our logi
 programs whi
h are based on this spe
i�
ation do

not 
ontain any ground terms of type nat(�) where � 62 fzero; posintg. Therefore

the type nat(�) des
ribes the union of zero and posint in the initial model of the

following program:

fun
 0: ! zero

fun
 s: nat(�) ! posint

pred plus: nat(�); nat(�); nat(
)

vars N, N1:nat(�), N2:nat(�), N3:nat(
)

plus(0,N,N)  

plus(s(N1),N2,s(N3))  plus(N1,N2,N3)

The 
lauses for plus are well-typed in our sense (
f. Se
tion 3.2) w.r.t. the type

de�nitions (note that the type of the �rst argument of the 
lause head is \zero"

in the �rst and \posint" in the se
ond 
lause). Sin
e the argument types of plus

are de�ned to be arbitrary naturals, we 
an apply plus with an arbitrary subtype

of the naturals. It is possible to build nonsensi
al types like nat(bool) (if the basi


type bool is added to the type stru
ture), but our program 
ontains no ground term

of this type and therefore su
h a type denotes an empty set in the initial model

of this program. Moreover, our proof pro
edure (resolution with typed uni�ers, 
f.

Se
tion 3.6) ensures that su
h types do not o

ur in the 
omputation if they are

not present in the initial goal.

Sin
e order-sorted type stru
tures are polymorphi
 type spe
i�
ations with

equational axioms whi
h des
ribe the subsort relationship, it is 
lear that there

is no problem in the 
ombination of polymorphi
 and order-sorted type stru
tures

in our framework. It is also possible to express subsort relationships between poly-

morphi
 types:
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Example 3.3 We want to spe
i�y a type stru
ture for polymorphi
 lists so that

the polymorphi
 type list is the union of elist (empty lists) and nelist (non-empty

lists). Therefore we have to express the subtype relationships elist < list(�) and

nelist(�) < list(�). As in the previous example, we add an additional argument

to a type 
onstru
tor having some subtypes and express the subtype relationship

by type equations:

TYPEOPS elist: ! type

nelist: type ! type

list: type; type ! type

TYPEAXIOMS list(�; elist) = elist

list(�; nelist(�)) = nelist(�)

The append-program is spe
i�ed w.r.t. this type stru
ture as follows:

fun
 [℄: ! elist

fun
 [..|..℄: �; list(�; �) ! nelist(�)

pred append: list(�; �

1

); list(�; �

2

); list(�; �

3

)

vars R:list(�; �

1

), L:list(�; �

2

), RL:list(�; �

3

), E:�

append([℄,L,L)  

append([E|R℄,L,[E|RL℄)  append(R,L,RL)

The type variable � in all argument types of append expresses that append 
on
ate-

nates lists of the same element type, whereas the di�erent type variables �

1

; �

2

; �

3

show that an arbitrary subtype of an �-list (empty or non-empty list) 
an be used

in ea
h argument.

The example shows that logi
 programs with a polymorphi
ally order-sorted

type stru
ture are allowed in our framework. Moreover, in Se
tion 3.7 we will give

an example of a logi
 program with higher-order predi
ates whi
h is well-typed in

our framework.

Example 3.4 The type spe
i�
ations in the previous examples are single-sorted

spe
i�
ations with only one sort \type". Sin
e we also allow many-sorted spe
i�
a-

tions, this feature 
an be used to restri
t the quanti�
ation of type variables. For

instan
e, the following type spe
i�
ation may be part of a program for symboli



omputations:

TYPEOPS int: ! ring

polynom: ring ! alg type
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Thus polynom is a type 
onstru
tor where the argument is restri
ted to be a ring.

The type polynom(int) des
ribes the polynomials with integer 
oeÆ
ients. The

type de
laration for a generi
 predi
ate denoting the addition of two polynomials

is

pred poly add: polynom(�); polynom(�); polynom(�)

Be
ause of the parti
ular type stru
ture, the type variable � is not quanti�ed over

all possible types but only over types of sort \ring", e.g., int is a valid instan
e of

�.

The example shows that the sort of a type 
an be used to express a property of

a type. It may be also desirable to use order-sorted equational spe
i�
ations for the

type stru
ture whi
h allows us to express dependen
ies between type properties,

e.g., \alg type < type" (an algebrai
 type is also a general type). Though this is a

useful feature for 
omputer algebra systems (as pointed out in [SLC88℄), we omit

it for the sake of simpli
ity. But we emphasize that the restri
tion to many-sorted

type spe
i�
ations will not be used in the proofs of our results.

In the following we present our framework for typed logi
 programming in detail.

The main topi
s of this 
hapter are:

� We present a two-level approa
h to typed logi
 programming: The �rst level

is a spe
i�
ation of the basi
 type stru
ture, and the se
ond level 
ontains

a well-typed logi
 program whi
h is based on the spe
i�ed type stru
ture.

The type stru
ture is spe
i�ed by a many-sorted signature with equational

axioms. In 
ontrast to other approa
hes to polymorphi
 type systems for logi


programming, we do not restri
t the use of types inside program 
lauses.

� Our approa
h to typed logi
 programming is de
larative: In 
ontrast to many

other type systems for logi
 programming where types are viewed as sets of

ground terms (i.e., they are only valid in the initial model), we de�ne de�ne

the semanti
s of types in a model-theoreti
 way, i.e., types are subsets of the


arrier sets in all interpretations.

� We present sound and 
omplete dedu
tion and resolution methods for typed

logi
 programs. For the soundness of the resolution method it is ne
essary

to de�ne the uni�
ation pro
edure on well-typed terms whi
h is based on a

uni�
ation pro
edure for the equational type theory. This sheds some new

light on the rôle of types in logi
 programming sin
e the 
omplexity of the

type stru
ture dire
tly in
uen
es the 
omplexity of the uni�
ation pro
edure.

A powerful type stru
ture (e.g., polymorphi
 types 
ombined with subtypes)

implies a 
omplex uni�
ation pro
edure.

� We show that higher-order programming te
hniques 
an be applied in our

general framework. We give an example of a typed logi
 program with higher-
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order predi
ates whi
h is ill-typed in the sense of other polymorphi
 type

systems for logi
 programming.

� The presented approa
h is a framework for the de�nition of di�erent type

stru
tures for logi
 programs. The type stru
ture in
uen
es only the uni�-


ation pro
edure for the exe
ution of the program. Therefore di�erent type

stru
tures 
an be used for di�erent appli
ations where the spe
i�
ation of

the type stru
ture 
an be 
ompiled into a spe
i�
 uni�
ation pro
edure. It is

not ne
essary to use a powerful order-sorted uni�
ation pro
edure for simple

appli
ations like those possible in Turbo-Prolog.

This 
hapter is organized as follows. In the next se
tion the basi
 notions and

the syntax of typed logi
 programs are de�ned. Se
tion 3.3 de�nes the semanti
s

of typed logi
 programs whi
h is based on interpretations in algebrai
 stru
tures.

Se
tion 3.4 presents a dedu
tion method for typed logi
 programs. Se
tion 3.5

presents a solution to the uni�
ation problem of typed terms whi
h is based on a

given uni�
ation pro
edure for the type theory. The uni�
ation pro
edure on typed

terms will be used for the resolution method presented in Se
tion 3.6. Se
tion 3.7


on
ludes with an interesting appli
ation of our framework.

3.2 Logi
 Programs with Type Spe
i�
ations

We use many-sorted equational logi
 for the spe
i�
ation of type stru
tures. There-

fore we re
all some basi
 notions from algebrai
 spe
i�
ations [GTW78℄ [EM85℄.

A many-sorted signature � is a pair (S;O), where S is a set of sorts and O

is a family of operator sets of the form O = (O

w;s

jw 2 S

�

; s 2 S). We write

o: s

1

; : : : ; s

n

! s 2 O instead of o 2 O

(s

1

;:::;s

n

);s

. An operator of the form o:! s

is also 
alled a 
onstant of sort s. A signature � = (S;O) is interpreted by a

�-algebra A = (S

A

; O

A

) whi
h 
onsists of an S-sorted domain S

A

= (S

A;s

js 2 S)

and an operation o

A

:S

A;s

1

; : : : ; S

A;s

n

! S

A;s

2 O

A

for any o: s

1

; : : : ; s

n

! s 2 O.

A set of �-variables is an S-sorted setX = (X

s

js 2 S). The set of �-terms of sort

s with variables from X , denoted T

�;s

(X), is indu
tively de�ned by x 2 T

�;s

(X)

for all x 2 X

s

, 
 2 T

�;s

(X) for all 
:! s 2 O, and o(t

1

; : : : ; t

n

) 2 T

�;s

(X) for

all o: s

1

; : : : ; s

n

! s 2 O (n > 0) and all t

i

2 T

�;s

i

(X). Given a term t, var(t)

denotes the set of all variables o

urring in t. We write T

�

(X) for all �-terms with

variables from X and T

�

for the set of ground terms T

�

(;). By T

�

(X) we also

denote the term algebra.

A �-equation is a pair of �-terms (t

1

; t

2

) of the same sort, usually written

t

1

= t

2

. An equational spe
i�
ation is a triple Sp = (S;O;E) where � = (S;O)

is a signature and E is a set of �-equations. In the following we denote by Sp also

the signature (S;O) 
ontained in Sp, e.g., T

Sp

(X) is the set of (S;O)-terms with

variables from X .
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A variable assignment is a mapping a:X ! S

A

with a(x) 2 S

A;s

for all

variables x 2 X

s

(more pre
isely, it is a family of mappings (a

s

:X

s

! S

A;s

js 2

S)). A �-homomorphism from a �-algebra A = (S

A

; O

A

) into a �-algebra

B = (S

B

; O

B

) is a mapping (family of mappings) h:S

A

! S

B

with the property

h

s

(o

A

(a

1

; : : : ; a

n

)) = o

B

(h

s

1

(a

1

); : : : ; h

s

n

(a

n

)) for all o: s

1

; : : : ; s

n

! s 2 O (n � 0)

and all a

i

2 S

A;s

i

. A �-
ongruen
e on a �-algebra A = (S

A

; O

A

) is a family of

binary equivalen
e relations �

s

� S

A;s

� S

A;s

(s 2 S) so that o

A

(a

1

; : : : ; a

n

) �

s

o

A

(b

1

; : : : ; b

n

) for all o: s

1

; : : : ; s

n

! s 2 O (n > 0) and all a

i

; b

i

2 S

A;s

i

with

a

i

�

s

i

b

i

. The following lemma shows an important property of term algebras:

Lemma 3.5 (Free term algebra) Let � be a signature, A = (S

A

; O

A

) be a �-

algebra and a:X ! S

A

be an assignment for variables from X . There exists a

unique �-homomorphism a

�

:T

�

(X)! S

A

with a

�

(x) = a(x) for all x 2 X .

Let Sp = (S;O;E) be an equational spe
i�
ation and A = (S

A

; O

A

) be an

(S;O)-algebra. An Sp-equation t

1

= t

2

is valid in A, denoted A j= t

1

= t

2

, if

a

�

(t

1

) = a

�

(t

2

) holds for all variable assignments a: var(t

1

)[ var(t

2

)! S

A

. A is a

model for Sp if every equation from E is valid in A. We write

Sp j= t

1

= t

2

if t

1

= t

2

is valid in all models for Sp. We remark that an initial model for a

spe
i�
ation Sp is T

Sp

= �

E

, the quotient of the ground term algebra T

Sp

by the


ongruen
e �

E

generated by the equations E.

Lemma 3.6 Let � be a signature, T

Sp

(X)= �

E

be the quotient of the term algebra

T

Sp

(X) by the 
ongruen
e �

E

generated by the equations E, A = (S

A

; O

A

) be a

�-algebra and a:X ! S

A

be an assignment for variables from X . There exists a

unique �-homomorphism a

�

:T

Sp

(X)= �

E

! S

A

with a

�

([x℄) = a(x) for all x 2 X

where [x℄ denotes the equivalen
e 
lass of x w.r.t. �

E

.

The de�nition of types is based on equational spe
i�
ations: T = (Ts; Top; Tax)

is a spe
i�
ation of types if T is an equational spe
i�
ation. Constants from

T are 
alled basi
 types. By X we denote an in�nite set of type variables

(pre
isely, X = (X

s

js 2 Ts) is a family of in�nite sets of type variables, but

we identify the family of sets with one set sin
e we assume that the sets X

s

are

disjoint). A type expression or type is a term from T

T

(X).

A type substitution � is a T -homomorphism �:T

T

(X)! T

T

(X). TS(T ; X)

denotes the 
lass of all type substitutions. Two types �

1

; �

2

2 T

T

(X) are 
alled

T -equal, denoted �

1

=

T

�

2

, if T j= �

1

= �

2

.

A polymorphi
 signature � for logi
 programs is a triple (T ; Fun
; Pred)

with:

� T is a spe
i�
ation of types with T

T ;s

(;) 6= ; for all s 2 Ts.
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� Fun
 is a set of fun
tion de
larations of the form f :�

1

; : : : ; �

n

! � with

�

i

; � 2 T

T

(X), n � 0.

� Pred is a set of predi
ate de
larations of the form p:�

1

; : : : ; �

n

with �

i

2

T

T

(X) (n � 0).

Sin
e we do not deal with the problem of type 
he
king or type inferen
e in our

framework, we do not forbid overloading in 
ontrast to [Han89a℄ or [Smo89℄. The

type spe
i�
ations together with the de�nitions of fun
tion and predi
ate types

in the examples of Se
tion 3.1 are polymorphi
 signatures. In the rest of this


hapter we assume that � = (T ; Fun
; P red) is a polymorphi
 signature for logi


programs. Similarly to other typed logi
s, the variables in a typed logi
 program

are not quanti�ed over all obje
ts, but vary only over obje
ts of a parti
ular type.

Thus ea
h variable is annotated with a type expression: Let V ar be an in�nite set

of variable names that are distinguishable from symbols in polymorphi
 signatures

and type variables. Then the set V is 
alled a set of typed variables if

� ea
h element of V has the form x:� where x 2 V ar is a variable name and

� 2 T

T

(X) is a type, and

� x:�; x:�

0

2 V implies � = �

0

.

We only 
onsider sets of typed variables with unique types so that type errors 
an

be dete
ted at 
ompile time. For instan
e, if a variable in a 
lause o

urs in two

di�erent 
ontexts so that it has type \int" in one 
ontext and type \list(int)" in

the other 
ontext, this indi
ates a type error if all variables in a 
lause are required

to have unique types. In the rest of this 
hapter we assume that V; V

0

; V

0

; V

1

; : : :

denote sets of typed variables.

In Chur
h's formulation of the theory of types [Chu40℄ types are embedded in

terms, i.e., ea
h symbol in a term is annotated with an appropriate type expression.

These annotations are useful for the uni�
ation of typed terms (see Se
tion 3.5).

We 
all L  G a typed program 
lause if there is a set of typed variables V and

V jj=L G is derivable by the inferen
e rules in �gure 3.1. The typing rules show

that both parametri
 polymorphism and subtype polymorphism are 
overed by our

framework: If the de
lared type of a fun
tion or predi
ate 
ontains type variables,

then this fun
tion or predi
ate 
an be applied to any type whi
h is the result of

repla
ing the type variables by other types (parametri
 polymorphism). If the

type spe
i�
ation 
ontains subtype relations as in example 3.2, then a fun
tion or

predi
ate with de
lared argument type nat(�) 
an also be applied to the subtypes

nat(zero) (=

T

zero) and nat(posint) (=

T

posint).

