In Types in Logic Programming (F. Pfenning, ed.), pp. 91-140,
MIT Press, 1992

Chapter 3

Logic Programming with
Type Specifications
by Michael Hanus'

In this chapter, we propose a framework for logic programming with different type
systems. In this framework a typed logic program consists of a type specification
and a Horn clause program which is well-typed with respect to the type speci-
fication. The type specification defines all types which can be used in the logic
program. Relations between types are expressed by equations on the level of types.
This permits the specification of many-sorted, order-sorted, polymorphic and poly-
morphically order-sorted type systems.

We present the declarative semantics of our framework and two proof procedures
(deduction and resolution) for typed logic programs. An interesting application is
a type system that combines parametric polymorphism with order-sorted typing
and permits higher-order logic programming. Moreover, our framework sheds some
new light on the role of types in logic programming.

3.1 Overview and Examples
The absence of types in logic programming languages is a disadvantage for the de-

velopment of large software systems. It have been also argued that logic programs
often make implicit assumptions about types and a logic program only satisfies the

L An extended abstract of a previous version of this chapter has appeared in the Proceedings
of the Second International Conference on Algebraic and Logic Programming, Nancy, France,
October 1990, Springer Lecture Notes in Computer Science 463, 1990.

2 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

intended meaning if type information is added to the program [Nai87]. Therefore
much research has been carried out in order to integrate types into logic pro-
gramming languages. The proposed integrations can be classified into two groups:
inference-based and declaration-based approaches.

The inference-based approaches try to compute a superset of the success set of
the program. If this superset is empty (for some goal), then the goal cannot succeed
which is usually a hint for a type error in the program. Examples for inference-
based approaches can be found in [Mis84] [Zob87] [XW88b] [BG89] (among others).
The computation of the superset of the success set is guided by term patterns
representing sets of terms. The term patterns are considered as types, i.e., types
are interpreted as sets of (ground) terms. The advantage of the inference-based
approach is simplicity for the programmer since he need not declare any types: The
type inference system deduces type information from an untyped logic program.
This information can be used by the compiler to perform optimizations in the target
program [GZ86].

But there are several problems with the inference-based approach: First, the
semantics of types is only based on Herbrand interpretations, i.e., types are viewed
as sets of ground terms. But Herbrand models are not sufficient for characterizing
the declarative semantics of a logic program (e.g., if a and b are the only ground
terms in a program and the program consists of the facts p(a) and p(b), then VX
p(X) is true in all Herbrand models but not a logical consequence of the program
[L1087]). In order to give types a declarative semantics, types must have a meaning
in all interpretations and not only in Herbrand interpretations, similarly to func-
tion and predicate symbols. Therefore Barbuti and Giacobazzi [BG89] use term
interpretations with variables as the semantic foundation of their type inference
system.

The main problem of inference-based approaches is that the inference of types
from a completely untyped program yields only in a few cases the types expected
by the programmer. For instance, assume list denotes the set of all terms of the
form [1 or [EIL] where L is a term from list. Then the inferred type for the
predicate append defined by

append([],L,L)
append([E|R],L, [EIRL]) ¢ append(R,L,RL)

may be “list x a x a U list x B x list” [XW88a], where a and 8 denote arbitrary
types. But the type expected by the programmer is “list X list x list” since append
should be only used to concatenate lists. The problem in this example is the first
clause which defines append to be true not only for lists but also for other terms.
E.g., append ([],2,2) is true but usually considered as an ill-typed goal. In order
to obtain the expected type “list x list x list”, append must be defined by

append([1,[1,[1) <«

3.1. OVERVIEW AND EXAMPLES 3

append([1,[EIR],[EIR]) < append([],R,R)
append([E|R],L, [E|IRL]) ¢ append(R,L,RL)

(the exact definition depends on the type inference system).

Another problem of inference-based approaches is the strong dependence from
the syntactic form of the clauses: A type inference system may deduce different
types for two declaratively equivalent programs if the clauses are syntactically
different. For instance, assume the type system allows polymorphic data structures
[XW88Db] and list(«) denotes the set of all terms of the form [] or [E|L] where E
and L are terms from « and list(«), respectively, and « is an arbitrary type. Then
the type inferred for the predicate member defined by

member (E, [E|L]) +
member (E, [FIL]) ¢ member(E,L)

is “a x list(a)”, i.e., member can be used on lists of arbitrary types. The literal
member (2, [1,2,3]) is a logical consequence of the clauses for member (we assume
that the natural numbers are always contained in our programs). Hence we can
add this literal as a new fact and obtain the declaratively equivalent program

member (2, [1,2,3]) «
member (E, [E|L]) +
member (E, [FIL]) < member(E,L)

&

The type inferred by an ML-based inference system [DM82] is “nat x list(nat)”
since almost all polymorphic type systems for logic programming require that the
left-hand sides of all clauses for a predicate must have equivalent types [MO84]
[DHS88] [Smo89].

These examples show that in many cases the inference of types from a com-
pletely untyped program does not yield sufficient results since an untyped logic
program does not contain the type information which has the programmer in mind
(see also [Nai87]). A type system should allow user declarations for types. These
declarations are not a burden on the programmer but documents the expected
meaning of predicates and improves the readability of large programs. Another
advantage of extending logic programs by type declarations is the possibility to
give types a true declarative meaning, i.e., types can be interpreted as subsets of
the carrier sets in all interpretations. This will be done in our approach.

The important question which has to be answered by a declaration-based type
system is: Which kind of type structures can be specified? Several answers have
been given in the literature: The type system of Turbo-Prolog is comparable to
many-sorted Horn logic [Pad88] and many-sorted logic programs can be executed
with the same efficiency as untyped logic programs, but this type system is too
restricted for a lot of applications [Han87]. A more flexible type system motivated
from ML was proposed by Mycroft and O’Keefe [MO84]. It offers parametric poly-

4 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

morphism [DM82], needs no type-checking at run time and enables the writing of
compact and reusable programs. The restrictions of Mycroft/O’Keefe’s type sys-
tem have been dropped in [Han89a]: The result is a type system which allows the
application of higher-order programming techniques. In general it is necessary to
consider the types at run time, but it has been shown that for Prolog-like applica-
tions of higher-order programming all type information can be omitted at run time
[Han89b]. This type system can also be applied to a language that combines func-
tional and logic programming [Han90]. Another direction for typing logic programs
are order-sorted type systems where different types may be related by an inclusion
relation [SNGMS89]. Such inclusion relations occur in Prolog (for instance, the set
of all constants is the union of the set of numbers and the set of atoms) and there-
fore a lot of inference-based type systems offer inclusion polymorphism ([Mis84]
[Zob87] [XW88b] among others). In order-sorted logic programming [HV87] types
are present at run time, but the type information can be used to avoid unneces-
sary computations and reduce the search space [SS85] [HV87]. Smolka [Smo89] has
proposed the combination of parametric polymorphism and order-sorted typing for
a logic programming language. There are several restrictions in his type system
so that higher-order programming techniques cannot be used. One particular in-
stance of the framework proposed in this chapter is a type system that combines
parametric polymorphism with order-sorted typing and allows the application of
higher-order logic programming techniques.

Type systems with parametric polymorphism have been extensively studied in
the context of functional programming languages [DM82] [CW85]. Therefore sev-
eral proposals for polymorphic type systems for logic programming are based on
these ideas [MO84] [DH88] [Smo89]. But we think that logic programming lan-
guages need other type systems than functional programming languages because:

1. The data flow is not fixed in logic programs since there are no “input” and
“output” parameters in contrast to functional programs.