Note that we have no restri
tions on the use of types and type variables in the

left-hand side of program 
lauses in 
ontrast to [MO84℄ [DH88℄ [Smo89℄ and similar
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Variable:

V jj= x:�

0

(x:� 2 V and � =

T

�

0

)

Constant:

V jj= 
:�

0

(
:! �




2 Fun
 so that there is a

� 2 TS(T ; X) with �(�




) =

T

�

0

)

Composite

term:

V jj= t

1

:�

1

; : : : ; V jj= t

n

:�

n

V jj= f(t

1

:�

1

; : : : ; t

n

:�

n

):�

0

(f :�

f

2 Fun
 so that there exists

� 2 TS(T ; X) with

�(�

f

) = �

1

; : : : ; �

n

! �

and � =

T

�

0

, n > 0)

Atom:

V jj= t

1

:�

1

; : : : ; V jj= t

n

:�

n

V jj= p(t

1

:�

1

; : : : ; t

n

:�

n

)

(p:�

p

2 Pred so that there exists

� 2 TS(T ; X) with

�(�

p

) = �

1

; : : : ; �

n

, n � 0)

Goal:

V jj=L

1

; : : : ; V jj=L

n

V jj=L

1

; : : : ; L

n

(ea
h L

i

is an atom, i.e.,

has the form p(� � �), i = 1; : : : ; n)

Clause:

V jj=L; V jj=G

V jj=L G

(L is an atom and G is a goal)

Figure 3.1: Typing rules for program 
lauses

polymorphi
 type systems.

2

For instan
e, it is allowed to add the 
lause

member(2,[1,2,3℄)  

to the program in example 3.1. By dropping this restri
tion it is also possible to

apply higher-order programming te
hniques in our framework (
f. Se
tion 3.7).

We 
all variables, 
onstants and 
omposite terms derivable by these inferen
e

rules (�;X;V )-terms or well-typed terms. Term

�

(X;V ) denotes the set of

all (�; X; V )-terms. A ground term is a term from the set Term

�

(X; ;). Well-

typed or (�; X; V )-atoms, -goals and -
lauses are similarly de�ned (a goal is a set

of atoms, but for 
onvenien
e we denote it without 
urly bra
kets). A �-term

(atom, goal, 
lause) is a (�; X; V )-term (atom, goal, 
lause) for some set of typed

variables V .

Lemma 3.7 If t:� is a well-typed term and � =

T

�

0

, then t:�

0

is also a well-typed

term.

In the following, if s is a synta
ti
 
onstru
tion (type, term, atom, : : :), tvar(s)

2

In these type systems the left-hand side of a 
lause for a polymorphi
 predi
ate must have a

type whi
h is equivalent to the de
lared type of the predi
ate.
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and var(s) will denote the set of type variables and typed variables that o

ur in s,

respe
tively (i.e., var(s) is a set of typed variables so that s is a (�; X; var(s))-term,

atom, : : :). For instan
e, if

Tax = fs

1

(s

3

) = s

3

; s

2

(s

3

) = s

3

g

and s = f(X :s

1

(s

3

); X :s

2

(s

3

)):s

3

, then both fX :s

3

g and fX :s

1

(s

3

)g satisfy the

de�nition of var(s), but it is always the 
ase that these di�erent sets are T -equal

sets of typed variables. Therefore we 
an 
hoose one of these sets as var(s). Fur-

thermore, we de�ne uvar(s) := fx j 9� 2 T

T

(X): x:� 2 var(s)g as the set of

variable names that o

ur in s.

A typed logi
 program or typed Horn 
lause program P = (�; C) 
onsists

of a polymorphi
 signature � and a set C of �-
lauses. If it is 
lear from the


ontext, we will omit the type annotations in the 
lauses of example programs.

Therefore we have written the 
lauses of the examples in the �rst 
hapter without

type annotations but we have de�ned the types of the variables. For instan
e, the


lause

member(E,[E|R℄)  

in example 3.1 denotes the fully typed 
lause

member(E:�,[E:�|R:list(�)℄:list(�))  

and the 
lause

plus(0,N,N)  

in example 3.2 denotes the fully typed 
lause

plus(0:nat(zero),N:nat(�),N:nat(�))  

This 
lause is well-typed be
ause \nat(zero); nat(�); nat(�)" is an instan
e of the

de
lared type \nat(�); nat(�); nat(
)" of the predi
ate plus and 0:nat(zero) is

a well-typed term sin
e nat(zero) =

T

zero (where T is the type spe
i�
ation of

example 3.2). The term

[ 1:nat | [℄:list(nat; elist) ℄:nelist(nat)

is a well-typed term w.r.t. example 3.3 (we assume that 1 is a 
onstant of type

nat) sin
e [℄ is a 
onstant of type elist and list(nat; elist) =

T

elist holds in the

spe
i�ed type stru
ture.

3.3 Semanti
s of Typed Logi
 Programs

Typed logi
 programs are interpreted by algebrai
 stru
tures similar to the ones

introdu
ed in [Poi86℄. An interpretation of a typed logi
 program 
onsists of an
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algebra that satis�es the type spe
i�
ation and a stru
ture for the derived poly-

morphi
 signature. A stru
ture is an interpretation of types (elements of sort type)

as sets, fun
tion symbols as operations on these sets and predi
ate symbols as re-

lations between these sets. Type variables vary over all types of the interpretation

and typed variables vary over appropriate 
arrier sets. The ne
essary notions are

de�ned in this se
tion.

If T = (Ts; Top; Tax) is a spe
i�
ation of types, a T -algebra A = (Ts

A

; T op

A

)

whi
h satis�es all equations from Tax is also 
alled T -type algebra. The signa-

ture �(A) = (Ts

A

; Fun


A

; P red

A

) derived from � and A is de�ned by

Fun


A

:= ff :�(�

f

) j f :�

f

2 Fun
; �:X ! Ts

A

is a type variable assignmentg

Pred

A

:= fp:�(�

p

) j p:�

p

2 Pred; �:X ! Ts

A

is a type variable assignmentg

An interpretation of a polymorphi
 signature � (or �-interpretation) is a T -

type algebra A = (Ts

A

; T op

A

) together with a �(A)-stru
ture (S; Æ) whi
h 
onsists

of a Ts

A

-sorted set S = (S

�

j� 2 Ts

A

) (the 
arrier of the interpretation) and a

denotation Æ with:

1. If f :�

1

; : : : ; �

n

! � 2 Fun


A

, then Æ

f :�

1

;:::;�

n

!�

: S

�

1

� � � � � S

�

n

! S

�

is a

fun
tion.

2. If p:�

1

; : : : ; �

n

2 Pred

A

, then Æ

p:�

1

;:::;�

n

� S

�

1

� � � � � S

�

n

is a relation.

Hen
e (polymorphi
) fun
tions and predi
ates are interpreted as families of fun
-

tions and predi
ates on the given types. In order to 
ompare di�erent inter-

pretations, we de�ne homomorphisms between them. At �rst, we de�ne �(A)-

homomorphisms to 
ompare di�erent �(A)-stru
tures: Let A = (Ts

A

; T op

A

) be a

T -type algebra and (S; Æ), (S

0

; Æ

0

) be �(A)-stru
tures. A �(A)-homomorphism

h from (S; Æ) into (S

0

; Æ

0

) is a family of fun
tions (h

�

j� 2 Ts

A

) with:

1. h

�

:S

�

! S

0

�

2. If f :�

f

2 Fun


A

with �

f

= �

1

; : : : ; �

n

! � (n � 0) and a

i

2 S

�

i

(i =

1; : : : ; n), then:

h

�

(Æ

f :�

f

(a

1

; : : : ; a

n

)) = Æ

0

f :�

f

(h

�

1

(a

1

); : : : ; h

�

n

(a

n

))

3. If p:�

p

2 Pred

A

with �

p

= �

1

; : : : ; �

n

(n � 0) and (a

1

; : : : ; a

n

) 2 Æ

p:�

p

, then:

(h

�

1

(a

1

); : : : ; h

�

n

(a

n

)) 2 Æ

0

p:�

p

If it is 
lear from the 
ontext we omit the indi
es � in the fun
tions h

�

. Note that

the 
omposition of two �(A)-homomorphisms is again a �(A)-homomorphism. The


lass of all �(A)-stru
tures together with the �(A)-homomorphisms is a 
ategory

[EM85℄. We denote this 
ategory by Cat

�(A)

.

If A and A

0

are T -type algebras, then every T -homomorphism �:A ! A

0

indu
es a signature morphism �: �(A) ! �(A

0

) and a forgetful fun
tor
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U

�

:Cat

�(A

0

)

! Cat

�(A)

from the 
ategory of �(A

0

)-stru
tures into the 
at-

egory of �(A)-stru
tures (see [EM85℄ for details). Therefore we de�ne a �-

homomorphism from a �-interpretation (A;S; Æ) into another �-interpretation

(A

0

; S

0

; Æ

0

) as a pair (�; h), where �:A! A

0

is a T -homomorphism and h: (S; Æ)!

U

�

((S

0

; Æ

0

)) is a �(A)-homomorphism. The 
lass of all �-interpretations with the


omposition

(�

0

; h

0

) Æ (�; h) := (�

0

Æ �; U

�

(h

0

) Æ h)

of two �-homomorphisms is a 
ategory. Thus we 
all a �-interpretation (A;S; Æ)

initial in a 
lass of �-interpretations C i� for all �-interpretations (A

0

; S

0

; Æ

0

) 2 C

there exists a unique �-homomorphism from (A;S; Æ) into (A

0

; S

0

; Æ

0

).

A homomorphism in our typed framework 
onsists of a mapping between type

algebras and a mapping between appropriate stru
tures. Consequently, a vari-

able assignment in the typed framework maps type variables into types and typed

variables into obje
ts of appropriate types: If I = ((Ts

A

; T op

A

); S; Æ) is a �-

interpretation, then a variable assignment for (X;V ) in I is a pair of mappings

v = (v

X

; v

V

) where v

X

:X ! Ts

A

is a type variable assignment and v

V

:V ! S

0

with (S

0

; Æ

0

) := U

v

X

((S; Æ)) and v

V

(x:�) 2 S

0

�

(= S

v

X

(�)

) for all x:� 2 V .

In many-sorted logi
, a 
anoni
al interpretation for a signature is the term

interpretation where the 
arrier sets 
onsist of well-typed terms. In a term inter-

pretation every variable assignment 
an be uniquely extended to a homomorphism.

In our typed framework the situation is more 
ompli
ated be
ause a variable may


orrespond to synta
ti
ally di�erent terms. For instan
e, if s

1

= s

2

2 Tax, then

the variable x:s

1

2 V 
orresponds to the (�; X; V )-terms x:s

1

and x:s

2

. In order

to identify su
h synta
ti
ally di�erent terms, we de�ne 
anoni
al terms as terms

where the type annotations are repla
ed by equivalen
e 
lasses of types. For this

purpose we de�ne a mapping C whi
h repla
es all type annotations in a typed

term by equivalen
e 
lasses of types ([� ℄ denotes the equivalen
e 
lass of the type

� de�ned by [� ℄ = f�

0

j � =

T

�

0

g):

� C(x:�

0

) := x:[� ℄ for all x:� 2 V and �

0

=

T

�

� C(f(t

1

:�

1

; : : : ; t

n

:�

n

):�) := f(C(t

1

:�

1

); : : : ; C(t

n

:�

n

)):[� ℄ for all

f(t

1

:�

1

; : : : ; t

n

:�

n

):� 2 Term

�

(X;V ) (n � 0)

CTerm

�

(X;V ) := fC(t:�) j t:� 2 Term

�

(X;V )g is the set of 
anoni
al terms.

Now we are able to de�ne the 
anoni
al term interpretation T

�

(X;V ) over

X and V :

T

�

(X;V ) := (T

Tax

(X); S; Æ), where

1. T

Tax

(X) := T

T

(X)= �

Tax

is the quotient of the algebra of type expressions

by the 
ongruen
e relation �

Tax

generated by the axioms in the type spe
-

i�
ation T = (Ts; Top; Tax) (the elements of the domain of T

Tax

(X) are

equivalen
e 
lasses of types).



18 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

2. For all [� ℄ 2 T

Tax

(X),

S

[� ℄

:= ft:[� ℄ j t:[� ℄ 2 CTerm

�

(X;V )g

3. If f :[�

1

℄; : : : ; [�

n

℄! [� ℄ 2 Fun


T

Tax

(X)

and t

i

:[�

i

℄ 2 S

[�

i

℄

for i = 1; : : : ; n, then

Æ

f :[�

1

℄;:::;[�

n

℄![� ℄

(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄) := f(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄):[� ℄

4. Æ

p:[�

1

℄;:::;[�

n

℄

:= ; for all p:[�

1

℄; : : : ; [�

n

℄ 2 Pred

T

Tax

(X)

.

The mappings Æ

f :[�

1

℄;:::;[�

n

℄![� ℄

in the de�nition are well-de�ned by lemma 3.7. Sim-

ilarly to the notion of \term algebra" in the �eld of algebrai
 spe
i�
ation [EM85℄, a

term interpretation T

�

(X;V ) does not interpret the predi
ates but supplies a stan-

dard stru
ture with obje
ts built from fun
tions and typed variables. Therefore

the denotation of predi
ates are empty sets.

Now we are able to show that any variable assignment 
an be uniquely extended

to a homomorphism:

Lemma 3.8 (Free term stru
ture) Let (A;S; Æ) be a �-interpretation and v =

(v

X

; v

V

) be an assignment for (X;V ) in (A;S; Æ). There exists a unique �-

homomorphism (�; h) from T

�

(X;V ) into (A;S; Æ) with �([�℄) = v

X

(�) for all

� 2 X and h(x:[� ℄) = v

V

(x:�) for all x:� 2 V .

Proof: By lemma 3.6, v

X


an be uniquely extended to a T -homomorphism

�:T

Tax

(X) ! A with the property �([�℄) = v

X

(�) for all � 2 X . We de�ne a

�(T

Tax

(X))-homomorphism h from T

�

(X;V ) into U

�

((S; Æ)):

1. h(x:[� ℄) := v

V

(x:�) for all x:� 2 V .

2. h(
:[� ℄) := Æ


:!�([� ℄)

2 S

�([� ℄)

for all 
:! � 2 Fun


T

T

(X)

.

3.

h(f(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄):[� ℄) := Æ

f :�([�

1

℄);:::;�([�

n

℄)!�([� ℄)

(h(t

1

:[�

1

℄); : : : ; h(t

n

:[�

n

℄))

for all f :�

1

; : : : ; �

n

! � 2 Fun


T

T

(X)

and all t

i

:[�

i

℄ 2 CTerm

�

(X;V ).

Clearly h is a �(T

Tax

(X))-homomorphism. Hen
e (�; h) is a �-homomorphism.

To proof uniqueness of this homomorphism, we assume another �-homomorphism

(�

0

; h

0

) from T

�

(X;V ) into (A;S; Æ) with �

0

([�℄) = v

X

(�) for all � 2 X and

h

0

(x:[� ℄) = v

V

(x:�) for all x:� 2 V . � = �

0

by lemma 3.6. We show h = h

0

by indu
tion on the term stru
ture:

1. x:� 2 V : h

0

(x:[� ℄) = v

V

(x:�) = h(x:[� ℄).