2. In functional languages a unary function f is defined by an equation of the
form

f(A) = E

(multiple equations for different argument patterns can be seen as syntactic
sugar). There is no doubt about the type of £: The argument type is the most
general type of A and the result type is the most general type of E. But in
logic languages the semantics of a predicate is defined by several independent
clauses that should be satisfied by any model for the predicate, i.e., a logic
program is a specification of the predicate’s properties. If a unary predicate
p is defined by n clauses which characterizes different properties of p, i.e.,

3.1. OVERVIEW AND EXAMPLES)

p(41) « .-

p(4n) + -

then the type of p is unclear if the arguments Ay, ..., A, have different types.
Since the type system in [MO84] is influenced from the ML system, Mycroft
and O’Keefe require the argument types in different clause heads to be equiv-
alent (equal up to type variable renaming). But this restriction prevents a
useful logic programming technique: Optimization of the resolution process
by lemma generation. In untyped logic programming it is possible to add a
new fact L to a program without changing the program semantics if L is a
logical consequence of the program. The new fact L can be used to obtain
shorter proofs for subsequent goals that include L. For instance, the literal
append([1,2],[3,4]1,[1,2,3,4]) is a logical consequence of the program

append ([1,L,L) <«
append([E|R],L, [EIRL]) ¢ append(R,L,RL)

and therefore it may be added at the beginning of the program. If append
has type “list(a),list(a),list(a)”, then the new fact is ill-typed w.r.t. My-
croft/O’Keefe’s type system. From a declarative point of view there is no
reason to forbid such specialized clauses. Therefore our language allows such
clauses since any instance of the declared predicate type is allowed in the
left-hand side of the clause.

Summarizing our discussion of various type systems for logic programming we think
that declaration-based type systems are adequate for logic programming because
in these type systems the types of functions and predicates are independent of the
syntactic form of the clauses and it is possible to give types a pure declarative
meaning. Since typing all variables, functions and predicates in a logic program
can be tedious, it should be allowed to omit some of the type declarations in the
program, but such a program is viewed as a short-hand for a fully typed program.
This point of view simplifies the semantics of the language since only well-typed
expressions must have a meaning (see [MH88] for a more detailed discussion in the
context of ML). In some cases a type inference procedure can be used to insert the
omitted type declarations (the existence of such inference procedures depends on
the restrictions of the type system). For instance, in ML [HMMS86] the programmer
has to declare the argument and result types of data type constructors. The types
of all variables and functions in an ML program are inferred by a type inference
procedure [DM82].

A further requirement to a type system for logic programming is flexibility: In
logic programming it is possible to define one predicate which can be applied to

6 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

arguments of different types (e.g., append can be applied to lists where the elements
have an arbitrary type). Therefore a type system should support some sort of
polymorphism, i.e., a predicate may have several types. Furthermore, the type
system should also support logic programming techniques like lemma generation
and the use of higher-order predicates.

This chapter proposes a framework for such flexible type systems. We present a
general mechanism for the specification of type systems where particular instances
of this framework are order-sorted, polymorphic or polymorphically order-sorted
type systems. Our proposal generalizes previous approaches since it allows the
application of typical logic programming techniques, i.e., it is influenced but more
general than type systems for functional languages. Since all predicates, functions,
variables and clauses are explicitly typed in our approach, the well-typedness of a
program is decidable. For practical applications it should be allowed to omit some
of the type declarations in the program which should be automatically inserted
by a type inference procedure. But such procedures are only known for particular
instances of our general framework. The development of more powerful type infer-
ence procedures and necessary restrictions to the programs is a topic for further
research.

The general idea of our framework is to divide typed logic programs into two
parts: a specification of the type structure and a well-typed logic program. Since
the second part depends on the first part, we may view it as a two-level approach.
In the context of algebraic specifications, Poigné [Poi86] has proposed a two-level
approach for algebraic specifications with higher-types. Each level consists of an
equational specification where the first-level describes a type structure and the
second level is an equational specification with sort expressions from the first level.
While he has used the approach for the specification of the typed A-calculus, we
will use a similar approach for our framework for typed logic programming. In our
two-level approach the first level consists of a specification of a type structure for
the logic program and contains all types which will be used inside the logic program
and some relations between types specified by equational axioms. Hence the first
level is a many-sorted equational specification [EM85] and we can use results from
this area for our purposes. The second level is based on the specified type structure
and consists of a specification of the types of all variables, constants, functions, and
predicates occurring in the logic program and a set of Horn clauses which must be
well-typed with respect to the type specification. The operational semantics, which
is resolution with a unification procedure on well-typed terms, ensures that type
errors do not occur while executing well-typed programs. We give some examples
to show the basic ideas.

Example 3.1 Parametric polymorphism is used for defining universal data struc-
tures which can be applied to different concrete types. A classical example are poly-
morphic lists which can be applied to integers giving lists of integers, to Booleans

3.1. OVERVIEW AND EXAMPLES 7

giving lists of Booleans, etc. The following signature specifies a type structure for a
program which uses the basic types of integers and Booleans and the polymorphic
types of lists and pairs of elements:

TYPEQOPS int: — type
bool: — type
list: type — type
pair: type, type — type

This type structure has only a single sort type. Hence all types can be used as ar-
guments for the polymorphic type constructors list and pair. The set of all types
specified by this signature is the set of all well-formed terms which may contain
some type variables. For instance, types w.r.t. the above specification are

int bool list(int) list(ar) pair(bool, 3) pair(a, list(a))

where a and § are type variables. A typed logic program consists of type dec-
larations for variables, functions and predicates (constants are functions without
arguments) and a set of well-typed Horn clauses. The following program defines
two polymorphic predicates on lists (throughout this chapter we use the Prolog
notation for lists [CM87]):

func [J: — list(a)
func [..1..1: o, list(a) — list(a)

pred append: list(a), list(a), list(a)
pred member: «, list(«a)

vars L, R, RL:list(a), E, El:a

append([]1,L,L) «
append([E|R],L, [EIRL]) ¢ append(R,L,RL)

member (E, [EIR]) <«
member (E, [E1|R]) < member(E,R)

The clauses for append and member are well-typed in our sense (cf. Section 3.2)
w.r.t. the type definitions.

We view subtyping as the possibility of applying a function or predicate to all
types which are subtypes of the declared type of the function or predicate. Hence
we specify a type that has some subtypes as a function which is the identity on the
subtypes. This will be illustrated by the next example.

8 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Example 3.2 We want to specify a type structure with types nat, zero and posint
where zero and posint are subtypes of nat. Hence we specify nat as a function on
types which is the identity on zero and posint:

TYPEOPS zero: — tlype
posint: — type
nat: type — type

TYPEAXIOMS nat(zero) = zero
nat(posint) = posint

The type axioms state that nat is not a free type constructor like list but is the
identity on the subtypes of nat. It is possible to apply nat to other types than
zero and posint, but our logic programs which are based on this specification do
not contain any ground terms of type nat(r) where T & {zero, posint}. Therefore
the type nat(a) describes the union of zero and posint in the initial model of the
following program:

func 0: — zero
func s: nat(a) — posint

pred plus: mnat(a), nat(8), nat(y)
vars N, Nil:nat(a), N2:nat(8), N3:nat(y)

plus(0,N,N) <«
plus(s(N1),N2,s(N3)) ¢« plus(N1,N2,N3)

The clauses for plus are well-typed in our sense (cf. Section 3.2) w.r.t. the type
definitions (note that the type of the first argument of the clause head is “zero”
in the first and “posint” in the second clause). Since the argument types of plus
are defined to be arbitrary naturals, we can apply plus with an arbitrary subtype
of the naturals. It is possible to build nonsensical types like nat(bool) (if the basic
type bool is added to the type structure), but our program contains no ground term
of this type and therefore such a type denotes an empty set in the initial model
of this program. Moreover, our proof procedure (resolution with typed unifiers, cf.
Section 3.6) ensures that such types do not occur in the computation if they are
not present in the initial goal.

Since order-sorted type structures are polymorphic type specifications with
equational axioms which describe the subsort relationship, it is clear that there
is no problem in the combination of polymorphic and order-sorted type structures
in our framework. It is also possible to express subsort relationships between poly-
morphic types:

3.1. OVERVIEW AND EXAMPLES 9

Example 3.3 We want to specifiy a type structure for polymorphic lists so that
the polymorphic type list is the union of elist (empty lists) and nelist (non-empty
lists). Therefore we have to express the subtype relationships elist < list(a) and
nelist(a) < list(a). As in the previous example, we add an additional argument
to a type constructor having some subtypes and express the subtype relationship
by type equations:

TYPEOPS elist: - type
nelist: type - type
list: type, type — type

TYPEAXIOMS list(a,elist) = elist
list(a,nelist(a)) = nelist(a)

The append-program is specified w.r.t. this type structure as follows:

func []: — elist
func [..]..1: o, list(a,8) — nelist(a)

pred append: list(a, 1), list(a,B2), list(a,Bs)
vars R:list(a, 1), L:list(a,B2), RL:list(a,f3), E:a

append([]1,L,L) «
append([E|R],L, [EIRL]) ¢ append(R,L,RL)

The type variable « in all argument types of append expresses that append concate-
nates lists of the same element type, whereas the different type variables 31, 82, 83
show that an arbitrary subtype of an a-list (empty or non-empty list) can be used
in each argument.

The example shows that logic programs with a polymorphically order-sorted
type structure are allowed in our framework. Moreover, in Section 3.7 we will give
an example of a logic program with higher-order predicates which is well-typed in
our framework.

Example 3.4 The type specifications in the previous examples are single-sorted
specifications with only one sort “type”. Since we also allow many-sorted specifica-
tions, this feature can be used to restrict the quantification of type variables. For
instance, the following type specification may be part of a program for symbolic
computations:

TYPEQPS int: — ring
polynom: ring — alg_type

10 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Thus polynom is a type constructor where the argument is restricted to be a ring.
The type polynom(int) describes the polynomials with integer coefficients. The
type declaration for a generic predicate denoting the addition of two polynomials
is

pred poly_add: polynom(p), polynom(p), polynom(p)

Because of the particular type structure, the type variable p is not quantified over
all possible types but only over types of sort “ring”, e.g., int is a valid instance of
p-

The example shows that the sort of a type can be used to express a property of
a type. It may be also desirable to use order-sorted equational specifications for the
type structure which allows us to express dependencies between type properties,
e.g., “alg_type < type” (an algebraic type is also a general type). Though this is a
useful feature for computer algebra systems (as pointed out in [SLC88]), we omit
it for the sake of simplicity. But we emphasize that the restriction to many-sorted
type specifications will not be used in the proofs of our results.

In the following we present our framework for typed logic programming in detail.
The main topics of this chapter are:

e We present a two-level approach to typed logic programming: The first level
is a specification of the basic type structure, and the second level contains
a well-typed logic program which is based on the specified type structure.
The type structure is specified by a many-sorted signature with equational
axioms. In contrast to other approaches to polymorphic type systems for logic
programming, we do not restrict the use of types inside program clauses.

e Our approach to typed logic programming is declarative: In contrast to many
other type systems for logic programming where types are viewed as sets of
ground terms (i.e., they are only valid in the initial model), we define define
the semantics of types in a model-theoretic way, i.e., types are subsets of the
carrier sets in all interpretations.

e We present sound and complete deduction and resolution methods for typed
logic programs. For the soundness of the resolution method it is necessary
to define the unification procedure on well-typed terms which is based on a
unification procedure for the equational type theory. This sheds some new
light on the réle of types in logic programming since the complexity of the
type structure directly influences the complexity of the unification procedure.
A powerful type structure (e.g., polymorphic types combined with subtypes)
implies a complex unification procedure.

e We show that higher-order programming techniques can be applied in our
general framework. We give an example of a typed logic program with higher-

3.2. LOGIC PROGRAMS WITH TYPE SPECIFICATIONS 11

order predicates which is ill-typed in the sense of other polymorphic type
systems for logic programming.

e The presented approach is a framework for the definition of different type
structures for logic programs. The type structure influences only the unifi-
cation procedure for the execution of the program. Therefore different type
structures can be used for different applications where the specification of
the type structure can be compiled into a specific unification procedure. It is
not necessary to use a powerful order-sorted unification procedure for simple
applications like those possible in Turbo-Prolog.

This chapter is organized as follows. In the next section the basic notions and
the syntax of typed logic programs are defined. Section 3.3 defines the semantics
of typed logic programs which is based on interpretations in algebraic structures.
Section 3.4 presents a deduction method for typed logic programs. Section 3.5
presents a solution to the unification problem of typed terms which is based on a
given unification procedure for the type theory. The unification procedure on typed
terms will be used for the resolution method presented in Section 3.6. Section 3.7
concludes with an interesting application of our framework.

3.2 Logic Programs with Type Specifications

We use many-sorted equational logic for the specification of type structures. There-
fore we recall some basic notions from algebraic specifications [GTW78] [EM85].
A many-sorted signature ¥ is a pair (S,0), where S is a set of sorts and O
is a family of operator sets of the form O = (Oy slw € S*,s € S). We write
0:81,...,8, = 8 € O instead of 0 € O, 5, An operator of the form o: — s
is also called a constant of sort s. A signature ¥ = (S,0) is interpreted by a
Y-algebra A = (S4,04) which consists of an S-sorted domain S4 = (S4,5|s € S)
and an operation 04:S4,s,,-.-,54,s, = Sa,s € Oy for any 0:51,...,5, = s € O.
A set of E-variables is an S-sorted set X = (X;|s € S). The set of E-terms of sort
s with variables from X, denoted T% s(X), is inductively defined by z € Ty 4(X)
for all z € X;, ¢ € Ty 5(X) for all : = s € O, and o(ty,...,t,) € Tx 4(X) for
all 0:81,...,8, = s € O (n > 0) and all ¢; € Ty, (X). Given a term ¢, var(t)
denotes the set of all variables occurring in t. We write Tx(X) for all ¥-terms with
variables from X and T% for the set of ground terms Tx (). By T (X) we also
denote the term algebra.

A ¥-equation is a pair of Y-terms (t1,t2) of the same sort, usually written
t; = t2. An equational specification is a triple Sp = (S, O, E) where ¥ = (S,0)
is a signature and F is a set of Y-equations. In the following we denote by Sp also
the signature (S,) contained in Sp, e.g., Tsp(X) is the set of (S, 0)-terms with
variables from X.

12 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

A variable assignment is a mapping a: X — S with a(z) € Sa,, for all
variables x € X, (more precisely, it is a family of mappings (as: Xs — Sas|s €
S)). A Y-homomorphism from a ¥-algebra A = (S4,04) into a X-algebra
B = (Sg,0p) is a mapping (family of mappings) h: S4 — Sp with the property
hs(oa(ai,...,a,)) = o(hs, (a1),..., hs, (ay)) for all 0:s1,...,8, > s€ O (n>0)
and all a; € Sa5;,. A Y-congruence on a Y-algebra A = (S4,04) is a family of
binary equivalence relations ~;C S4 s X Sa,s (s € S) so that o4(a1,...,an) ~s
0a(bi,...,by) for all 0:s1,...,8, = s € O (n > 0) and all a;,b; € Sa, with
a; ~s; b;. The following lemma shows an important property of term algebras:

Lemma 3.5 (Free term algebra) Let ¥ be a signature, A = (S4,04) be a X-
algebra and a: X — S4 be an assignment for variables from X. There exists a
unique Y-homomorphism a*: Ts,(X) — Sa with a*(z) = a(z) for all z € X.

Let Sp = (S,0,E) be an equational specification and A = (Sa,04) be an
(S,0)-algebra. An Sp-equation t; = to is valid in A, denoted A | t; = to, if
a*(t1) = a*(t2) holds for all variable assignments a:var(t;) Uvar(tz) — Sa. Ais a
model for Sp if every equation from FE is valid in A. We write

Sp |= t1 =t2

if 1 = t is valid in all models for Sp. We remark that an initial model for a
specification Sp is Ts,/ =g, the quotient of the ground term algebra Ts, by the
congruence =g generated by the equations E.