2. 
:! � 2 Fun


T

T

(X)

: h

0

(
:[� ℄) = Æ


:!�

0

([� ℄)

= Æ


:!�([� ℄)

= h(
:[� ℄).
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3. f(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄):[� ℄) 2 CTerm

�

(X;V ), n > 0:

h

0

(f(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄):[� ℄)

= Æ

f :�

0

([�

1

℄);:::;�

0

([�

n

℄)!�

0

([� ℄)

(h

0

(t

1

:[�

1

℄); : : : ; h

0

(t

n

:[�

n

℄))

= Æ

f :�([�

1

℄);:::;�([�

n

℄)!�([� ℄)

(h(t

1

:[�

1

℄); : : : ; h(t

n

:[�

n

℄))

= h(f(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄):[� ℄)

This lemma is only valid if T

�

(X;V ) and the T -algebra A satis�es all equations

from Tax. If this is not the 
ase, there exist several di�erent �-homomorphisms

whi
h extend the variable assignment. For instan
e, if s

1

= s

2

2 Tax and A has

di�erent interpretations of the sorts s

1

and s

2

, then the terms x:s

1

and x:s

2

may be

mapped into di�erent values by di�erent homomorphisms, provided that x:s

1

2 V .

As a spe
ial 
ase (X = V = ;) the lemma shows that every ground term

without type variables 
orresponds to a unique value in a given �-interpretation.

Generally, any variable assignment v 
an be extended to a �-homomorphism in a

unique way. In the following we denote that �-homomorphism again by v. Sin
e

v

X

and v

V

are only applied to equivalen
e 
lasses of type expressions and 
anoni
al

terms, respe
tively, we omit the indi
es X and V and write v for both v

X

and v

V

.

We are not interested in all interpretations of a polymorphi
 signature but only

in those interpretations that satisfy the 
lauses of a given typed logi
 program. In

order to formalize that we de�ne the validity of atoms, goals and 
lauses relative

to a given �-interpretation I = (A;S; Æ):

� Let v be an assignment for (X;V ) in I .

I; v j= L if L = p(t

1

:�

1

; : : : ; t

n

:�

n

) is a (�; X; V )-atom with

(v(C(t

1

:�

1

)); : : : ; v(C(t

n

:�

n

))) 2 Æ

0

p:[�

1

℄;:::;[�

n

℄

where U

v

((S; Æ)) = (S

0

; Æ

0

), i.e., Æ

0

p:[�

1

℄;:::;[�

n

℄

= Æ

p:v([�

1

℄);:::;v([�

n

℄)

.

I; v j= G if G is a (�; X; V )-goal with I; v j= L for all L 2 G

I; v j= L  G if L  G is a (�; X; V )-
lause where I; v j= G implies

I; v j= L

� I; V j= F if F is a (�; X; V )-atom, -goal or -
lause with I; v j= F for all

variable assignments v for (X;V ) in I

We say \L is valid in I" if I is a �-interpretation with I; var(L) j= L (analogously

for goals and 
lauses). A �-interpretation I = (A;S; Æ) is 
alled model for a typed
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logi
 program (�; C) if I; var(L  G) j= L  G for all 
lauses L  G 2 C. A

(�; X; V )-goal G is 
alled valid in (�; C) relative to V if I; V j= G for every model

I of (�; C). We shall write: (�;C; V ) j= G.

This notion of validity is the extension of validity in untyped Horn 
lause logi


to the typed 
ase: In untyped Horn 
lause logi
 an atom, goal or 
lause is said to

be true i� it is true for all variable assignments. In the typed 
ase an atom, goal or


lause is said to be true i� it is true for all assignments of type variables and typed

variables. The reason for the de�nition of validity relative to a set of variables

is that 
arrier sets in our interpretations may be empty in 
ontrast to untyped

Horn logi
. This is also the 
ase in many-sorted logi
 [GM84℄. Validity relative

to variables is di�erent from validity in the sense of untyped logi
. An example

for su
h a di�eren
e 
an be found in [Han89a℄, p. 231. Validity in our sense is

equivalent to validity in the sense of untyped logi
 if the types of the variables

denote non-empty sets in all interpretations. But a requirement for non-empty


arrier sets is not reasonable in the 
ontext of polymorphi
 types.

Example 3.9 The following interpretation is a model for the program of ex-

ample 3.2. The type spe
i�
ation is interpreted by the T -type algebra A =

(Ts

A

; T op

A

) where Ts

A

= fnat; zero; posintg and Top

A


ontains the fun
tions

zero

A

with zero

A

() = zero, posint

A

with posint

A

() = posint, and nat

A

with

nat

A

(�) = � for all � 2 Ts

A

. The 
arrier sets of the interpretation are:

S

zero

= f0g

S

posint

= fn 2 Nat j n > 0g

S

nat

= S

zero

[ S

posint

The 
onstant 0 and the fun
tion s are interpreted as follows:

Æ

0:!zero

= 0

Æ

s:zero!posint

(0) = 1

Æ

s:posint!posint

(n) = n+ 1 for all n 2 S

posint

Æ

s:nat!posint

(n) = n+ 1 for all n 2 S

nat

Æ

plus:nat;nat;nat

= f(n

1

; n

2

; n

3

) 2 Nat

3

j n

1

+ n

2

= n

3

g

: : :

The remaining interpretations of plus are the restri
tion of Æ

plus:nat;nat;nat

to ap-

propriate subsets. It is easy to show that this interpretation is a model.

3.4 Dedu
tion and Initial Models

In order to de�ne the semanti
s of typed logi
 programs we have used 
anoni
al

terms whi
h are annotated with equivalen
e 
lasses of types. Sin
e these equiv-

alen
e 
lasses are sets whi
h may 
ontain an in�nite number of elements, this
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representation is unsuitable for proof pro
edures like dedu
tion or resolution. Su
h

proof pro
edures should work on well-typed terms whi
h 
an be easily handled.

Therefore we have to de�ne substitutions on well-typed terms and introdu
e a

relation on well-typed terms that establishes the link to 
anoni
al terms.

3.4.1 Typed substitutions

Let �:X ! T

T

(X) be a mapping from type variables into type expressions and

val:V ! Term

�

(X;V

0

) be a mapping from typed variables into well-typed terms

over X and V

0

with the following properties:

� � is a type variable assignment.

� val(x:�) = t:�(�) for all x:� 2 V , i.e., typed variables of sort � are mapped

into well-typed terms of type �(�).

We extend the mappings � and val to mappings on types and well-typed terms,

respe
tively, in the following way:

� �(b) = b for all basi
 types b in T .

� �(h(�

1

; : : : ; �

n

)) = h(�(�

1

); : : : ; �(�

n

)) for all n-ary operation symbols h in T

(n > 0) and all appropriate types �

1

; : : : ; �

n

2 T

T

(X).

� val(x:�

0

) = t:�(�

0

) for all x:� 2 V with val(x:�) = t:�(�) and �

0

=

T

� .

� val(
:�) = 
:�(�) for all well-typed 
onstants 
:� 2 Term

�

(X;V ).

� val(f(t

1

:�

1

; : : : ; t

n

:�

n

):�) = f(val(t

1

:�

1

); : : : ; val(t

n

:�

n

)):�(�) for all well-

typed terms

f(t

1

:�

1

; : : : ; t

n

:�

n

):� 2 Term

�

(X;V ), n > 0.

The mappings are similarly extended on atoms, goals and 
lauses. We 
all (�; val) a

typed substitution. Sub

�

(X;V; V

0

) denotes the 
lass of all typed substitutions

from (T

T

(X); T erm

�

(X;V )) into (T

T

(X); T erm

�

(X;V

0

)). id

X;V

2 Sub

�

(X;V; V )

denotes the identity in Sub

�

(X;V; V ). tdom(�) := f� 2 X j �(�) 6= �g is the

type domain of a typed substitution �. A typed substitution keeps the set of

type variables X but may 
hange the set of typed variables be
ause the types of

the variables in
uen
e validity (see Se
tion 3.3). Sometimes we represent typed

substitutions by sets. For instan
e, the set

� = f�=nat; x:�=0:natg

represents a typed substitution that repla
es the type variable � by the type nat

and the typed variable x:� by the term 0:nat. Hen
e the result of applying � to

the atom p(x:�; y:�) is the atom p(0:nat; y:nat).

The next lemma shows that val is well-de�ned:
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Lemma 3.10 Let (�; val) de�ned as above. Then val(t:�) = t

0

:�(�) 2

Term

�

(X;V

0

) for all well-typed terms t:� 2 Term

�

(X;V ).

Proof: By indu
tion on the stru
ture of all well-typed terms from Term

�

(X;V ):

� x:�

0

where x:� 2 V , �

0

=

T

� and val(x:�) = t:�(�): By de�nition, val(x:�

0

) =

t:�(�

0

). t:�(�) 2 Term

�

(X;V

0

) is a well-typed term and �(�) =

T

�(�

0

). By

lemma 3.7, t:�(�

0

) is also a well-typed term.

� 
:� where 
: ! �




2 Fun
 and there exists a type substitution � with

�(�




) =

T

� : � Æ � is a type substitution with �(�(�




)) =

T

�(�). Hen
e

val(
:�) = 
:�(�) is a well-typed term.

� f(t

1

:�

1

; : : : ; t

n

:�

n

):� where f :�

f

2 Fun
 and there exists a type substitution

� with �(�

f

) = �

1

; : : : ; �

n

! �

0

and �

0

=

T

� . � Æ � is a type substitu-

tion with �(�(�

f

)) = �(�

1

); : : : ; �(�

n

) ! �(�

0

) and �(�

0

) =

T

�(�). Hen
e

val(f(t

1

:�

1

; : : : ; t

n

:�

n

):�) = f(val(t

1

:�

1

); : : : ; val(t

n

:�

n

)):�(�) is a well-typed

term sin
e val(t

i

:�

i

) = t

0

i

:�(�

i

) is well-typed for i = 1; : : : ; n by indu
tion

hypothesis.

The following lemma states the relationship between typed substitutions and

�-homomorphisms on 
anoni
al term interpretations:

Lemma 3.11 Let (�; val) 2 Sub

�

(X;V; V

0

) be a typed substitution. Then there

exists a unique �-homomorphism � from T

�

(X;V ) into T

�

(X;V

0

) with

� �([�℄) = [�(�)℄ for all � 2 X

� �(x:[� ℄) = C(val(x:�)) for all x:� 2 V

Furthermore,

�([� ℄) = [�(�)℄ for all � 2 T

T

(X) (1)

and

�(C(t:�)) = C(val(t:�)) for all t:� 2 Term

�

(X;V ) (2)

Proof: Let �

X

:X ! T

Tax

(X) be de�ned by �

X

(�) := [�(�)℄ for all � 2 X .

By lemma 3.6, there exists a unique T -homomorphism �:T

Tax

(X) ! T

Tax

(X)

with �([�℄) = �

X

(�) for all � 2 X . If �

X

also denotes the unique extension

�

X

:T

T

(X) ! T

Tax

(X) (whi
h exists by lemma 3.5), then � has the property

�

X

= � Æ nat where nat is the 
anoni
al T -homomorphism nat(�) = [� ℄ for all

� 2 T

T

(X) (
f. [EM85℄, p. 82). We show (1) by indu
tion on the size of � :

� �([�℄) = �

X

(�) = [�(�)℄ for all � 2 X .
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� �([b℄) = �

X

(b) = [b℄ = [�(b)℄ for all basi
 types b in T .

� For all n-ary operation symbols h in T and all appropriate types �

1

; : : : ; �

n

2

T

T

(X):

�([h(�

1

; : : : ; �

n

)℄)

= �

X

(h(�

1

; : : : ; �

n

))

= h

0

(�

X

(�

1

); : : : ; �

X

(�

n

)) (h

0

is the interpretation of h in T

Tax

(X))

= h

0

(�([�

1

℄); : : : ; �([�

n

℄))

= h

0

([�(�

1

)℄; : : : ; [�(�

n

)℄) (by indu
tion hypothesis)

= [h(�(�

1

); : : : ; �(�

n

))℄ (by de�nition of h

0

)

= [�(h(�

1

; : : : ; �

n

))℄

Let �

V

:V ! CTerm

�

(X;V

0

) be de�ned by �

V

(x:�) := C(val(x:�)) for x:� 2

V . val(x:�) is a well-typed term of type �(�), hen
e C(val(x:�)) has the form

t:[�(�)℄ = t:�([� ℄) = t:�

X

(�). Therefore (�

X

; �

V

) is a variable assignment for

(X;V ) in T

�

(X;V

0

) whi
h 
an be uniquely extended to a �-homomorphism �

from T

�

(X;V ) into T

�

(X;V

0

) by lemma 3.8. We prove (2) by indu
tion on the

size of terms:

� For all x:� 2 V with val(x:�) = t:�(�) and �

0

=

T

� : �(C(x:�

0

)) = �(x:[�

0

℄) =

�(x:[� ℄) = �

V

(x:�) = C(val(x:�)) = C(t:�(�)) = C(t:�(�

0

)) = C(val(x:�

0

)).

� �(C(
:�)) = �(
:[� ℄) = 
:�([� ℄) = 
:[�(�)℄ = C(
:�(�)) = C(val(
:�)) for all


onstants 
:� 2 Term

�

(X;V ).

� For all terms f(t

1

:�

1

; : : : ; t

n

:�

n

):� 2 Term

�

(X;V ), n > 0:

�(C(f(t

1

:�

1

; : : : ; t

n

:�

n

):�)) = �(f(C(t

1

:�

1

); : : : ; C(t

n

:�

n

)):[� ℄)

= f(�(C(t

1

:�

1

)); : : : ; �(C(t

n

:�

n

))):�([� ℄)

= f(C(val(t

1

:�

1

)); : : : ; C(val(t

n

:�

n

))):[�(�)℄

= C(f(val(t

1

:�

1

); : : : ; val(t

n

:�

n

)):�(�))

= C(val(f(t

1

:�

1

; : : : ; t

n

:�

n

):�))

Uniqueness 
an be simply shown by indu
tion on the size of terms.

The above lemma shows that typed substitutions whi
h are dire
tly applied to

well-typed terms 
orrespond to �-homomorphisms between 
anoni
al term inter-

pretations in a unique way. Hen
e �̂ denotes the �-homomorphism from T

�

(X;V )

into T

�

(X;V

0

) 
orresponding to the typed substitution � 2 Sub

�

(X;V; V

0

). The

following lemma shows a relationship between variable assignments and typed sub-

stitutions w.r.t. validity:
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Lemma 3.12 Let I be a �-interpretation, G be a (�; X; V )-goal, � 2

Sub

�

(X;V; V

0

) and v be a variable assignment for (X;V

0

) in I . Then I; v j= �(G)

i� I; v Æ �̂ j= G.

Proof: Let G, �, v = (v

X

; v

V

) and I = (A;S; Æ) be given. The 
omposition

v

0

:= v Æ �̂ between �-homomorphisms is de�ned by v

0

= (v

0

X

; v

0

V

) with v

0

X

([�℄) =

v

X

(�̂([�℄)) for all � 2 X and

v

0

V;[� ℄

(x:[� ℄) = (U

�̂

(v

V

) Æ �̂)

[� ℄

(x:[� ℄) = v

V;�̂([� ℄)

(�̂(x:[� ℄))

for all x:� 2 V . Thus v

0

is a variable assignment for (X;V ) in I . Let p(: : : t

i

:�

i

: : :) 2

G. Then

I; v j= � (p(: : : t

i

:�

i

: : :))

() I; v j= p(: : : �(t

i

:�

i

) : : :)

() (: : : v

V

(C(�(t

i

:�

i

))) : : :) 2 Æ

p::::v

X

(�̂([�

i

℄)):::

() (: : : v

V

(�̂(C(t

i

:�

i

))) : : :) 2 Æ

p::::v

X

(�̂([�

i

℄)):::

(by lemma 3.11)

() (: : : v

0

V

(C(t

i

:�

i

)) : : :) 2 Æ

p::::v

0

X

([�

i

℄):::

() I; v

0

j= p(: : : t

i

:�

i

: : :)

This proves the lemma.