Lemma 3.6 Let X be a signature, T's,(X)/ =g be the quotient of the term algebra
Tsp(X) by the congruence = generated by the equations E, A = (S4,04) be a
Y-algebra and a: X — S4 be an assignment for variables from X. There exists a
unique Y-homomorphism a*: Ts,(X)/ =g — Sa with o*([z]) = a(z) for allz € X
where [z] denotes the equivalence class of x w.r.t. =p.

The definition of types is based on equational specifications: T = (T's, Top, Tax)
is a specification of types if 7 is an equational specification. Constants from
T are called basic types. By X we denote an infinite set of type variables
(precisely, X = (X4|s € T's) is a family of infinite sets of type variables, but
we identify the family of sets with one set since we assume that the sets X, are
disjoint). A type expression or type is a term from T7(X).

A type substitution o is a T-homomorphism o: T7(X) = T7(X). TS(T, X)
denotes the class of all type substitutions. Two types 71,72 € T7(X) are called
T-equal, denoted 71 =7 10, if T 11 = 7.

A polymorphic signature X for logic programs is a triple (T, Func, Pred)
with:

e T is a specification of types with Tr s(0) # 0 for all s € T's.

3.2. LOGIC PROGRAMS WITH TYPE SPECIFICATIONS 13

e Func is a set of function declarations of the form f:7r,...,7, = 7 with
7i,7 € Tr(X), n > 0.

e Pred is a set of predicate declarations of the form p:7y,..., 7, with 7; €
Tr(X) (n > 0).

Since we do not deal with the problem of type checking or type inference in our
framework, we do not forbid overloading in contrast to [Han89a] or [Smo89]. The
type specifications together with the definitions of function and predicate types
in the examples of Section 3.1 are polymorphic signatures. In the rest of this
chapter we assume that ¥ = (T, Func, Pred) is a polymorphic signature for logic
programs. Similarly to other typed logics, the variables in a typed logic program
are not quantified over all objects, but vary only over objects of a particular type.
Thus each variable is annotated with a type expression: Let Var be an infinite set
of variable names that are distinguishable from symbols in polymorphic signatures
and type variables. Then the set V is called a set of typed variables if

e cach element of V has the form z:7 where x € Var is a variable name and
7 € T7(X) is a type, and

e r:7,z:7" € V implies 7 = 7'.

We only consider sets of typed variables with unique types so that type errors can
be detected at compile time. For instance, if a variable in a clause occurs in two
different contexts so that it has type “int” in one context and type “list(int)” in
the other context, this indicates a type error if all variables in a clause are required
to have unique types. In the rest of this chapter we assume that V, V' V,,V1,...
denote sets of typed variables.

In Church’s formulation of the theory of types [Chu40] types are embedded in
terms, i.e., each symbol in a term is annotated with an appropriate type expression.
These annotations are useful for the unification of typed terms (see Section 3.5).
We call L < G a typed program clause if there is a set of typed variables V' and
V |E L + @G is derivable by the inference rules in figure 3.1. The typing rules show
that both parametric polymorphism and subtype polymorphism are covered by our
framework: If the declared type of a function or predicate contains type variables,
then this function or predicate can be applied to any type which is the result of
replacing the type variables by other types (parametric polymorphism). If the
type specification contains subtype relations as in example 3.2, then a function or
predicate with declared argument type nat(a) can also be applied to the subtypes
nat(zero) (= zero) and nat(posint) (=7 posint).

Note that we have no restrictions on the use of types and type variables in the
left-hand side of program clauses in contrast to [MO84] [DH88] [Smo89] and similar

14 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

y . . — !
Variable: VEzr (zzreVand =7 1")
Constant: (c: = 7. € Func so that there is a
' ViEar o€ TS(T,X) with o(re) =7 1)
(f:7y € Func so that there exists
Composite ViEtim,...,VIEtym o € TS(T,X) with
term: VIEf(tim, .. toim)r o(Tf) =Tiye.cyTn =T
and 7 =7 7', n > 0)
i) (p:1p € Pred so that there exists
Atom: V‘/”T'il.(? — v ”t: tn;n o € TS(T, X) with
PULTL, -5 tniTn o(Tp) =T1y..., T, n > 0)
Coal VIELy,...,.VIEL, (each L; is an atom, i.e.,
’ VIgL,...,L, has the form p(---),i=1,...,n)
| VIEL VIEG | .
Clause: “VEL<G (L is an atom and G is a goal)
Figure 3.1: Typing rules for program clauses

polymorphic type systems.? For instance, it is allowed to add the clause
member (2,[1,2,3]) «+

to the program in example 3.1. By dropping this restriction it is also possible to
apply higher-order programming techniques in our framework (cf. Section 3.7).

We call variables, constants and composite terms derivable by these inference
rules (X, X, V)-terms or well-typed terms. Termy (X, V) denotes the set of
all (X, X,V)-terms. A ground term is a term from the set Termx (X,). Well-
typed or (%, X, V)-atoms, -goals and -clauses are similarly defined (a goal is a set
of atoms, but for convenience we denote it without curly brackets). A ¥-term
(atom, goal, clause) is a (X, X, V)-term (atom, goal, clause) for some set of typed
variables V.

Lemma 3.7 Ift:7 is a well-typed term and 7 =7 7', then t:7' is also a well-typed
term.

In the following, if s is a syntactic construction (type, term, atom, ...), tvar(s)

2In these type systems the left-hand side of a clause for a polymorphic predicate must have a
type which is equivalent to the declared type of the predicate.

3.3. SEMANTICS OF TYPED LOGIC PROGRAMS 15

and var(s) will denote the set of type variables and typed variables that occur in s,
respectively (i.e., var(s) is a set of typed variables so that s is a (2, X, var(s))-term,
atom, ...). For instance, if

Tax = {s1(s3) = s3,52(53) = s3}

and s = f(X:s1(s3),X:82(s3)):83, then both {X:s3} and {X:s1(s3)} satisfy the
definition of var(s), but it is always the case that these different sets are T-equal
sets of typed variables. Therefore we can choose one of these sets as var(s). Fur-
thermore, we define uvar(s) := {z | Ir € Tr(X): x:7 € var(s)} as the set of
variable names that occur in s.

A typed logic program or typed Horn clause program P = (X, C) consists
of a polymorphic signature ¥ and a set C' of X-clauses. If it is clear from the
context, we will omit the type annotations in the clauses of example programs.
Therefore we have written the clauses of the examples in the first chapter without
type annotations but we have defined the types of the variables. For instance, the
clause

member (E, [E|IR]) <+
in example 3.1 denotes the fully typed clause
member (E:a, [E:a|R:list(a)]:list(a)) «
and the clause
plus(0,N,N) <«
in example 3.2 denotes the fully typed clause
plus (0:nat(zero) ,N:nat(a),N:nat(a)) <«

This clause is well-typed because “nat(zero),nat(a),nat(«)” is an instance of the
declared type “nat(a), nat(8), nat(y)” of the predicate plus and O:nat(zero) is
a well-typed term since nat(zero) =7 zero (where T is the type specification of
example 3.2). The term

[L:nat | [:list(nat,elist) 1:nelist(nat)

is a well-typed term w.r.t. example 3.3 (we assume that 1 is a constant of type
nat) since [] is a constant of type elist and list(nat, elist) =7 elist holds in the
specified type structure.

3.3 Semantics of Typed Logic Programs

Typed logic programs are interpreted by algebraic structures similar to the ones
introduced in [Poi86]. An interpretation of a typed logic program consists of an

16 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

algebra that satisfies the type specification and a structure for the derived poly-
morphic signature. A structure is an interpretation of types (elements of sort type)
as sets, function symbols as operations on these sets and predicate symbols as re-
lations between these sets. Type variables vary over all types of the interpretation
and typed variables vary over appropriate carrier sets. The necessary notions are
defined in this section.

If T =(Ts,Top,Tazx) is a specification of types, a T-algebra A = (T's4,Topa)
which satisfies all equations from Tazx is also called 7-type algebra. The signa-
ture X(A) = (T'sa, Funca, Preds) derived from ¥ and A is defined by

Funca = {f:wo(ry) | frry € Func, 0: X — Tsy4 is a type variable assignment}
Predys = {pwo(7y) | p:mp € Pred, 0: X — T'sy is a type variable assignment}

An interpretation of a polymorphic signature ¥ (or Y-interpretation) is a 7-
type algebra A = (T'sa,Topa) together with a X (A)-structure (S, d) which consists
of a T'sg-sorted set S = (S;|7 € T'sa) (the carrier of the interpretation) and a
denotation § with:

1. If fim,..., 7 = T € Funca, then §f.-, 7 7t Sy x-- xS, — S;isa
function.

2. f prmy,..., 7, € Predy, then dp.r, .7, € Sy X --- xS, is arelation.

Hence (polymorphic) functions and predicates are interpreted as families of func-
tions and predicates on the given types. In order to compare different inter-
pretations, we define homomorphisms between them. At first, we define X(A)-
homomorphisms to compare different X(A)-structures: Let A = (T'sa,Topa) be a
T-type algebra and (S,4), (S',0") be ¥(A)-structures. A X(A)-homomorphism
h from (S, d) into (S’,d') is a family of functions (h|T € T's4) with:

1. hr: Sy = SL

2. If firy € Funcg with 7/ = 7,...,7 > 7 (n >0)and a; € S;, (I =
1,...,n), then:
he(8p:rp (a1, ... an)) = 64, (hr(ar), ..., hr, (an))

3. If pi7, € Preda with 7, =11,...,7, (n > 0) and (a1,...,a,) € Op.r,, then:
(hﬁ (a1)7) th (an)) € (SII):TP

If it is clear from the context we omit the indices 7 in the functions h,. Note that
the composition of two ¥ (A)-homomorphisms is again a ¥(A)-homomorphism. The
class of all ¥(A)-structures together with the ¥(A)-homomorphisms is a category
[EM85]. We denote this category by Catsy).

If A and A’ are T-type algebras, then every T-homomorphism ¢: 4 — A’
induces a signature morphism o:%(4) — ¥(A') and a forgetful functor

3.3. SEMANTICS OF TYPED LOGIC PROGRAMS 17

Us:Catsary — Catsa) from the category of L(A’)-structures into the cat-
egory of X(A)-structures (see [EMS85] for details). Therefore we define a X-
homomorphism from a Y-interpretation (A, S,d) into another Y-interpretation
(A", 8", ¢") as a pair (o, h), where 0: A — A’ is a T-homomorphism and h: (S,d) —
Uy((S',0") is a X(A)-homomorphism. The class of all ¥-interpretations with the
composition

(0", 1) 0 (0, h) = (0 0., Up (') o h)

of two X-homomorphisms is a category. Thus we call a Z-interpretation (4, S, J)
initial in a class of Y-interpretations C iff for all ¥-interpretations (A4',S’,d") € C
there exists a unique ¥-homomorphism from (A4, S, d) into (A’, S’,4").

A homomorphism in our typed framework consists of a mapping between type
algebras and a mapping between appropriate structures. Consequently, a vari-
able assignment in the typed framework maps type variables into types and typed
variables into objects of appropriate types: If I = ((T'sa,Topa),S,d) is a X-
interpretation, then a variable assignment for (X,V) in I is a pair of mappings
v = (vx,vy) where vx: X — T'sy4 is a type variable assignment and vy:V — S’
with (S7,6") := Uy ((S,0)) and vy (2:7) € S, (= S, (r)) for all z:7 € V.

In many-sorted logic, a canonical interpretation for a signature is the term
interpretation where the carrier sets consist of well-typed terms. In a term inter-
pretation every variable assignment can be uniquely extended to a homomorphism.
In our typed framework the situation is more complicated because a variable may
correspond to syntactically different terms. For instance, if s; = sy € Taz, then
the variable z:s; € V' corresponds to the (X, X, V)-terms z:s; and z:s2. In order
to identify such syntactically different terms, we define canonical terms as terms
where the type annotations are replaced by equivalence classes of types. For this
purpose we define a mapping C which replaces all type annotations in a typed
term by equivalence classes of types ([7] denotes the equivalence class of the type
7 defined by [r] = {7 | T =7 7'}):

o C(x:r') :=a:[r] forall z:r € V and 7’ =7 7

o C(f(t1:m,. . tniTpn)iT) = f(C(t1:m), .., Ctn:mn)):[r] for all
frm, .. tpm):m € Terms (X, V) (n > 0)

CTermyx(X,V) :={C(t:7) | t:1 € Termx(X,V)} is the set of canonical terms.
Now we are able to define the canonical term interpretation Ts (X, V) over
X and V:

Ts(X,V) := (Trex(X), S,), where

1. Tree(X) := T7(X)/ =14z is the quotient of the algebra of type expressions
by the congruence relation =7,, generated by the axioms in the type spec-
ification T = (T's,Top,Tax) (the elements of the domain of Tr.,(X) are
equivalence classes of types).

18 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

2. For all [7] € Traq(X),

S = {t:[r] | t:[r] € CTerms=(X,V)}

3. If f:[n1],...,[ma] = [7] € Funcr,,, (x) and t:[1;] € S[,) fori =1,...,n, then
N T i T T | Y IO A | Y D IR i A ' R 1) DR

4. Opiiry),....irn] = 0 for all p:[m1],...,[7.] € Predrp,,, (x).

The mappings dy.(7,],....[r,]—[r] in the definition are well-defined by lemma 3.7. Sim-
ilarly to the notion of “term algebra” in the field of algebraic specification [EM85], a
term interpretation Ts (X, V') does not interpret the predicates but supplies a stan-
dard structure with objects built from functions and typed variables. Therefore
the denotation of predicates are empty sets.

Now we are able to show that any variable assignment can be uniquely extended
to a homomorphism:

Lemma 3.8 (Free term structure) Let (A, S,d) be a S-interpretation and v =
(vx,vy) be an assignment for (X,V) in (A,S,§). There exists a unique Y-
homomorphism (o,h) from Tx(X, V) into (A, S,d) with o([a]) = vx(a) for all
a € X and h(z:[1]) = vy (z:7) for all z::T € V.

Proof: By lemma 3.6, vx can be uniquely extended to a 7T-homomorphism
0:Trq,(X) — A with the property o([a]) = vx(a) for all @« € X. We define a
Y (Tr4z(X))-homomorphism h from Tx (X, V) into U, ((S, d)):

1. h(z:[r]) := vy (a:7) for all z:7 € V.
(

Do

. h(e:[T]) = beimso((r]) € So(ir)) for all e: = 7 € Funer, (x)-

3.

h(f(ti:[mi]y ootz [T]):T]) 2= Opiotml) o ((ra) o (e (R(ELE[TL]) s - o oy Btz [T]))
for all f:ri,..., 7 — 7 € Funcr,(x) and all t;:[1;] € CTerms(X,V).

Clearly h is a ¥(T7q,(X))-homomorphism. Hence (o,h) is a L-homomorphism.
To proof uniqueness of this homomorphism, we assume another ¥-homomorphism
(o' h") from Tx(X,V) into (A4,S,d) with ¢'([a]) = vx(a) for all « € X and
W (xz:[7]) = vy (z:7) for all z:7 € V. ¢ = o' by lemma 3.6. We show h = &'
by induction on the term structure:

1. x:r € Vi b (x:[1]) = vy (2:7) = h(z:[1]).

2. ¢ = 17 € Funcy,(x): V(7)) = 0esor (1)) = demsa((r)) = hle:[T]).