A term t

0

2 Term

�

(X;V

0

) is 
alled an instan
e of a term t 2 Term

�

(X;V )

if a typed substitution � 2 Sub

�

(X;V; V

0

) exists with t

0

= �(t). The de�nition

of instan
es 
an be extended to atoms, goals and 
lauses. We omit the simple

de�nitions here. The next lemma shows the relationship between the validity of a


lause and the validity of all its instan
es:

Lemma 3.13 Let I = (A;S; Æ) be a �-interpretation and L  G be a (�; X; V )-


lause. Then:

I; V j= L G () I; V

0

j= �(L) �(G) for all � 2 Sub

�

(X;V; V

0

)

Proof: The dire
tion \(=" is trivial if we use the identity id

X;V

for the typed

substitution �. Let I; V j= L G and � 2 Sub

�

(X;V; V

0

) be a typed substitution.

We have to show I; V

0

j= �(L) �(G). Let v be a variable assignment for (X;V

0

)

in I with I; v j= �(G) (if there exists no su
h variable assignment, I; V

0

j= �(L) 

�(G) is trivially true). Lemma 3.12 yields I; v Æ �̂ j= G. This implies I; v Æ �̂ j= L

sin
e I; V j= L G. Again by lemma 3.12, it follows I; v j= �(L).

Along with a set of �-
lauses C we de�ne the set of instantiated 
lauses

b

C as

follows:

b

C := fL G j L G is an instan
e of a 
lause from Cg
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The set

b

C 
ontains all 
lauses whi
h are obtained from 
lauses in C by substituting

type expressions for type variables and well-typed terms for typed variables.

Corollary 3.14 A �-interpretation is a model for (�; C) i� it is a model for (�;

b

C).

Proof: The theorem follows by de�nition of

b

C and lemma 3.13.

3.4.2 Equality w.r.t. the type stru
ture

Our proof pro
edures (dedu
tion, resolution) manipulate only well-typed terms

and use typed substitutions. For that purpose we de�ne an important relation

on well-typed terms: Two �-terms t and t

0

are 
alled T -equal, denoted t =

T

t

0

,

if C(t) = C(t

0

). T -equality on atoms is analogously de�ned. Two �nite sets of

typed variables V

1

and V

2

are 
alled T -equal if V

1

= fx

1

:�

1

; : : : ; x

m

:�

m

g, V

2

=

fx

1

:�

0

1

; : : : ; x

m

:�

0

m

g and �

i

=

T

�

0

i

for i = 1; : : : ;m.

Example 3.15 If the type spe
i�
ation of example 3.2 is given, then the following

pairs of well-typed terms are T -equal:

0:nat(zero) =

T

0:zero

N:posint =

T

N:nat(posint)

The proof of the following two lemmas is straightforward:

Lemma 3.16 If two �-terms t and t

0

are T -equal, then var(t) and var(t

0

) are

T -equal sets of typed variables.

Lemma 3.17 If two �-terms t and t

0

are T -equal, then all instan
es �(t) and �(t

0

)

are T -equal.

The next lemma shows that T -equal atoms have the same meaning in all inter-

pretations:

Lemma 3.18 Let � be a polymorphi
 signature, V be a set of typed variables,

and L

1

and L

2

be two T -equal (�; X; V )-atoms. If I is a �-interpretation and v is

a variable assignment for V in I , then:

I; v j= L

1

() I; v j= L

2
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Proof: Let I = (A;S; Æ) be a �-interpretation and v be a variable assign-

ment for V in I . Let L

1

and L

2

be two T -equal (�; X; V )-atoms. Hen
e

L

1

= p(t

1

:�

1

; : : : ; t

k

:�

k

), L

2

= p(t

0

1

:�

0

1

; : : : ; t

0

k

:�

0

k

), and t

i

:�

i

=

T

t

0

i

:�

0

i

for i = 1; : : : ; k.

By de�nition of T -equality, v(C(t

i

:�

i

)) = v(C(t

0

i

:�

0

i

)) for i = 1; : : : ; k. I; v j= L

1

is

equivalent to

(v(C(t

1

:�

1

)); : : : ; v(C(t

k

:�

k

))) 2 Æ

p:v([�

1

℄);:::;v([�

k

℄)

Sin
e [�

i

℄ = [�

0

i

℄ for i = 1; : : : ; k, we obtain

(v(C(t

0

1

:�

0

1

)); : : : ; v(C(t

0

k

:�

0

k

))) 2 Æ

p:v([�

0

1

℄);:::;v([�

0

k

℄)

whi
h is equivalent to I; v j= L

2

. The other dire
tion is symmetri
.

3.4.3 The typed Horn 
lause 
al
ulus

This se
tion presents an inferen
e system for proving validity in typed logi
 pro-

grams. In 
ontrast to the untyped Horn 
lause 
al
ulus it is ne
essary to 
olle
t all

variables used in a derivation of the inferen
e system sin
e validity depends on the

types of variables. Let (�; C) be a typed logi
 program. We assume that equal-

ity between types (relation =

T

) is de
idable. The typed Horn 
lause 
al
ulus


ontains the following inferen
e rules (remember that goals are �nite sets of atoms

and therefore we use set notations for the modi�
ation of goals):

1. Axioms: If V is a set of typed variables and L G 2 C is a (�; X; V )-
lause,

then (�; C; V ) ` L G.

2. Substitution rule: If (�; C; V ) ` L G and � 2 Sub

�

(X;V; V

0

),

then (�; C; V

0

) ` �(L) �(G).

3. Cut rule: If (�; C; V ) ` L  G

0

[ fL

0

g, (�; C; V ) ` L

1

 G

1

, and L

0

=

T

L

1

,

then (�; C; V ) ` L G

0

[G

1

.

We write (�;C; V ) ` L if (�; C; V ) ` L  ; 
an be dedu
ed by these inferen
e

rules.

The soundness of the typed Horn 
lause 
al
ulus 
an be shown by proving the

soundness of ea
h inferen
e rule:

Theorem 3.19 (Soundness of dedu
tion) Let (�; C) be a typed logi
 pro-

gram, V be a set of typed variables and L be a (�; X; V )-atom. If (�; C; V ) ` L,

then (�; C; V ) j= L.

Proof: Let M be a model for (�; C). By indu
tion on the length of a dedu
tion we

show that M;V

i

j= L

i

 G

i

for ea
h element (�; C; V

i

) ` L

i

 G

i

in a dedu
tion

for L ;.
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1. Axioms: If L

i

 G

i

2 C, then M; var(L

i

 G

i

) j= L

i

 G

i

. Let v

be a variable assignment for (X;V

i

) in M (if there exists no su
h variable

assignment, then M;V

i

j= L

i

 G

i

is trivially true). Let v

0

be the restri
tion

of v to (X; var(L

i

 G

i

)). Then M; v

0

j= L

i

 G

i

is true and therefore

M; v j= L

i

 G

i

is also true.

2. Substitution rule: Let � 2 Sub

�

(X;V

i

; V

0

i

) be a typed substitution, �̂ be

the 
orresponding �-homomorphism (
f. lemma 3.11) and v

0

be a variable

assignment for (X;V

0

i

) in M (if there exists no su
h variable assignment,

then M;V

0

i

j= �(L

i

)  �(G

i

) is trivially true). v := v

0

Æ �̂ is a variable

assignment for (X;V

i

) in M . By indu
tion hypothesis, M; v j= L

i

 G

i

.

Suppose now that M; v

0

j= �(G

i

). Lemma 3.12 yields M; v j= G

i

. This

implies M; v j= L

i

and, again by lemma 3.12, M; v

0

j= �(L

i

). Therefore,

M; v

0

j= �(L

i

) �(G

i

).

3. Cut rule: Let (�; C; V

i

) ` L

i

 G

i

[ fL

0

i

g and (�; C; V

j

) ` L

j

 G

j

be

elements of the dedu
tion with V

i

= V

j

and L

0

i

=

T

L

j

. Let v be a variable

assignment for (X;V

i

) in M with M; v j= G

i

[ G

j

(if there exists no su
h

variable assignment, then M;V

i

j= L

i

 G

i

[ G

j

is trivially true). By

indu
tion hypothesis, M; v j= L

i

 G

i

[ fL

0

i

g and M; v j= L

j

 G

j

. Sin
e

M; v j= G

j

, we obtain M; v j= L

j

whi
h is equivalent to M; v j= L

0

i

by

lemma 3.18. On the other hand, M; v j= G

i

. Hen
e M; v j= G

i

[ fL

0

i

g and

M; v j= L

i

. Therefore, M; v j= L

i

 G

i

[G

j

, as required.

The 
ompleteness of dedu
tion is proved by the 
onstru
tion of a parti
ular

model that is the extension of a free term interpretation to an interpretation with

parti
ular predi
ate denotations.

Let V be a set of typed variables. The dedu
tive term interpretation

T

�;C

(X;V ) of the typed logi
 program (�; C) is the triple (T

Tax

(X); S; Æ) with:

1. T

Tax

(X) := T

T

(X)= �

Tax

, the quotient of the algebra of type expressions by

the 
ongruen
e relation �

Tax

generated by the axioms in the type spe
i�
a-

tion T = (Ts; Top; Tax).

2. For all [� ℄ 2 T

Tax

(X),

S

[� ℄

:= ft:[� ℄ j t:[� ℄ 2 CTerm

�

(X;V )g

3. If f :[�

1

℄; : : : ; [�

n

℄! [� ℄ 2 Fun


T

Tax

(X)

and t

i

:[�

i

℄ 2 S

[�

i

℄

for i = 1; : : : ; n, then

Æ

f :[�

1

℄;:::;[�

n

℄![� ℄

(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄) := f(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄):[� ℄
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4. If p:[�

1

℄; : : : ; [�

n

℄ 2 Pred

T

Tax

(X)

, then

Æ

p:[�

1

℄;:::;[�

n

℄

:= f(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄) j (�; C; V ) ` p(t

0

1

:�

0

1

; : : : ; t

0

n

:�

0

n

) and

t

i

:[�

i

℄ = C(t

0

i

:�

0

i

)g

The di�eren
e between T

�

(X;V ) and T

�;C

(X;V ) is the denotation of predi
ate

symbols.

The 
ompleteness proof of the typed Horn 
lause 
al
ulus is based on the fa
t

that T

�;C

(X;V ) is a model for (�; C). Therefore we need the following lemma:

Lemma 3.20 Let (�; C) be a typed logi
 program and V be a set of typed vari-

ables. T

�;C

(X;V ) is a model for (�; C).

Proof: It is 
lear by the above de�nition that T

�;C

(X;V ) = (T

Tax

(X); S; Æ) is a �-

interpretation. We have to prove that all 
lauses from C are valid in T

�;C

(X;V ).

Let L  G be a 
lause from C and v be a variable assignment for (X;V




) in

T

�;C

(X;V ) with T

�;C

(X;V ); v j= G, where V




:= var(L  G). v(�) 2 T

Tax

(X)

for all � 2 X and v(x:�) 2 S

v(�)

for all x:� 2 V




, i.e., ea
h variable from X and V




is mapped into an equivalen
e 
lass of types and a 
anoni
al term, respe
tively. We


hoose from ea
h equivalen
e 
lass v(�) a representative �

�

with v(�) = [�

�

℄ and

for ea
h 
anoni
al term v(x:�) a well-typed term t

x

:�

x

with v(x:�) = C(t

x

:�

x

). We

de�ne a typed substitution by v

0

(�) = �

�

for all � 2 X and v

0

(x:�) = t

x

:v

0

(�) for

all x:� 2 V




(t

x

:v

0

(�) is a well-typed term by lemma 3.7 sin
e [�

x

℄ = v(�) = [v

0

(�)℄).

Lemma 3.11 yields v([� ℄) = [v

0

(�)℄ for all � 2 T

T

(X) and v(C(t:�)) = C(v

0

(t:�))

for all t:� 2 Term

�

(X;V




). If G = L

1

; : : : ; L

k

, then T

�;C

(X;V ); v j= L

i

, for

i = 1; : : : ; k. If L

i

= p

i

(t

i1

:�

i1

; : : : ; t

in

i

:�

in

i

), we obtain

(v(C(t

i1

:�

i1

)); : : : ; v(C(t

in

i

:�

in

i

))) 2 Æ

p

i

:v([�

i1

℄);:::;v([�

in

i

℄)

and, by lemma 3.11,

(C(v

0

(t

i1

:�

i1

)); : : : ; C(v

0

(t

in

i

:�

in

i

))) 2 Æ

p

i

:[v

0

(�

i1

)℄;:::;[v

0

(�

in

i

)℄

By de�nition of T

�;C

(X;V ), there exists a (�; X; V )-atom L

0

i

with

(�; C; V ) ` L

0

i

and L

0

i

=

T

p

i

(v

0

(t

i1

:�

i1

); : : : ; v

0

(t

in

i

:�

in

i

))

On the other hand, (�; C; V




) ` L G is true, and therefore (�; C; V ) ` v

0

(L)  

v

0

(G) by the substitution rule. By the 
ut rule, we 
an infer (�; C; V ) ` v

0

(L)  .

If L = p(t

1

:�

1

; : : : ; t

n

:�

n

), then

(�; C; V ) ` p(v

0

(t

1

:�

1

); : : : ; v

0

(t

n

:�

n

))

By de�nition of T

�;C

(X;V ),

(C(v

0

(t

1

:�

1

)); : : : ; C(v

0

(t

n

:�

n

))) 2 Æ

p:[v

0

(�

1

)℄;:::;[v

0

(�

n

)℄
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Lemma 3.11 yields

(v(C(t

1

:�

1

)); : : : ; v(C(t

n

:�

n

))) 2 Æ

p:v([�

1

℄);:::;v([�

n

℄)

whi
h implies T

�;C

(X;V ); v j= L.

Now we are prepared to state the 
ompleteness of the typed Horn 
lause 
al
u-

lus:

Theorem 3.21 (Completeness of dedu
tion) Let (�; C) be a typed logi
 pro-

gram, V be a set of typed variables and L be a (�; X; V )-atom with (�; C; V ) j= L.

Then there exists a (�; X; V )-atom L

0

with L =

T

L

0

and (�; C; V ) ` L

0

.

Proof: Let (�; C; V ) j= L and L = p(t

1

:�

1

; : : : ; t

n

:�

n

). By the last lemma,

T

�;C

(X;V ) = (T

Tax

(X); S; Æ) is a model for (�; C). This implies T

�;C

(X;V ); V j=

L. In parti
ular we have T

�;C

(X;V ); id j= L (where id(�) = [�℄ for all � 2 X and

id(x:�) = x:[� ℄ for all x:� 2 V ) whi
h implies

(C(t

1

:�

1

); : : : ; C(t

n

:�

n

)) 2 Æ

p:[�

1

℄;:::;[�

n

℄

By de�nition of T

�;C

(X;V ), there exist t

0

i

:�

0

i

(i = 1; : : : ; n) with (�; C; V ) ` L

0

where L

0

= p(t

0

1

:�

0

1

; : : : ; t

0

n

:�

0

n

) and C(t

i

:�

i

) = C(t

0

i

:�

0

i

) for i = 1; : : : ; n. Thus L =

T

L

0

, as required.

The typed Horn 
lause 
al
ulus is only 
omplete up to T -equality sin
e T -equal

atoms are only 
ompared in the 
ut rule. For instan
e, if

p(0:zero)  

is the only 
lause for predi
ate p:� and zero =

T

nat(zero), then (�; C; ;) j=

p(0:nat(zero)) (by lemma 3.18), but (�; C; ;) ` p(0:nat(zero)) is not provable

in the typed Horn 
lause 
al
ulus.