3.3. SEMANTICS OF TYPED LOGIC PROGRAMS 19

3. f(ti:[n], .- tn:[m]):[r]) € CTerms(X, V), n > 0:

R (f(ti:[m], - -5 tnz[ma]):[7])
= Ot ((ma)) s ([(ral) = (7)) (B (E1:[T1])5 - B (E2[T])
= Ofo(ira))o([ral) o (i) (A(ET]), - B(Eni[T0]))
= h(f(t:[nls s tui[mal):[7])

This lemma is only valid if Tx(X,V) and the T-algebra A satisfies all equations
from Tax. If this is not the case, there exist several different ¥-homomorphisms
which extend the variable assignment. For instance, if s; = s € Tax and A has
different interpretations of the sorts s; and s», then the terms z:s; and z:s, may be
mapped into different values by different homomorphisms, provided that z:s; € V.

As a special case (X = V = @) the lemma shows that every ground term
without type variables corresponds to a unique value in a given Y¥-interpretation.
Generally, any variable assignment v can be extended to a ¥-homomorphism in a
unique way. In the following we denote that ¥-homomorphism again by v. Since
vx and vy are only applied to equivalence classes of type expressions and canonical
terms, respectively, we omit the indices X and V and write v for both vx and vy .

We are not interested in all interpretations of a polymorphic signature but only
in those interpretations that satisfy the clauses of a given typed logic program. In
order to formalize that we define the validity of atoms, goals and clauses relative
to a given Y-interpretation I = (4, S, 4):

e Let v be an assignment for (X, V) in I.

I,y LifL=p(t:mn,... tym)isa (X, X,V)-atom with

(W(C(ti1:m)), ..., v(C(tn:my))) € 5;):[,.1],___’[%]

where U,((S,9)) = (5',4"), i.e., & d

2 Opifralenfral =

LvEGifGisa (X, X,V)-goal with I,v = Lforal L € G

p:o([r1])s-v([mn]) -

I,v EL « Gif L «+ Gisa (3,X,V)-clause where I,v |= G implies
ILvEL

e I,V E Fif Fisa (%,X,V)-atom, -goal or -clause with I,v = F for all
variable assignments v for (X,V) in I

We say “L is valid in I” if I is a S-interpretation with I,var(L) |= L (analogously
for goals and clauses). A Y-interpretation I = (4, S, §) is called model for a typed

20 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

logic program (X,C) if I,var(L < G) |= L + G for all clauses L < G € C. A
(2, X,V)-goal G is called valid in (X, C) relative to V if I, V = G for every model
I of (,C). We shall write: (¥,C,V) E G.

This notion of validity is the extension of validity in untyped Horn clause logic
to the typed case: In untyped Horn clause logic an atom, goal or clause is said to
be true iff it is true for all variable assignments. In the typed case an atom, goal or
clause is said to be true iff it is true for all assignments of type variables and typed
variables. The reason for the definition of validity relative to a set of variables
is that carrier sets in our interpretations may be empty in contrast to untyped
Horn logic. This is also the case in many-sorted logic [GM84]. Validity relative
to variables is different from validity in the sense of untyped logic. An example
for such a difference can be found in [Han89a], p. 231. Validity in our sense is
equivalent to validity in the sense of untyped logic if the types of the variables
denote non-empty sets in all interpretations. But a requirement for non-empty
carrier sets is not reasonable in the context of polymorphic types.

Example 3.9 The following interpretation is a model for the program of ex-
ample 3.2. The type specification is interpreted by the 7T -type algebra A =
(T'sa,Topa) where T'sa = {nat, zero,posint} and Topa contains the functions
zerog with zeroa() = zero, posinta with posint () = posint, and nats with
nata(r) = 7 for all 7 € T's4. The carrier sets of the interpretation are:

Szero = {0}
Sposint = {n € Nat | n > 0}
Snat - Szero U Sposint

The constant 0 and the function s are interpreted as follows:

60:—>zero =0

6s:zero—>posint (0) =1

6s:posint—>posint (n) =n+1 forall n€ Sposint
6s:nat—>posint (n) =n+1 forall n € Syt
6plus:nat,nat,nat = {(n17n27n3) € Nat? | ni +ne = TL3}

The remaining interpretations of plus are the restriction of dpjus:nat,nat,nat t0 ap-
propriate subsets. It is easy to show that this interpretation is a model.

3.4 Deduction and Initial Models

In order to define the semantics of typed logic programs we have used canonical
terms which are annotated with equivalence classes of types. Since these equiv-
alence classes are sets which may contain an infinite number of elements, this

3.4. DEDUCTION AND INITIAL MODELS 21

representation is unsuitable for proof procedures like deduction or resolution. Such
proof procedures should work on well-typed terms which can be easily handled.
Therefore we have to define substitutions on well-typed terms and introduce a
relation on well-typed terms that establishes the link to canonical terms.

3.4.1 Typed substitutions

Let u: X — T7(X) be a mapping from type variables into type expressions and
val: V — Terms(X,V') be a mapping from typed variables into well-typed terms
over X and V' with the following properties:

e 4 is a type variable assignment.

e val(z:T) = t:u(r) for all z:7 € V, i.e., typed variables of sort 7 are mapped
into well-typed terms of type u(7).

We extend the mappings p and val to mappings on types and well-typed terms,
respectively, in the following way:

e u(b) = b for all basic types bin T.

o u(h(r,...,m)) = h(u(r1),- .., u(r)) for all n-ary operation symbols h in T
(n > 0) and all appropriate types 11, ..., € T7(X).

o val(z:7') = t:pu(r') for all z:7 € V with val(z:7) = t:u(7) and 7' =7 7.
e val(c:t) = e:u(r) for all well-typed constants c:7 € Terms (X, V).

o val(f(tr:m, ..., tn:Tn):m) = f(val(ty:m),...,val(ty:1,)):u(r) for all well-
typed terms
frm, .. tpm):m € Terms (X, V), n > 0.

The mappings are similarly extended on atoms, goals and clauses. We call (u,val) a
typed substitution. Subs (X, V, V') denotes the class of all typed substitutions
from (T'r(X), Terms(X,V)) into (T1(X), Terms (X, V")). idx,v € Subs(X,V,V)
denotes the identity in Subs(X,V,V). tdom(o) = {a € X | o(a) # a} is the
type domain of a typed substitution o. A typed substitution keeps the set of
type variables X but may change the set of typed variables because the types of
the variables influence validity (see Section 3.3). Sometimes we represent typed
substitutions by sets. For instance, the set

o ={a/nat, z:a/0:nat}

represents a typed substitution that replaces the type variable a by the type nat
and the typed variable z:a by the term 0:nat. Hence the result of applying o to
the atom p(z:«, y:«) is the atom p(0:nat, y:nat).

The next lemma shows that val is well-defined:

22 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Lemma 3.10 Let (u,val) defined as above. Then wal(t:t) = thu(r) €
Termxs (X, V') for all well-typed terms t:7 € Termg(X,V).

Proof: By induction on the structure of all well-typed terms from Termy(X,V):

e z:7" where z:7 € V, 7' =1 7 and val(z:7) = t:u(7): By definition, val(z:7") =
t:pu(7"). t:u(r) € Terms (X, V') is a well-typed term and p(r) =7 p(r'). By
lemma 3.7, t:u(7') is also a well-typed term.

e c:7 where ¢: — 7. € Func and there exists a type substitution o with
o(1.) =7 T: poo is a type substitution with p(o(7.)) =7 wu(r). Hence
val(e:m) = c:u(r) is a well-typed term.

o f(t1:7,...,tn:7,):T where f:7y € Func and there exists a type substitution
o with o(ry) = 7,...,7» = 7 and 7' =7 7. poo is a type substitu-
tion with p(o(ryp)) = p(m),...,uw(m) — p(r') and p(r') =7 p(r). Hence
val(f(t1:m, .- tnmn):m) = f(val(ti:m), - .., val(ty:m,)):u(7) is a well-typed
term since val(t;:r;) = ti:u(r;) is well-typed for ¢ = 1,...,n by induction
hypothesis.

The following lemma states the relationship between typed substitutions and
Y-homomorphisms on canonical term interpretations:

Lemma 3.11 Let (u,val) € Subs(X,V,V') be a typed substitution. Then there
exists a unique Y-homomorphism o from Tx(X,V) into T (X, V') with

e o([a]) = [u(@)] for all « € X
o o(z:[r]) = C(val(z:7)) for all 27 € V

Furthermore,
o([r]) = [u(r)] for all 7 € Tr(X) (1)

nd
) o(C(t:7)) = C(val(t:7)) for all t:7 € Terms(X,V) (2)

Proof: Let ox: X — Tr..(X) be defined by ox(«a) := [u(a)] for all « € X.
By lemma 3.6, there exists a unique 7-homomorphism o: T, (X) — Tra.(X)
with o([a]) = ox(a) for all & € X. If ox also denotes the unique extension
ox:T1r(X) = Tre(X) (which exists by lemma 3.5), then o has the property
ox = o onat where nat is the canonical 7-homomorphism nat(r) = [7] for all
T € Tr(X) (cf. [EM85], p. 82). We show (1) by induction on the size of 7:

e o([a]) = ox(a) = [u(a)] for all a € X.

3.4. DEDUCTION AND INITIAL MODELS 23

e o([b]) = ox(b) = [b] = [(b)] for all basic types bin T.

e For all n-ary operation symbols h in 7 and all appropriate types 7i,..., ™, €
Tr(X):

o([A(r1;- . n)])

= ox(h(r,...,m))

= h(ox(m),...,ox(m)) (I is the interpretation of h in Tra, (X))
= h(e(n),...,o(m])

= B(u(m)],...,[w(m)]) (by induction hypothesis)

= [h(u(r),...,pu(m))] (by definition of h')

= [u(h(r1,...,70))]

Let oy:V — CTerms(X,V') be defined by oy (z:7) := C(val(z:7)) for z:7 €
V. wal(xz:7) is a well-typed term of type u(r), hence C(val(x:7)) has the form
t:[u(1)] = t:o([r]) = t:ox(r). Therefore (ox,0v) is a variable assignment for
(X,V) in Tx(X,V') which can be uniquely extended to a ¥-homomorphism o
from Tx(X,V) into Tx(X, V') by lemma 3.8. We prove (2) by induction on the
size of terms:
e For all z:7 € V with val(x:7) = t:p(7) and 7" =7 71 o(C(z:7")) = o(2:[7']) =
o(z:[1]) = ov(x:m) = C(val(z:7)) = C(t:p(7)) = C(t:pu(7")) = C(wal(z:7")).
e o(C(c:r)) = o(e:r]) = e:o([r]) = e:[u(r)] = Cle:u(r)) = C(val(e:T)) for all
constants ¢:t € Terms (X, V).

e For all terms f(t1:71,...,tn:Tn):T € Terms(X,V), n > 0:
o(C(f(tr:mr, .. ytnmn)iT)) = o(f(C(t1:im),. .., Cltnimn)):[T])
(0 (C(t: Tl)) ;0(C(tn:mn))):o([7])
(C(val(tl.ﬁ)), co o, Clval(tnimy))): [p(T))
(f(
(

f
f
C

fal(ty:my), ... val(ty:Tn)): (7))
= Cval(f(ti:m1,- .-, tn:Tn):T))

Uniqueness can be simply shown by induction on the size of terms. [|

The above lemma shows that typed substitutions which are directly applied to
well-typed terms correspond to ¥-homomorphisms between canonical term inter-
pretations in a unique way. Hence 6 denotes the ¥-homomorphism from T (X, V)
into T (X, V") corresponding to the typed substitution o € Subs(X,V,V’'). The
following lemma shows a relationship between variable assignments and typed sub-
stitutions w.r.t. validity:

24 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Lemma 3.12 Let I be a X-interpretation, G be a (¥,X,V)-goal, o €
Subs(X,V,V") and v be a variable assignment for (X,V') in I. Then I,v |= o(G)
iff Lvod |EG.

Proof: Let G, o, v = (vx,vy) and I = (A4,S,6) be given. The composition
v’ := v o & between X-homomorphisms is defined by v' = (v, vi,) with v ([a]) =
vx (6 ([a])) for all & € X and

vy (@:[1]) = (Us (vv) 0 6) 1 (2:[7]) = vy (6 (2:[7]))

for all z:7 € V. Thus v' is a variable assignment for (X, V) in I. Let p(...t;:7;...) €
G. Then

)

Lvl=o(p(...tim..

— ILuvEp(..oim)...)
= (ov(Clo(tim))) .-) € Opivx (5(m))-
& (...ov(6(C(timi))) .- .) € Opiwx(6([r)))... (Dy lemma 3.11)
— (..o (Ctim))...) € Op:...v'y ([i])...
— LvEp(. tim...)
This proves the lemma. u

A term t' € Termg(X, V') is called an instance of a term ¢t € Termx(X,V)
if a typed substitution o € Subg(X,V,V’) exists with t' = o(t). The definition
of instances can be extended to atoms, goals and clauses. We omit the simple
definitions here. The next lemma shows the relationship between the validity of a
clause and the validity of all its instances:

Lemma 3.13 Let I = (4, S,d) be a X-interpretation and L < G be a (£, X,V)-
clause. Then:

IVEL+G < LV'Eo(L) < o(G) forallo € Subs(X,V,V")

Proof: The direction “<=" is trivial if we use the identity idx for the typed
substitution o. Let I,V | L + G and o € Subx(X,V, V') be a typed substitution.
We have to show I, V' |= 0(L) < o(G). Let v be a variable assignment for (X, V")
in I with I,v | o(G) (if there exists no such variable assignment, I, V' = o(L) «
o(G) is trivially true). Lemma 3.12 yields I,v 0o 6 = G. This implies [,voé |= L
since I,V = L + G. Again by lemma 3.12, it follows I,v = o(L).

Along with a set of X-clauses C' we define the set of instantiated clauses C as
follows:

C = {L+ G| L+ G is an instance of a clause from C'}

3.4. DEDUCTION AND INITIAL MODELS 25

The set C contains all clauses which are obtained from clauses in C by substituting
type expressions for type variables and well-typed terms for typed variables.

Corollary 3.14 A Y-interpretation is a model for (£, C) iff it is a model for (X, 6)

Proof: The theorem follows by definition of C and lemma 3.13. [|

3.4.2 Equality w.r.t. the type structure

Our proof procedures (deduction, resolution) manipulate only well-typed terms
and use typed substitutions. For that purpose we define an important relation
on well-typed terms: Two Y-terms ¢ and t' are called T-equal, denoted t =7 ¢,
if C(t) = C(t'). T-equality on atoms is analogously defined. Two finite sets of
typed variables Vi and V5 are called T-equal if Vi = {z1:&,...,2m:&n}, Vo =
{z1:&1, .., xm:g,and & =7 & fori=1,...,m.

Example 3.15 If the type specification of example 3.2 is given, then the following
pairs of well-typed terms are 7 -equal:

O:nat(zero) =7 0:zero

N:posint =1 N:nat(posint)

The proof of the following two lemmas is straightforward:

Lemma 3.16 If two X-terms t and t' are T-equal, then var(t) and var(t') are
T -equal sets of typed variables.

Lemma 3.17 If two X-terms t and t' are T -equal, then all instances o(t) and o(t")
are T -equal.