3.4.4 Initial model

This se
tion shows the existen
e of an initial model for any typed logi
 program.

The 
arrier set of this initial model 
ontains all 
anoni
al terms without type

variables and typed variables. This result is a 
onsequen
e of the previous se
tion

on the typed Horn 
lause 
al
ulus.

Theorem 3.22 (Initial model) Let (�; C) be a typed logi
 program. Then

T

�;C

:= T

�;C

(;; ;) is initial in the 
lass of all models for (�; C).
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Proof: Let T

�;C

= (T

Tax

; S

I

; Æ

I

). By lemma 3.20, this is a model for (�; C). Let

I = (A;S; Æ) be another model for (�; C) and T

�

(;; ;) be the term interpretation

with ground terms. By lemma 3.8 (free term stru
ture), there exists a unique

�-homomorphism (�; h) from T

�

(;; ;) into I . In order to show that (�; h) is a

�-homomorphism from T

�;C

into I , we have to prove the following impli
ation

(t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄) 2 Æ

I;p:[�

1

℄;:::;[�

n

℄

=) (h(t

1

:[�

1

℄); : : : ; h(t

n

:[�

n

℄)) 2 Æ

p:�([�

1

℄);:::;�([�

n

℄)

be
ause the only di�eren
e between T

�

(;; ;) and T

�;C

is the denotation of predi
ate

symbols.

Let p:[�

1

℄; : : : ; [�

n

℄ 2 Pred

T

Tax

and (t

1

:[�

1

℄; : : : ; t

n

:[�

n

℄) 2 Æ

I;p:[�

1

℄;:::;[�

n

℄

. By

de�nition of T

�;C

, there exist t

0

i

:�

0

i

with C(t

0

i

:�

0

i

) = t

i

:[�

i

℄ (i = 1; : : : ; n) and

(�; C; ;) ` p(t

0

1

:�

0

1

; : : : ; t

0

n

:�

0

n

)

Theorem 3.19 implies (�; C; ;) j= p(t

0

1

:�

0

1

; : : : ; t

0

n

:�

0

n

).

=) I; ; j= p(t

0

1

:�

0

1

; : : : ; t

0

n

:�

0

n

)

=) I; (�; h) j= p(t

0

1

:�

0

1

; : : : ; t

0

n

:�

0

n

)

=) (h(C(t

0

1

:�

0

1

)); : : : ; h(C(t

0

n

:�

0

n

))) 2 Æ

p:�([�

0

1

℄);:::;�([�

0

n

℄)

=) (h(t

1

:[�

1

℄); : : : ; h(t

n

:[�

n

℄)) 2 Æ

p:�([�

1

℄);:::;�([�

n

℄)

Therefore (�; h) is a �-homomorphism from T

�;C

into I whi
h implies the initiality

of T

�;C

.

3.5 Uni�
ation

In logi
 programming we are interested in a systemati
 method for proving validity

of goals. The typed Horn 
lause 
al
ulus is very ineÆ
ient for this purpose. In

untyped Horn 
lause logi
 the resolution prin
iple [Rob65℄ is the basi
 proof method

where a most general uni�er of two atoms must be 
omputed in ea
h resolution step.

We need a similar operation for the resolution method in our typed framework.

As in order-sorted logi
, the uni�
ation problem is not unitary in our general

framework and therefore 
omplete sets of uni�ers must be 
onsidered. This se
tion

de�nes the uni�
ation w.r.t. a type spe
i�
ation T and presents a non-deterministi


algorithm for 
omputing 
omplete sets of uni�ers.

Example 3.23 Consider example 3.2. The �rst 
lause for plus

plus(0:nat(zero),N:nat(�),N:nat(�))


annot be applied to prove the goal

plus(N1:nat(posint),N2:nat(�),N3:nat(
))
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sin
e this would 
ause the binding of variable N1 to 0 whi
h yields the ill-typed

term 0:nat(posint). In order to avoid su
h bindings, the uni�
ation pro
edure has

to take into a

ount that N1 and 0 have the non-uni�able types nat(posint) and

nat(zero). On the other hand, if the 
lause

p(N:nat(zero))  � � �

is applied to prove the goal

p(N1:nat(�))

then the variable N1 is 
onstrained to type nat(zero) whi
h may avoid some un-

ne
essary sear
h and ba
ktra
king steps in the subsequent proof. Therefore the

uni�
ation pro
edure has to 
onsider the types of the terms. An untyped uni�
a-

tion 
annot be applied in our framework.

We have mentioned in Se
tion 3.4 that our proof pro
edures should manipu-

late well-typed terms rather than 
anoni
al terms. Therefore we have introdu
ed

typed substitutions whi
h are mappings on type expressions and well-typed terms

and dire
tly related to �-homomorphisms between 
anoni
al term interpretations.

Hen
e we want to de�ne a uni�er w.r.t. a type spe
i�
ation T as a distin
t typed

substitution. Sin
e the 
omposition of two typed substitutions is again a typed

substitution, we 
an de�ne the following notions (we assume that V; V

1

; V

2

are sets

of typed variables):

� Let �; �

0

2 Sub

�

(X;V; V

1

) be typed substitutions. We write � =

T

�

0

i�

�(�) =

T

�

0

(�) for all � 2 X and �(x:�) =

T

�

0

(x:�) for all x:� 2 V .

� Let � 2 Sub

�

(X;V; V

1

) and �

0

2 Sub

�

(X;V; V

2

) be typed substitutions. � is

more general than �

0

w.r.t. T or �

0

is a T -instan
e of �, denoted � �

T

�

0

,

i� there exists � 2 Sub

�

(X;V

1

; V

2

) with � Æ � =

T

�

0

.

� Let t and t

0

be (�; X; V )-terms. t and t

0

are T -uni�able if there exists a

typed substitution � 2 Sub

�

(X;V; V

0

) with �(t) =

T

�(t

0

) for a set of typed

variables V

0

. In this 
ase � is 
alled a T -uni�er for t and t

0

. By SU

T

(t; t

0

)

we denote the set of all T -uni�ers for t and t

0

.

� Let t and t

0

be (�; X; V )-terms. We 
all a set of typed substitutions

CSU

T

(t; t

0

) a 
omplete set of T -uni�ers for t and t

0

if the following


onditions hold:

{ CSU

T

(t; t

0

) � SU

T

(t; t

0

)

{ For all �

0

2 SU

T

(t; t

0

) there exists a typed substitution � 2 CSU

T

(t; t

0

)

with � �

T

�

0

.
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(T) (�; ht

1

:�

1

= t

2

:�

2

; E

r

i)

unif

=) (� Æ �; h�(t

1

:�

1

) = �(t

2

:�

2

); �(E

r

)i)

if � 2 CSU

T

(�

1

; �

2

) and not �

1

=

T

�

2

(E1) (�; hx:� = t:�

0

; E

r

i)

unif

=) (�

0

Æ �; �

0

(E

r

))

if � =

T

�

0

, x 2 V ar, x does not o

ur in t:�

0

and �

0

= fx:�=t:�g

(E2) (�; ht:�

0

= x:�; E

r

i)

unif

=) (�

0

Æ �; �

0

(E

r

))

if � =

T

�

0

, x 2 V ar, x does not o

ur in t:�

0

and �

0

= fx:�=t:�g

(D) (�; hf(t

1

; : : : ; t

n

):� = f(t

0

1

; : : : ; t

0

n

):�

0

; E

r

i)

unif

=) (�; ht

1

= t

0

1

; : : : ; t

n

=

t

0

n

; E

r

i)

if � =

T

�

0

(n � 0)

Figure 3.2: Rules for T -uni�
ation of well-typed terms. In the �rst rule (T) the

type substitution � is extended to a typed substitution by �(x:�) := x:�(�) for

all x:� 2 V

0

if � 2 Sub

�

(X;V; V

0

).

T -uni�ers and 
omplete sets of T -uni�ers for type expressions are analogously

de�ned as parti
ular (sets of) type substitutions.

Obviously, the set of all T -uni�ers is also a 
omplete set of T -uni�ers, but

usually we are interested in algorithms whi
h enumerate a 
omplete set of T -uni�ers

with some minimality 
ondition. We do not dis
uss this in detail here. We assume

a given algorithm that enumerates a 
omplete set of T -uni�ers for two arbitrary

type expressions and 
onstru
t an algorithm whi
h enumerates a 
omplete set of

T -uni�ers for two arbitrary well-typed terms. We formulate the algorithm as a

non-deterministi
 pro
edure for 
omputing a T -uni�er for a given list of pairs of

well-typed terms.

For that purpose we de�ne a binary relation

unif

=) on pairs of the form (�;E)

where � is a typed substitution and E is a list of appropriate equations, i.e.,

if � 2 Sub

�

(X;V; V

0

) then E is a list of pairs of (�; X; V

0

)-terms. We write

ht = t

0

; E

r

i for an equation list where the pair (t; t

0

) is the �rst equation and E

r

is the list of the remaining equations. The relation

unif

=) is de�ned by the rules

in �gure 3.2. In the �rst rule (T) the result types of the left-hand side and the

right-hand side of the �rst equation are uni�ed by a T -uni�er, i.e., the result types

are T -equal after an appli
ation of this rule. T -equality of these result types is

a pre
ondition for the appli
ability of the other rules. The rules (E1) and (E2)

eliminate an equation 
ontaining a variable in one side. The typed substitution

�

0

in these elimination rules is well-de�ned sin
e t:� is well-typed by � =

T

�

0

and
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lemma 3.7. The rule (D) de
omposes an equation if the left-hand side and the

right-hand side are 
ompound terms with the same main fun
tor and arity.

Let

unif

=)

+

be the transitive 
losure of

unif

=). The result of unifying the (�; X; V )-

terms t and t

0

is the set

Unif(t; t

0

) := f � j (id

X;V

; ht = t

0

i)

unif

=)

+

(�; hi) g

where hi denotes the empty list of equations.

Note that

unif

=)

+

is an extension of Robinson's uni�
ation algorithm [Rob65℄

[BC83℄: If one term is a variable whi
h does not o

ur in the other term, then this

variable is bound to the other term. If two 
omposite terms have to be uni�ed, then

all 
orresponding 
omponents of the terms are uni�ed. The only (but essential)

di�eren
e is that the types of two terms are T -uni�ed before the terms will be

uni�ed.

We will show that Unif(t; t

0

) is a 
omplete set of T -uni�ers for t and t

0

. First

we show that there are no in�nite 
hains in the 
omputation of Unif(t; t

0

):

Lemma 3.24 Let t and t

0

be (�; X; V )-terms. Then any sequen
e

(id

X;V

; ht = t

0

i)

unif

=) (�

1

; E

1

)

unif

=) (�

2

; E

2

)

unif

=) � � �

terminates.

Proof: We de�ne the 
omplexity kt:�k of a term t:� by

� kx:�

0

k := 1 for all variables x:� 2 V

� kf(t

1

:�

1

; : : : ; t

n

:�

n

):�k := kt

1

:�

1

k + � � � + kt

n

:�

n

k + 1 for all terms

f(t

1

:�

1

; : : : ; t

n

:�

n

):� 2 Term

�

(X;V ) (n � 0)

and the type di�eren
e tdi�(t:�; t

0

:�

0

) of two terms by

tdi�(t:�; t

0

:�

0

) :=

n

0 if � =

T

�

0

1 otherwise

The 
omplexity of a list of equations E = ht

1

= t

0

1

; : : : ; t

k

= t

0

k

i is de�ned to be the

triple

kEk :=

 

�

�

�

�

�

k

[

i=1

uvar(t

i

) [ uvar(t

0

i

)

�

�

�

�

�

;

k

X

i=1

kt

i

k+ kt

0

i

k;

k

X

i=1

tdi�(t

i

; t

0

i

)

!

where j � � � j denotes the 
ardinality of a set. The lexi
ographi
 ordering on tuples

of natural numbers is a noetherian ordering, i.e., there is no in�nite sequen
e
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he

1

; e

2

; e

3

; : : :i with e

i

> e

i+1

. By de�nition of the relation

unif

=) it is 
lear that

kEk > kE

0

k if (�;E)

unif

=) (�

0

; E

0

) sin
e the �rst rule de
rements only the third


omponent of the 
omplexity, the rules (E1) and (E2) eliminate a variable whi
h

redu
es the �rst 
omponent of the 
omplexity, and the last rule de
reases the se
ond


omponent of the 
omplexity. Therefore any

unif

=)-sequen
e terminates.

In the proofs of the following lemmas we use the notion of T -uni�ers on lists of

equations: If ht

1

= t

0

1

; : : : ; t

k

= t

0

k

i is a list of equations, then a T -uni�er for this

list is a typed substitution that T -uni�es ea
h pair t

i

= t

0

i

(i = 1; : : : ; k). The next

lemma shows the soundness of the T -uni�
ation pro
edure:

Lemma 3.25 Let t and t

0

be (�; X; V )-terms and � 2 Unif(t; t

0

). Then � 2

SU

T

(t; t

0

), i.e., � is a T -uni�er for t and t

0

.

Proof: Sin
e � 2 Unif(t; t

0

), there is a sequen
e

(�

0

; E

0

)

unif

=) (�

1

; E

1

)

unif

=) � � �

unif

=) (�

k

; hi)

where �

0

= id

X;V

and E

0

= ht = t

0

i. We show by indu
tion on the elements of the

sequen
e: For ea
h 0 � i � k there exists a typed substitution �

i

with �

k

= �

i

Æ�

i

and �

i

2 SU

T

(E

i

).

For i = k we 
hoose �

k

= id

X;V

0

(where �

k

2 Sub

�

(X;V; V

0

)). For the indu
-

tion step we assume the existen
e of a typed substitution �

i

with �

k

= �

i

Æ �

i

and

�

i

2 SU

T

(E

i

). Sin
e (�

i�1

; E

i�1

)

unif

=) (�

i

; E

i

), there are four possible 
ases:

1. Rule (T) has been applied in this step. Then E

i�1

= ht

1

:�

1

= t

2

:�

2

; E

r

i and

� 2 CSU

T

(�

1

; �

2

) with �

i

= � Æ �

i�1

and E

i

= h�(t

1

:�

1

) = �(t

2

:�

2

); �(E

r

)i.

Hen
e �

k

= �

i

Æ�

i

= �

i

Æ�Æ�

i�1

= �

i�1

Æ�

i�1

with �

i�1

:= �

i

Æ�. Moreover,

if l = r o

urs in E

i�1

, then �(l) = �(r) o

urs in E

i

and �

i

is a T -uni�er

for �(l) and �(r) whi
h implies �

i�1

2 SU

T

(E

i�1

).

2. Rule (E1) has been applied in this step. Then E

i�1

= hx:� = t:�

0

; E

r

i with

� =

T

�

0

, x 2 V ar, x 62 uvar(t:�

0

), �

i

= �

0

Æ �

i�1

and E

i

= �

0

(E

r

) where

�

0

= fx:�=t:�g. Hen
e �

k

= �

i

Æ �

i

= �

i

Æ �

0

Æ �

i�1

= �

i�1

Æ �

i�1

with

�

i�1

:= �

i

Æ �

0

. Moreover,

�

i�1

(x:�) = �

i

Æ �

0

(x:�)

= �

i

(t:�)

=

T

�

i

(t:�

0

) (sin
e � =

T

�

0

)

= �

i

Æ �

0

(t:�

0

) (sin
e x 62 uvar(t:�

0

))

= �

i�1

(t:�

0

)
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If E

r


ontains an equation l = r, then �

0

(l) = �

0

(r) o

urs in E

i

and �

i

is a T -uni�er for �

0

(l) and �

0

(r), i.e., �

i�1

is a T -uni�er for l and r. Thus

�

i�1

2 SU

T

(E

i�1

).

3. The appli
ation of rule (E2) is symmetri
 to the previous 
ase.

4. Rule (D) has been applied in this step. Then E

i�1

= hf(t

1

; : : : ; t

n

):� =

f(t

0

1

; : : : ; t

0

n

):�

0

; E

r

i with � =

T

�

0

, �

i

= �

i�1

and E

i

= ht

1

= t

0

1

; : : : ; t

n

=

t

0

n

; E

r

i. Hen
e �

k

= �

i

Æ �

i

= �

i

Æ �

i�1

. Moreover,

�

i

(f(t

1

; : : : ; t

n

):�)

= f(�

i

(t

1

); : : : ; �

i

(t

n

)):�

i

(�)

=

T

f(�

i

(t

1

); : : : ; �

i

(t

n

)):�

i

(�

0

) (sin
e � =

T

�

0

)

=

T

f(�

i

(t

0

1

); : : : ; �

i

(t

0

n

)):�

i

(�

0

) (�

i

2 SU

T

(E

i

) by ind. hypothesis)

= �

i

(f(t

0

1

; : : : ; t

0

n

):�

0

)

If E

r


ontains an equation l = r, then l = r o

urs also in E

i

, i.e., �

i

is a

T -uni�er for l and r. Thus �

i

2 SU

T

(E

i�1

).

We obtain for i = 0: �

k

= �

0

Æ �

0

= �

0

and �

k

2 SU

T

(t; t

0

).

The next lemma shows the 
ompleteness of the T -uni�
ation pro
edure:

Lemma 3.26 Let t and t

0

be (�; X; V )-terms and � 2 SU

T

(t; t

0

). Then there exists

a typed substitution � 2 Unif(t; t

0

) su
h that � =

T

� Æ � for a typed substitution

�.

Proof: First we prove the following proposition:

Let � 2 Sub

�

(X;V; V

0

) be a typed substitution, E be a non-empty list

of (�; X; V

0

)-equations, � 2 SU

T

(E). Then there exists a pair (�

0

; E

0

)

with (�;E)

unif

=) (�

0

; E

0

) and �Æ� =

T

�

0

Æ�

0

for some typed substitution

�

0

2 SU

T

(E

0

).

To prove this proposition we assume a T -uni�er � for the non-empty list of equa-

tions E. We distinguish the following 
ases:

1. E = ht

1

:�

1

= t

2

:�

2

; E

r

i and not �

1

=

T

�

2

. Sin
e � 2 SU

T

(t

1

:�

1

; t

2

:�

2

), the

restri
tion of � on T

T

(X) is also a T -uni�er for �

1

and �

2

. Hen
e there exists

a type substitution � 2 CSU

T

(�

1

; �

2

) with �j

T

T

(X)

=

T

 Æ � for some type

substitution  . It is straightforward to extend � and  to typed substitutions

su
h that � =

T

 Æ�. Thus there is the following uni�
ation step by rule (T):

(�;E)

unif

=) (� Æ �; �(E))
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and � Æ� =

T

 Æ� Æ�. To see that  2 SU

T

(�(E)) assume an equation l = r

from E. Then

 (�(l)) =

T

�(l) =

T

�(r) =

T

 (�(l))

sin
e � is a T -uni�er for E.

2. E = ht

1

:�

1

= t

2

:�

2

; E

r

i and �

1

=

T

�

2

. Then there are the following 
ases:

(a) t

1

2 V ar: Sin
e � is a T -uni�er for t

1

:�

1

and t

2

:�

2

, t

1

62 uvar(t

2

:�

2

) and

thus there is the following uni�
ation step:

(�;E)

unif

=) (�

0

Æ �; �

0

(E

r

))

where �

0

is the typed substitution ft

1

:�

1

=t

2

:�

1

g. It is easy to show that

�Æ�

0

=

T

� and therefore �Æ� =

T

�Æ�

0

Æ�. To see that � 2 SU

T

(�

0

(E

r

))

assume an equation l = r from E

r

. Then

�(�

0

(l)) =

T

�(l) =

T

�(r) =

T

�(�

0

(l))

sin
e � is a T -uni�er for E.

(b) t

2

2 V ar: This is symmetri
 to the previous 
ase.

(
) t

1

:�

1

= f(r

1

; : : : ; r

n

):�

1

and t

2

:�

2

is not a typed variable: Sin
e � is a

T -uni�er for t

1

:�

1

and t

2

:�

2

, it must be t

2

:�

2

= f(r

0

1

; : : : ; r

0

n

):�

2

. Then

there is the following uni�
ation step:

(�;E)

unif

=) (�; hr

1

= r

0

1

; : : : ; r

n

= r

0

n

; E

r

i)

� is a T -uni�er for all equations r

i

= r

0

i

and for E

r

sin
e � is a T -uni�er

for E.

Hen
e the proposition is true. Let � be a T -uni�er for the (�; X; V )-terms t and

t

0

. By the above proposition, there is a sequen
e

(id

X;V

; ht = t

0

i)

unif

=) (�

1

; E

1

)

unif

=) (�

2

; E

2

)

unif

=) � � �

with � =

T

� Æ id

X;V

=

T

�

1

Æ �

1

=

T

�

2

Æ �

2

=

T

� � � for some typed substitutions

�

1

; �

2

; : : : Sin
e all

unif

=)-sequen
es are �nite (lemma 3.24), there must be a last

element (�

k

; hi) in the sequen
e. Thus �

k

2 Unif(t; t

0

) and � =

T

�

k

Æ �

k

.

Theorem 3.27 (T -uni�
ation) Let t and t

0

be (�; X; V )-terms. Then

Unif(t; t

0

) is a 
omplete set of T -uni�ers.
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Proof: Unif(t; t

0

) � SU

T

(t; t

0

) follows from lemma 3.25 and 
ompleteness follows

from lemma 3.26.

Example 3.28 Consider the polymorphi
 signature of example 3.2. The

terms 0:zero and N:nat(�) should be uni�ed by our uni�
ation pro
edure.

First, the types of terms zero and nat(�) are T -uni�ed and the result is

the T -uni�er f�=zerog. Then N is bound to 0 and the result is the T -

uni�er f�=zero; N:nat(�)=0:nat(zero)g. For the uni�
ation of the terms

s(N1:nat(posint)):posint and s(N2:nat(�)):nat(posint) the following steps are per-

formed:

� The types posint and nat(posint) are T -equal and need not be uni�ed.

� By the de
omposition rule, the terms N1:nat(posint) and N2:nat(�) are uni-

�ed in the next uni�
ation step.

� The types nat(posint) and nat(�) are T -uni�ed. The result is the type

substitution f�=posintg.

� N2 is bound to N1 (or vi
e versa). Thus the 
omplete result of the uni�
ation

is the typed substitution

f�=posint; N2:nat(�)=N1:nat(posint)g

Example 3.29 Consider the following type spe
i�
ation T :

TYPEOPS s

0

: ! type

s

1

: type ! type

s

2

: type ! type

TYPEAXIOMS s

1

(s

0

) = s

0

s

2

(s

0

) = s

0

Thus s

0

is a 
ommon subtype of s

1

and s

2

. The uni�
ation of the typed terms

X:s

1

(�) and Y:s

2

(�) requires a T -uni�er for the type expressions s

1

(�) and s

2

(�)

whi
h 
an be 
omputed by the narrowing pro
edure (see remarks at the end of

Se
tion 3.6). Hen
e the type substitution f�=s

0

; �=s

0

g is a T -uni�er for the type

expressions s

1

(�) and s

2

(�) and the typed substitution

f�=s

0

; �=s

0

; X:s

1

(�)=Y:s

1

(s

0

)g

is a T -uni�er for the terms X:s

1

(�) and Y:s

2

(�). Therefore the variables X and Y

are 
onstrained to the 
ommon subsort s

0

by the uni�
ation pro
edure (note the

analogy to order-sorted uni�
ation [SNGM89℄).
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In the next se
tion we will see that resolution is a sound and 
omplete proof pro-


edure for typed logi
 programs if the uni�
ation pro
edure used in the resolution

steps 
omputes a 
omplete set of T -uni�ers. Therefore the uni�
ation pro
edure

presented in this se
tion gives us some information about the rôle of di�erent type

systems for logi
 programming. We have seen that the 
lassi
al uni�
ation algo-

rithm of Robinson 
an be adapted to the typed framework if the types of terms

are uni�ed before unifying the terms. Hen
e our uni�
ation pro
edure shows that

the de
idability of the typed uni�
ation problem is dependent on the de
idability

of the uni�
ation problem in the type theory: If it is de
idable whether two types

are uni�able w.r.t. the type spe
i�
ation T , then the uni�
ation problem for typed

terms w.r.t. T is also de
idable be
ause all

unif

=)-sequen
es terminate (lemma 3.24)

and uni�able terms 
an always be derived to an empty equation list (lemma 3.26).

Moreover, di�erent type stru
tures in
uen
e the 
omplexity of the uni�
ation pro-


edure. For the general 
ase a 
omplex pro
edure for the uni�
ation of type terms

w.r.t. the equational type spe
i�
ation is ne
essary. But for simpler type stru
tures

a less 
omplex uni�
ation pro
edure may be suÆ
ient:

� If the type stru
ture is many-sorted without overloading, i.e., there are only

basi
 types and no equations in the type stru
ture and there is exa
tly one

type de
laration for ea
h fun
tion and predi
ate symbol, then all types 
an

be omitted while unifying two terms or atoms sin
e two 
omposite terms or

atoms with the same fun
tor or predi
ate, respe
tively, have always the same

type.

� If the type stru
ture is polymorphi
 without any equations between types,

then the T -uni�er for two types is the uni�er of the type expressions in

the free type term algebra. Hen
e there exists a most general uni�er for

two uni�able type terms whi
h 
an be 
omputed by Robinson's uni�
ation

algorithm. This implies the existen
e of a most general uni�er for two T -

uni�able typed terms and Robinson's uni�
ation algorithm 
an be used as a

T -uni�
ation pro
edure on typed terms if type expressions are represented

as �rst-order terms (
f. [Han89a℄). Moreover, if the polymorphi
 signature

and the typed program satisfy some additional restri
tions, it has been shown

that su
h programs are exe
utable without any type information at run time

[Han89b℄. The type system of My
roft and O'Keefe [MO84℄ is a spe
ial 
ase

of a polymorphi
 type stru
ture.

� If the type stru
ture is order-sorted, i.e., the type spe
i�
ation 
ontains equa-

tions between types, then there does not exist a most general T -uni�er for

any two type expressions. Hen
e the T -uni�
ation pro
edure on typed terms

must 
ompute 
omplete sets of T -uni�ers. Nevertheless, for pra
ti
al ap-

pli
ations it is desirable that the 
omplete sets of T -uni�ers are �nite whi
h

depends on the type spe
i�
ation. Criteria for �nitary or unitary order-sorted



3.6. RESOLUTION 39

uni�
ation 
an be found in [Wal89℄. An overview of uni�
ation in equational

theories 
an be found in [SS82℄.

� For polymorphi
ally order-sorted type stru
tures a full uni�
ation pro
edure

for the equational type theory is ne
essary. Nevertheless, Smolka [Smo89℄ has

shown that there are also restri
ted 
lasses of polymorphi
ally order-sorted

typed logi
 programs where more eÆ
ient uni�
ation pro
edures exist.

From a 
on
eptual point of view our uni�
ation pro
edure shows up the in
uen
e

of types in logi
 programming. But for an eÆ
ient operational semanti
s it is

ne
essary to omit type information at run time whenever it is possible. In [Han89a℄

and [Han89b℄ it is shown how this 
ould be done in the polymorphi
 
ase. Similar

results for the general 
ase are a topi
 for further resear
h.

3.6 Resolution

The resolution prin
iple in untyped Horn logi
 (see [Rob65℄) 
an be used as a proof

pro
edure for typed Horn 
lause programs if the untyped uni�
ation is repla
ed by

the T -uni�
ation as de�ned in the last se
tion. We 
all a �-
lause a variant of

another �-
lause if it is obtained by repla
ing type variables and typed variables by

other type variables and typed variables, respe
tively, su
h that di�erent variables

are repla
ed by new di�erent variables. Let (�; C) be a typed logi
 program.

a) Let G be a (�; X; V )-goal and the (�; X; V )-
lause L

0

 G

0

be a variant of a


lause from C with tvar(G) \ tvar(L

0

 G

0

) = ; and uvar(G) \ uvar(L

0

 

G

0

) = ;. If there exists a T -uni�er � 2 Sub

�

(X;V; V

0

) for an atom L 2 G

and L

0

, then �(G � fLg) [ �(G

0

) is said to be derived by T -resolution

from G relative to � and L

0

 G

0

. Notation:

(�; C; V ) G `

R

� �(G � fLg) [ �(G

0

)

b) Let G

0

be a (�; X; V

0

)-goal. A (�; C; V

0

)-resolution or T -resolution of G

0

is a sequen
e of the form

(�; C; V

0

) G

0

`

R

�

1

G

1

`

R

�

2

G

2

`

R

� � � `

R

�

n

G

n

where (�; C; V

i

) G

i

`

R

�

i+1

G

i+1

with �

i+1

2 Sub

�

(X;V

i

; V

i+1

) for i =

0; 1; 2; : : : ; n� 1. The (�; C; V

0

)-resolution is 
alled su

essful if G

n

= ;. In

this 
ase n is 
alled the length of the (�; C; V

0

)-resolution and � := �

n

Æ� � �Æ�

1

is 
alled a 
omputed answer. Notation:

(�; C; V

0

) `

R

� G

0
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If we repla
e the requirement for a T -uni�er for L and L

0

by the 
ondition \� 2

CSU

T

(L;L

0

)", then the resolution is 
alled a CSU

T

-resolution (resolution with


omplete sets of T -uni�ers) and the symbol `

R

is repla
ed by `

RC

. If we drop the

requirement for disjoint sets of type variables and typed variables in the goal and

the applied 
lause, we 
all the resolution unrestri
ted and repla
e the symbol `

R

by `

UR

.

The soundness of T -resolution 
an be dire
tly proved:

Theorem 3.30 (Soundness of T -resolution) Let (�; C) be a typed logi
 pro-

gram andG be a (�; X; V )-goal. If there is a su

essful T -resolution (�; C; V )`

R

� G

with 
omputed answer � 2 Sub

�

(X;V; V

0

), then (�; C; V

0

) j= �(G).

Proof: By indu
tion on the length n of a su

essful (�; C; V )-resolution:

n = 1: Then there is a (�; C; V )-resolution

(�; C; V ) G `

R

� ;

where � 2 Sub

�

(X;V; V

0

), i.e., G is a (�; C; V )-atom. By de�nition of T -resolution,

there exists a variant L

0

 of a 
lause from C with �(L

0

) =

T

�(G). Hen
e

there exist V

00

, a (�; X; V

00

)-
lause L

00

 from C and �

00

2 Sub

�

(X;V

00

; V ) with

�

00

(L

00

) = L

0

. By lemma 3.13, (�; C; V

0

) j= �(L

0

) sin
e �(L

0

) = � Æ �

00

(L

00

) and

(�; C; V

00

) j= L

0

. Hen
e (�; C; V

0

) j= �(G) by lemma 3.18.

n > 1: Then there is a (�; C; V )-resolution

(�; C; V ) G `

R

�

1

G

1

`

R

�

2

G

2

`

R

� � � `

R

�

n

;

with � = �

n

Æ � � � Æ �

1

2 Sub

�

(X;V; V

0

). By de�nition of T -resolution, there exists

a variant L

0

 G

0

of a 
lause from C with �

1

(L

0

) =

T

�

1

(L

0

) where G = G

0

[fL

0

g.

Let �

1

2 Sub(X;V; V

1

). Then

(�; C; V

1

) �

1

(G

0

) [ �

1

(G

0

) `

R

�

2

G

2

`

R

� � � `

R

�

n

;

is a (�; C; V

1

)-resolution of length n � 1. By indu
tion hypothesis, (�; C; V

0

) j=

�(G

0

) [ �(G

0

). Sin
e L

0

 G

0

is a variant of a 
lause from C, there exist V

00

, a

(�; X; V

00

)-
lause L

00

 G

00

2 C and �

00

2 Sub

�

(X;V

00

; V ) with �

00

(L

00

 G

00

) =

L

0

 G

0

. By lemma 3.13, (�; C; V

0

) j= �(L

0

 G

0

). From the fa
t (�; C; V

0

) j=

�(G

0

) we infer (�; C; V

0

) j= �(L

0

). Lemma 3.17 and lemma 3.18 yield (�; C; V

0

) j=

�(L

0

). Hen
e we have (�; C; V

0

) j= �(G).

The 
ompleteness of resolution in untyped Horn logi
 
an be proved by a �xpoint

theorem using a transformation on Herbrand interpretations [vEK76℄ [Llo87℄. In

[Han91℄ this proof method is adapted to polymorphi
 logi
 programs. In this


hapter we will show the 
ompleteness of T -resolution for typed logi
 programs
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by simulating ea
h dedu
tion in the typed Horn 
lause 
al
ulus by T -resolution.

[Pad88℄ has presented su
h a proof for many-sorted Horn 
lause logi
 with equality,

but he has required that all types are interpreted as non-empty sets. This simpli�es

the proof but is not reasonable in our 
ontext.

In the rest of this se
tion we assume that (�; C) is a typed logi
 program.

A few te
hni
al lemmas will help to stru
ture the 
ompleteness proof. The �rst

lemma shows that the substitution rule is not ne
essary if

b

C (the set of instantiated


lauses) is used in a dedu
tion.

Lemma 3.31 Let (�; C; V ) ` L  G. Then for any typed substitution � 2

Sub

�

(X;V; V

0

) there exists a dedu
tion for (�;

b

C; V

0

) ` �(L  G) where only

axioms and 
ut rules are applied.

Proof: We prove the lemma by indu
tion on the number n of 
ut rule appli
ations

in a shortest dedu
tion of (�; C; V ) ` L  G. The 
ase n = 0 is trivial sin
e

�

0

(L

0

) �

0

(G

0

) 2

b

C for all L

0

 G

0

2 C and all appropriate typed substitutions

�

0

. Otherwise there is a last appli
ation of the 
ut rule in the dedu
tion, say

(�; C; V

i

) ` L

i

 G

i

[ fL

0

i

g and (�; C; V

i

) ` L

j

 G

j

with L

0

i

=

T

L

j

o

ur in the dedu
tion before the last appli
ation of the 
ut rule. Let �

1

2

Sub

�

(X;V

i

; V

0

i

). We have to show that (�;

b

C; V

0

i

) ` �

1

(L

i

)  �

1

(G

i

[ G

j

)


an be dedu
ed without an appli
ation of the substitution rule. The number of 
ut

rule appli
ations in shortest derivations of

(�; C; V

i

) ` L

i

 G

i

[ fL

0

i

g and (�; C; V

i

) ` L

j

 G

j

is less than n. By indu
tion hypothesis,

(�;

b

C; V

0

i

) ` �

1

(L

i

) �

1

(G

i

[ fL

0

i

g) and (�;

b

C; V

0

i

) ` �

1

(L

j

) �

1

(G

j

)


an be dedu
ed without an appli
ation of the substitution rule. Lemma 3.17 yields

�

1

(L

0

i

) =

T

�

1

(L

j

). By an appli
ation of the 
ut rule, we obtain

(�;

b

C; V

0

i

) ` �

1

(L

i

) �

1

(G

i

[G

j

)

This proves the lemma.

Lemma 3.32 If (�; C; V ) ` L G where only axioms and 
ut rules are applied,

then (�; C

0

; V )`

UR

id

X;V

L

0

for all (�; X; V )-atoms L

0

=

T

L where C

0

= C [

fP  j P 2 Gg, and ea
h substitution in the T -resolution is equal to id

X;V

.
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Proof: The lemma is proved by indu
tion on the length of the dedu
tion. Let

d

1

; : : : ; d

n

be a dedu
tion for (�; C; V ) ` L  G where only axioms and 
ut rules

are applied and L

0

be a (�; X; V )-atom with L

0

=

T

L.

If L  G 2 C, then (�; C

0

; V ) L

0

`

UR

id

X;V

G is a T -resolution step sin
e

id

X;V

(L

0

) =

T

id

X;V

(L). If G 
onsists of k �-atoms, then we a
hieve the empty

goal with k further unrestri
ted T -resolution steps with substitutions id

X;V

.

If L  G 62 C, then the 
lause must be derived by an appli
ation of the 
ut

rule, i.e., there are

d

i

= (�; C; V ) ` L G

0

[ fL

0

g

d

j

= (�; C; V ) ` L

1

 G

1

with L

0

=

T

L

1

, G = G

0

[G

1

and i; j < n. By indu
tion hypothesis,

(�; C

0

[ fL

0

 g; V ) `

UR

id

X;V

L

0

for all L

0

=

T

L (1)

and

(�; C

0

; V ) `

UR

id

X;V

L

0

1

for all L

0

1

=

T

L

1

(2)

sin
e G = G

0

[ G

1

. If the 
lause L

0

 is used in resolution (1), then, by (2),

it is possible to repla
e the resolution step by a sequen
e of resolution steps that

derives L

0

to the empty goal using 
lauses from C

0

. Thus (�; C

0

; V )`

UR

id

X;V

L

0

for all L

0

=

T

L and ea
h substitution in this T -resolution is equal to id

X;V

.

Now we 
an prove the 
ompleteness of T -resolution:

Theorem 3.33 (Completeness of T -resolution for atoms) Let V; V

0

be �-

nite sets of typed variables and A be a (�; X; V )-atom. If � 2 Sub

�

(X;V; V

0

)

is a typed substitution with (�; C; V

0

) j= �(A), then there exists a set of typed

variables V

0

and a typed substitution �

0

2 Sub

�

(X;V

0

; V

0

) with (�; C; V

0

) `

R

�

0

A

and �

0

(A) = �(A).

Proof: W.l.o.g. we assume that � a�e
ts only a �nite number of type variables

sin
e V is �nite, i.e., the type domain tdom(�) is �nite. Let (�; C; V

0

) j= �(A). By

theorem 3.21, there exists a (�; X; V )-atom A

0

with A

0

=

T

�(A) and (�; C; V

0

) `

A

0

. By lemma 3.31 and lemma 3.32, there exists a su

essful unrestri
ted T -

resolution of the form

(�;

b

C; V

0

) �(A) `

UR

id

X;V

0

G

1

`

UR

id

X;V

0

� � � `

UR

id

X;V

0

;

In the �rst resolution step there exist L

0

 R

0

2 C, V

0

0

and �

0

2 Sub

�

(X;V

0

0

; V

0

)

with �

0

(L

0

) =

T

�(A) and �

0

(R

0

) = G

1

.

W.l.o.g. we assume (tdom(�) [ tvar(A)) \ tvar(L

0

 R

0

) = ; and uvar(V ) \

uvar(V

0

0

) = ; (otherwise we 
hoose an appropriate variant of L

0

 R

0

and an
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appropriate typed substitution �

0

). We de�ne V

0

:= V [ var(L

0

 R

0

) and


ombine � and �

0

into a typed substitution �

1

2 Sub

�

(X;V

0

; V

0

) with

�

1

(�) =

�

�(�) if � 2 tdom(�) [ tvar(A)

�

0

(�) otherwise

and

�

1

(x:�) =

�

�(x:�) if x:� 2 V

�

0

(x:�) if x:� 2 var(L

0

 R

0

)

Then �

1

(A) = �(A) =

T

�

0

(L

0

) = �

1

(L

0

) and �

1

(R

0

) = �

0

(R

0

) = G

1

. Therefore

(�; C; V

0

) A `

R

�

1

G

1

is a T -resolution step. If G

1

= ;, then the proof is �nished, otherwise there is a

se
ond resolution step

(�;

b

C; V

0

) G

1

`

UR

id

X;V

0

G

2

Let L

0

1

 R

0

1

2

b

C be the 
lause used in this resolution step, i.e., there exist L

1

 

R

1

2 C, V

0

1

and �

0

1

2 Sub

�

(X;V

0

1

; V

0

) with �

0

1

(L

1

 R

1

) = L

0

1

 R

0

1

. Similarly

to the �rst resolution step, we 
ombine �

0

1

and id

X;V

0

into a typed substitution

�

2

2 Sub

�

(X;V

1

; V

0

), where V

1

:= V

0

[ var(L

1

 R

1

), su
h that

(�; C; V

1

) G

1

`

R

�

2

G

2

is a T -resolution step. Sin
e V

0

� V

1

, we 
an extend �

1

to a typed substitution

�

1

2 Sub

�

(X;V

0

; V

1

). Hen
e we obtain the T -resolution

(�; C; V

0

) A `

R

�

1

G

1

`

R

�

2

G

2

with �

2

(�

1

(A)) = �

2

(�(A)) = �(A) and �

2

Æ �

1

2 Sub

�

(X;V

0

; V

0

). If we apply

the transformation of the se
ond resolution step in the same way to the remaining

resolution steps, we obtain a T -resolution

(�; C; V

0

) A `

R

�

1

G

1

`

R

�

2

� � � `

R

�

n

;

with �

n

Æ � � � Æ �

1

(A) = �(A) and �

n

Æ � � � Æ �

1

2 Sub

�

(X;V

0

; V

0

).

We need the next lemma to prove the 
ompleteness of T -resolution for general

goals:

Lemma 3.34 Let G be a (�; X; V )-goal with var(G) = fx

1

:�

1

; : : : ; x

n

:�

n

g. Let p

be a new symbol that does not o

ur in �, �

0

:= (H;Fun
; P red[ fp:�

1

; : : : ; �

n

g),

L := p(x

1

:�

1

; : : : ; x

n

:�

n

) and C

0

:= C [ fL Gg. Then

(�; C; V

0

) j= �(G) =) (�

0

; C

0

; V

0

) j= �(L)

for all � 2 Sub

�

0

(X;V; V

0

).
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Proof: Let (�; C; V

0

) j= �(G) and M

0

be a model for (�

0

; C

0

). Then M

0

is also

a model for (�

0

; C) and M

0

; var(L  G) j= L  G. By lemma 3.13, M

0

; V

0

j=

�(L)  �(G). Suppose v is a variable assignment for (X;V

0

) in M

0

. M

0

is also

a model for (�; C) if we omit the interpretation of the predi
ate symbol p in M

0

.

Therefore M

0

; v j= �(G). M

0

; v j= �(L)  �(G) implies M

0

; v j= �(L). Hen
e we

obtain M

0

; V

0

j= �(L).

Theorem 3.35 (Completeness of T -resolution) Let V be a �nite set of typed

variables and G be a (�; X; V )-goal. If � 2 Sub

�

(X;V; V

0

) is a typed substitution

with (�; C; V

0

) j= �(G), then there exist a set of typed variables V

0

and a typed

substitution �

0

2 Sub

�

(X;V

0

; V

0

) with (�; C; V

0

)`

R

�

0

G and �

0

(G) = �(G).

Proof: Let var(G) = fx

1

:�

1

; : : : ; x

n

:�

n

g and p, L, �

0

and C

0

be de�ned as in the

last lemma. (�; C; V

0

) j= �(G) implies (�

0

; C

0

; V

0

) j= �(L). By theorem 3.33, there

exist V

0

and a typed substitution �

0

2 Sub

�

(X;V

0

; V

0

) with (�

0

; C

0

; V

0

) `

R

�

0

L and

�

0

(L) = �(L). Sin
e the only 
lause for the elimination of an atom with predi
ate

symbol p is L G, there is a resolution

(�; C

0

; V

0

) L `

R

�

1

�

1

(G) `

R

�

2

G

2

� � � `

R

�

n

;

with �

0

= �

n

Æ � � � Æ �

1

. We 
an 
ombine the typed substitution �

1

with the typed

substitution �

2

in the se
ond resolution step and obtain a (�; C; V

0

)-resolution for

G with the same 
omputed answer.

We need the following lemma to prove 
ompleteness of CSU

T

-resolution:

Lemma 3.36 (CSU-lemma) If there is a T -resolution

(�; C; V ) G `

R

�

1

G

1

`

R

�

2

G

2

`

R

� � � `

R

�

n

;

for the (�; X; V )-goal G, then there exists a CSU

T

-resolution

(�; C; V ) G `

RC

�

0

1

G

0

1

`

RC

�

0

2

G

0

2

`

RC

� � � `

RC

�

0

n

;

where �

0

n

Æ� � �Æ�

0

1

2 Sub

�

(X;V; V

0

). Furthermore, there exists a typed substitution

� 2 Sub

�

(X;V

0

; V

00

) with � Æ �

0

n

Æ � � � Æ �

0

1

=

T

�

n

Æ � � � Æ �

1

.

Proof: By indu
tion on the length n of the T -resolution:

If n = 1, then (�; C; V ) G `

R

�

1

;. Hen
e there exists a variant L  ; of a 
lause

from C with �

1

(G) =

T

�

1

(L). By de�nition of 
omplete sets of T -uni�ers, there

exist a uni�er �

0

1

2 CSU

T

(G;L) with �

0

1

2 Sub

�

(X;V; V

0

) and a typed substitution

� 2 Sub

�

(X;V

0

; V

00

) with � Æ �

0

1

=

T

�

1

. Thus (�; C; V ) G `

RC

�

0

1

; is a CSU

T

-

resolution for G.



3.6. RESOLUTION 45

If n > 1, then there is a T -resolution

(�; C; V ) G `

R

�

1

G

1

`

R

�

2

G

2

`

R

� � � `

R

�

n

;

Hen
e there exists a variant L

0

 G

0

of a 
lause from C with �

1

(L

0

) =

T

�

1

(L) where

G = G

0

[ fLg. By de�nition of CSU

T

, there exist a uni�er �

0

1

2 CSU

T

(L

0

; L)

with �

0

1

2 Sub

�

(X;V; V

0

) and a typed substitution � 2 Sub

�

(X;V

0

; V

00

) with

� Æ �

0

1

=

T

�

1

. If G

0

1

:= �

0

1

(G

0

[G

0

), then

(�; C; V ) G `

RC

�

0

1

G

0

1

`

R

�

2

Æ � G

00

2

is a T -resolution with G

00

2

=

T

G

2

(w.l.o.g. we assume that � does not alter any

type variables or typed variables from the 
lause used in the se
ond resolution

step). Sin
e

(�; C; V

00

) G

2

`

R

�

3

� � � `

R

�

n

;

is a T -resolution forG

2

andG

2

=

T

G

00

2

, it is 
lear from the de�nition of T -resolution

that there exists a T -resolution

(�; C; V

00

) G

00

2

`

R

�

3

� � � `

R

�

n

;

for G

00

2

of the same length and with the same T -uni�ers. Hen
e

(�; C; V

0

) G

0

1

`

R

�

2

Æ � G

00

2

`

R

�

3

� � � `

R

�

n

;

is a T -resolution for G

0

1

of length n � 1. By indu
tion hypothesis, there exists a

CSU

T

-resolution

(�; C; V

0

) G

0

1

`

RC

�

0

2

G

0

2

`

RC

� � � `

RC

�

0

n

;

where �

0

n

Æ � � � Æ �

0

2

2 Sub

�

(X;V

0

; V

1

), and there exists a typed substitution � 2

Sub

�

(X;V

1

; V

2

) with � Æ �

0

n

Æ � � � Æ �

0

2

=

T

�

n

Æ � � � Æ �

2

Æ �. Hen
e we obtain a

CSU

T

-resolution

(�; C; V ) G `

RC

�

0

1

G

0

1

`

RC

�

0

2

G

0

2

`

RC

� � � `

RC

�

0

n

;

where �

0

n

Æ� � �Æ�

0

1

2 Sub

�

(X;V; V

1

), and � 2 Sub

�

(X;V

1

; V

2

) is a typed substitution

with

� Æ �

0

n

Æ � � � Æ �

0

1

=

T

�

n

Æ � � � Æ �

2

Æ � Æ �

0

1

=

T

�

n

Æ � � � Æ �

2

Æ �

1

:

The 
ompleteness of CSU

T

-resolution follows from 
ompleteness of T -resolution

and CSU -lemma 3.36:



46 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Theorem 3.37 (Completeness of CSU

T

-resolution) Let (�; C) be a typed

logi
 program, V be a �nite set of typed variables and G be a (�; X; V )-goal.

If � 2 Sub

�

(X;V; V

0

) is a typed substitution with (�; C; V

0

) j= �(G), then there

exist a set of typed variables V

0

and a typed substitution �

0

2 Sub

�

(X;V

0

; V

1

)

with (�; C; V

0

)`

RC

�

0

G, and there is a typed substitution � 2 Sub

�

(X;V

1

; V

0

) with

�(�

0

(G)) =

T

�(G).

Proof: By 
ompleteness theorem 3.35, there exist a set of typed variables V

0

and a

T -resolution of the form

(�; C; V

0

) G `

R

�

1

G

1

`

R

�

2

G

2

`

R

� � � `

R

�

n

;

with �

n

Æ � � � Æ�

1

2 Sub

�

(X;V

0

; V

0

) and �

n

Æ � � � Æ�

1

(G) = �(G). CSU -lemma 3.36

yields a CSU

T

-resolution

(�; C; V

0

) G `

RC

�

0

1

G

0

1

`

RC

�

0

2

G

0

2

� � � `

RC

�

0

n

;

and a typed substitution � 2 Sub

�

(X;V

1

; V

0

) (where �

0

:= �

0

n

Æ � � � Æ �

0

1

2

Sub

�

(X;V

0

; V

1

)) with � Æ �

0

n

Æ � � � Æ �

0

1

(G) =

T

�

n

Æ � � � Æ �

1

(G) = �(G).

Soundness theorem 3.30 and 
ompleteness theorem 3.37 justify the implemen-

tation of CSU

T

-resolution as a proof method for typed logi
 programs. A 
omplete

resolution method must enumerate all possible derivations. If we use a ba
ktra
king

method like Prolog, the resolution method be
omes in
omplete be
ause of in�nite

derivations (in our typed framework the sear
h tree may have an in�nite depth

as well as an in�nite breadth be
ause CSU

T

(L;L

0

) may be an in�nite set). If we

a

ept this drawba
k, we 
an implement the resolution like Prolog with the dif-

feren
e that the uni�
ation is extended to typed terms. In Se
tion 3.5 we have

shown that the 
lassi
al uni�
ation algorithm 
an be used if the types of the terms

are uni�ed before unifying the terms. For the uni�
ation of type expressions w.r.t.

the type spe
i�
ation a uni�
ation pro
edure for equational theories is needed. It

is known that the narrowing pro
edure [Sla74℄ [Fay79℄ [Hul80℄ (a 
ombination of

uni�
ation and term rewriting) 
an be used for this purpose. Narrowing an ex-

pression is applying to it the most general substitution su
h that the expression is

redu
ible and then redu
e it. But the narrowing pro
edure 
omputes a 
omplete

set of uni�ers w.r.t. an equational theory only if the set of equations is a 
anon-

i
al (i.e., 
on
uent and terminating) term rewriting system. A set of equations


an be transformed into a 
anoni
al term rewriting system by the Knuth-Bendix

pro
edure [KB70℄ whi
h is su

essful for our appli
ations. For instan
e, let T be

a type stru
ture for integer numbers with appropriate subtype relationships, i.e.,

zero and posint are subtypes of the natural numbers, and the negative integers

and the natural numbers are subtypes of the integer numbers. Therefore T is the

following equational spe
i�
ation:
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TYPEOPS zero: ! type

posint: ! type

nat: type ! type

negint: ! type

int: type ! type

TYPEAXIOMS nat(zero) = zero

nat(posint) = posint

int(negint) = negint

int(nat(�)) = nat(�)

The Knuth-Bendix pro
edure transforms this spe
i�
ation into the following set of

rewrite rules:

nat(zero) ) zero

nat(posint) ) posint

int(negint) ) negint

int(nat(�)) ) nat(�)

int(zero) ) zero

int(posint) ) posint

All equations are oriented from left to right and two additional rewrite rules are

generated (\zero and posint are subtypes of the integer numbers") whi
h 
orre-

sponds to the 
omputation of the transitive 
losure of the subtype relation spe
i�ed

in T . This set of rewrite rules is a 
anon
ial term rewriting system and therefore

the narrowing pro
edure w.r.t. these rules 
an be used to 
ompute T -uni�ers for

two type expressions. Thus the resolution pro
edure 
an be implemented by the

following two steps:

1. Transform the given type spe
i�
ation into a 
anoni
al term rewriting system.

For this purpose the Knuth-Bendix 
ompletion pro
edure 
an be applied. It


omputes the transitive 
losure of the subtype relation.

2. The T -uni�
ation pro
edure for typed terms 
an be implemented like the


lassi
al uni�
ation pro
edure with the di�eren
e that types are T -uni�ed by

the narrowing pro
edure w.r.t. the rewrite rules 
omputed in step 1 before

uni�ying 
orresponding terms.

Note that the T -uni�
ation pro
edure 
an be simpli�ed if the type spe
i�
ation

does not 
ontain subtype relations (see remarks at the end of Se
tion 3.5). If the

type spe
i�
ation 
ontains subtype relations, then these subtype relations have

in
uen
e on the su

ess or failure of uni�
ation. Therefore type information at
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run time is not super
uous in the 
ontext of logi
 programming but may avoid

unne
essary 
omputations sin
e variables 
an be 
onstraint to values and to types

by the T -uni�
ation prodedure. Therefore typed logi
 programs 
an be exe
uted

more eÆ
iently than their untyped equivalents [SS85℄ [HV87℄. One reason for

this eÆ
ien
y is the existen
e of a pro
edure whi
h de
ides whether a system of

type 
onstraints has a solution. As shown above, we solve type 
onstraints by

a narrowing pro
edure whi
h is based on the type equations. This is suÆ
ient

to solve type 
onstraints in order-sorted type stru
tures, but in a more general

setting narrowing 
annot de
ide the solvability of 
onstraints but enumerates only

a 
omplete set of solutions. Narrowing 
an only be used as a de
ision pro
edure

if ea
h narrowing derivation is �nite. Hullot [Hul80℄ has shown that a terminating

T -uni�
ation algorithm 
an be 
onstru
ted by narrowing if any basi
 narrowing

derivation for the right-hand sides of the rules is �nite. This is the 
ase in our

simple examples and therefore narrowing on type expressions yields a de
idability

uni�
ation pro
edure for our examples. For another polymorphi
ally order-sorted

typed framework, Smolka [Smo89℄ has shown that type 
onstraints 
an be eÆ
iently

solved. Therefore the development of eÆ
ient type 
onstraint solvers for (restri
ted


lasses of) our framework is a topi
 for further resear
h.

3.7 Appli
ations

We have mentioned in the introdu
tion that a new appli
ation of our proposed

framework for typed logi
 programming is the possibility of higher-order logi
 pro-

gramming with polymorphi
 and order-sorted type stru
tures. It is 
lear that our

framework 
ombines polymorphi
 and order-sorted type stru
tures (take the union

of the type spe
i�
ations of examples 3.1 and 3.2, or example 3.3). A semanti-


ally 
lean amalgamation of higher-order obje
ts with logi
 programming needs

a higher-order logi
. Miller and Nadathur [MN86℄ have proposed a higher-order

logi
 programming language based on the typed lambda 
al
ulus. The operational

semanti
s is based on resolution with a uni�
ation pro
edure for typed lambda

expressions whi
h is a 
omplex and semi-de
idable problem. Moreover, the proof

pro
edure is only 
omplete for goals whi
h 
ontain no type variables.

Warren [War82℄ has argued that no extension to Horn 
lause logi
 is ne
essary

be
ause the usual higher-order programming te
hniques 
an be simulated in �rst-

order Horn 
lause logi
. The general idea is an expli
it de�nition of a predi
ate

apply whi
h is used for the appli
ation of an (at 
ompile time) unknown predi
ate

to some arguments. It is shown in [Han89b℄ that Warren's approa
h is in
ompatible

with polymorphi
 type systems for logi
 programming like [MO84℄ and [Smo89℄.

Sin
e we have dropped some restri
tions of these type systems, we 
an use Warren's

approa
h to integrate higher-order programming te
hniques in our framework.
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Example 3.38 We give an example for the de�nition of a predi
ate map whi
h

applies a binary predi
ate to 
orresponding elements of two lists. To de�ne the

type of map we must express the type of binary predi
ates whi
h are arguments

to other predi
ates. Therefore we introdu
e a type 
onstru
tor pred2 that denotes

the type of binary predi
ates, i.e., the type spe
i�
ation for our example program

is:

TYPEOPS int: ! type

bool: ! type

list: type ! type

pred2: type; type ! type

For ea
h binary predi
ate p of type \�

1

; �

2

" we introdu
e a 
orresponding 
onstant

�p of type \pred2(�

1

; �

2

)". The relation between ea
h predi
ate p and the 
onstant

�p is de�ned by 
lauses for the predi
ate apply2. Hen
e we get the following

example program for the predi
ate map (we omit the de�nitions of the predi
ates

in
 and bool and the type annotations in program 
lauses):

fun
 [℄: ! list(�)

fun
 [..|..℄: �; list(�); ! list(�)

fun
 �not: ! pred2(bool; bool)

fun
 �in
: ! pred2(int; int)

: : :

pred not: bool; bool

pred in
: int; int

pred map: pred2(�; �); list(�); list(�)

pred apply2: pred2(�; �); �; �

vars P:pred2(�; �), E1:�, E2:�, L1:list(�), L2:list(�),

B1,B2:bool, I1,I2:int

map(P,[℄,[℄)  

map(P,[E1|L1℄,[E2|L2℄)  apply2(P,E1,E2), map(P,L1,L2)

apply2(�not,B1,B2)  not(B1,B2)

apply2(�in
,I1,I2)  in
(I1,I2)

: : :

The �rst two 
lauses 
onstitute the standard de�nition of the predi
ate map (
f.

[SS86℄, p. 281), and the 
lauses for apply2 relate the predi
ate names to the 
orre-

sponding binary predi
ates. Sin
e the semanti
s of typed logi
 programs is based on

a typed �rst-order logi
, the predi
ate symbol map is semanti
ally not interpreted

as a higher-order predi
ate. The 
onstants �not and �in
 are also interpreted as
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values and not as relations. But the 
lauses for apply2 ensures that in every model

of the program the 
onstants �not and �in
 are related to the binary predi
ates

not and in
, respe
tively.

This example shows the possibility to deal with higher-order obje
ts in our

typed framework. Higher-order obje
ts are related to predi
ates by parti
ular


lauses for an apply predi
ate. It is also possible to permit lambda expressions

whi
h 
an be translated into new identi�ers and apply 
lauses for these identi�ers

(see [War82℄ and [CvER90℄ for more dis
ussion). The translation was expli
itly

done in our examples, but this is a simple task and 
an be automati
ally done. If

the underlying system implements indexing on the 
lauses, e.g., indexing on the

�rst arguments of predi
ates (as done in most 
ompilers for Prolog, 
f. [War83℄

[Han88℄), then there is no essential loss of eÆ
ien
y in our translation s
heme for

higher-order obje
ts in 
omparison to a spe
i�
 implementation of higher-order

obje
ts [War82℄.

More details about this method of higher-order logi
 programming in a poly-

morphi
ally typed framework 
an be found in [Han89b℄.

3.8 Con
lusions

We have presented a general framework for typed logi
 programming. It 
onsists

of a spe
i�
ation of a type stru
ture and a set of well-typed Horn 
lauses together

with type de
larations for the synta
ti
 obje
ts o

urring in the set of Horn 
lauses.

For the de�nition of the type stru
ture we have used equational spe
i�
ations. This

allows the spe
i�
ation of both polymorphi
 and order-sorted type stru
tures and

has the advantage that there exist well-known uni�
ation pro
edures for a lot of

equational theories. We have de�ned a pro
edure to enumerate 
omplete sets of

uni�ers for typed terms with respe
t to a type spe
i�
ation whi
h is based on a

uni�
ation pro
edure for the equational type spe
i�
ation. Furthermore, we have

shown that resolution is sound and 
omplete if this uni�
ation pro
edure is used

to unify an atom with a 
lause head. This framework permits polymorphi
 and

order-sorted type stru
tures and the possibility of the appli
ation of useful logi


programming te
hniques like lemma generation and higher-order programming.

The presented framework yields a new view on the rôle of types in logi
 program-

ming. A type spe
i�
ation 
an be 
ompiled into a suitable uni�
ation algorithm

whi
h is used in the resolution pro
edure. Therefore di�erent type stru
tures im-

ply di�erent uni�
ation algorithms. A many-sorted type stru
ture does not require

any type information at run time, in a polymorphi
 type stru
ture a most general

uni�er exists for two uni�able terms and 
an be 
omputed by Robinson's uni�
a-

tion algorithm, and in order-sorted type stru
tures there may exist several uni�ers

whi
h are not 
omparable, but a 
omplete set of uni�ers 
an be 
omputed by a

pro
edure whi
h is based on a uni�
ation pro
edure for the type theory.
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Further work remains to be done. We have mentioned that the presen
e of

types at run time is not super
uous but may redu
e the sear
h spa
e of the reso-

lution method. Nevertheless, there are a lot of 
ases where type annotations 
an

be omitted at run time and the uni�
ation remains to be 
orre
t. For polymorphi


type stru
tures these 
ases are analyzed in [Han89a℄ and [Han89b℄. New 
riteria

for omitting type annotations must be developed in our general typed framework.

Another important point is the automati
 inferen
e of types. For pra
ti
al appli-


ations it is tedious to write typed program 
lauses sin
e ea
h synta
ti
 element

must be given an appropriate type. Therefore it is ne
essary to dedu
e the right

types for a 
lause without type annotations by a type inferen
e algorithm. This is

a diÆ
ult problem in our general framework but their are su

essful approa
hes to

the type inferen
e problem for restri
ted 
lasses of type stru
tures. For instan
e, in

the 
ase of polymorphi
 type stru
tures the type inferen
e algorithm of ML [DM82℄


an be used to infer the types of the variables in a 
lause if the types of all fun
tions

and predi
ates are expli
itly de
lared [Han89a℄. For a restri
ted 
lass of polymor-

phi
ally order-sorted type stru
tures Smolka has found an algorithm whi
h infers

the types of variables in most 
ases [Smo89℄. Similar solutions must be developed

for parti
ular instan
es of our approa
h.
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