The next lemma shows that 7-equal atoms have the same meaning in all inter-
pretations:

Lemma 3.18 Let ¥ be a polymorphic signature, V' be a set of typed variables,
and Ly and L be two T-equal (2, X,V)-atoms. If I is a Y-interpretation and v is
a variable assignment for V in I, then:

ILvEL = Iv Ly

26 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Proof: Let I = (A,S,d) be a X-interpretation and v be a variable assign-
ment for V in I. Let L; and L, be two T-equal (X,X,V)-atoms. Hence
Ly = p(ti:m, ..., teemk), Lo = p(thery, ... tomy), and ¢y =7 ther] fori=1,... k.
By definition of T-equality, v(C(t;:7;)) = v(C(t;:7)) for i = 1,...,k. I,v = Ly is
equivalent to

((C(t1:m1)), ..., v(C(triTs))) € §pIU([T1])7---7U([TIc])

Since [r;] = [r]] for i =1,...,k, we obtain
(W(C(t1:m1)), - - v(C(E:TL))) € Spru(ir])nu((7))
which is equivalent to I,v |= Lo. The other direction is symmetric. []

3.4.3 The typed Horn clause calculus

This section presents an inference system for proving validity in typed logic pro-
grams. In contrast to the untyped Horn clause calculus it is necessary to collect all
variables used in a derivation of the inference system since validity depends on the
types of variables. Let (X, C) be a typed logic program. We assume that equal-
ity between types (relation =7) is decidable. The typed Horn clause calculus
contains the following inference rules (remember that goals are finite sets of atoms
and therefore we use set notations for the modification of goals):

1. Axioms: If V is a set of typed variablesand L + G € C'isa (X, X, V)-clause,
then (X,C, V) F L + G.

2. Substitution rule: If (X,C,V)F L« G and ¢ € Subs(X,V, V'),
then (X,C, V') F o(L) + o(G).

3. Cut rule: If (X,C,V)F L + GoU{Lo}, (X,C,V) F Ly + G1, and Ly =7
Lla
then (E,C,V) FL+ GyUuGs.

We write (X,C,V) F L if (3,C,V) F L < 0 can be deduced by these inference
rules.

The soundness of the typed Horn clause calculus can be shown by proving the
soundness of each inference rule:

Theorem 3.19 (Soundness of deduction) Let (X,(C) be a typed logic pro-
gram, V be a set of typed variables and L be a (X, X, V)-atom. If (X,C,V) L,
then (£,C,V) = L.

Proof: Let M be a model for (¥, C). By induction on the length of a deduction we
show that M,V; = L; + G, for each element (X,C,V;) - L; + G; in a deduction
for L < (.

3.4. DEDUCTION AND INITIAL MODELS 27

1.

Azioms: If L; «+ G; € C, then M,var(L; + G;) E L; + G;. Let v
be a variable assignment for (X,V;) in M (if there exists no such variable
assignment, then M,V; = L; + G is trivially true). Let v’ be the restriction
of v to (X,var(L; + G;)). Then M,v' = L; + G; is true and therefore
M,v |= L; + G is also true.

. Substitution rule: Let o € Subs(X,V;,V/) be a typed substitution, & be

the corresponding ¥-homomorphism (cf. lemma 3.11) and v’ be a variable
assignment for (X,V/) in M (if there exists no such variable assignment,
then M,V |= o(L;) + o(G,;) is trivially true). v := v’ o 6 is a variable
assignment for (X,V;) in M. By induction hypothesis, M,v = L; + G;.
Suppose now that M,v' | o(G;). Lemma 3.12 yields M,v E G;. This
implies M,v |= L; and, again by lemma 3.12, M,v" &= o(L;). Therefore,
M,U’ |: O'(Ll) — O'(Gl)

Cut rule: Let (X,C,V;) b L; + G; U{L}} and (X,C,V;) F L; < G, be
elements of the deduction with V; = V; and L} =7 L;. Let v be a variable
assignment for (X,V;) in M with M,v = G; UG (if there exists no such
variable assignment, then M,V; = L; + G; UGj is trivially true). By
induction hypothesis, M,v = L; < G; U{L}} and M,v |= L; + G;. Since
M,v |= Gj, we obtain M,v = L; which is equivalent to M,v = L} by
lemma 3.18. On the other hand, M,v = G;. Hence M,v E G; U{L}} and
M,v |= L;. Therefore, M,v = L; < G; UG}, as required.

The completeness of deduction is proved by the construction of a particular
model that is the extension of a free term interpretation to an interpretation with
particular predicate denotations.

Let V be a set of typed variables. The deductive term interpretation
Ts (X, V) of the typed logic program (X, C) is the triple (Trq.(X), S, d) with:

1.

Trax(X) :=T7(X)/ =raz, the quotient of the algebra of type expressions by
the congruence relation =p,, generated by the axioms in the type specifica-
tion T = (T's,Top, Taz).

. For all [1] € Tra.(X),

S = {t:[r] | t:[1] € CTerms=(X,V)}

If f:r],...,[m] = [7] € Funcr,,,(x) and t;:[1;] € Sj,,p for i = 1,...,n, then

R T i T T (T | Y IO 2 | Y D IR i AR ' R DR

28 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

4. If pi[m],...,[mn] € Predr,,,(x), then

Opifrilyeonlra] i= {(tr:[n1], - stni[ma]) | (B,C V) Ep(tyir, ... th 7)) and
ti:[r] = C(th:r))}

The difference between Tx(X,V) and Tx o(X,V) is the denotation of predicate
symbols.

The completeness proof of the typed Horn clause calculus is based on the fact
that Ts (X, V) is a model for (X, C). Therefore we need the following lemma:

Lemma 3.20 Let (X,C) be a typed logic program and V be a set of typed vari-
ables. Ts, (X, V) is a model for (X, C).

Proof: 1t is clear by the above definition that Tx ¢ (X, V) = (T14:(X), S,d) is a -
interpretation. We have to prove that all clauses from C are valid in Ty, (X, V).
Let L + G be a clause from C and v be a variable assignment for (X,V;) in
Ts.c(X,V) with Ts, (X, V),v | G, where V. := var(L < G). v(a) € Tre(X)
for all « € X and v(z:7) € Sy(7) for all z:7 € V,, i.e., each variable from X and V.
is mapped into an equivalence class of types and a canonical term, respectively. We
choose from each equivalence class v(a) a representative 7, with v(a) = [r,] and
for each canonical term v(z:7) a well-typed term t,:7, with v(z:7) = C(ty:72). We
define a typed substitution by v'(a) = 7, for all @ € X and v'(z:7) = t,:0'(7) for
all z:7 € V., (t,:0'(7) is a well-typed term by lemma 3.7 since [r,] = v(1) = [v'(7)]).
Lemma 3.11 yields v([r]) = [v'(7)] for all 7 € Tr(X) and v(C(t:7)) = C(v'(t:7))
for all :7 € Termx(X,V,). If G = Ly,..., L, then Ty «(X,V),v = L;, for
1=]., ey k. If Ll = pi(tiln'ila e atini 3Tini) we obtain

((C(tin:min)), -, v(Ctin: 1Tin:))) € Opiiv(iraa])e.v((rin,])
and, by lemma 3.11,
(C'(tinemin))y - -+, CV (Fing :Ting))) € Opyefur (rea)]svo [0 (7im)]
By definition of T (X, V), there exists a (X, X, V)-atom L} with
(E,C,V) = Li and LI sz((il- Tll) 7vl(tini :Tini))

On the other hand, (X,C,V,) F L < G is true, and therefore (X,C, V) F v'(L) <
v'(G) by the substitution rule. By the cut rule, we can infer (X,C,V) F v'(L) .
If L =p(ti:m1, ..., tn:Ty), then

(Ea C7 V) = p(vl(tl:Tl)a s avl(tn:Tn))
By definition of Tx (X, V),

(CW'(t1:m1)), -, C(U (tn:T0))) € Opifvr (71)],ons[” (7))

3.4. DEDUCTION AND INITIAL MODELS 29

Lemma 3.11 yields

(U(C(tl:ﬁ)), . ,U(C(tn:Tn))) € 5p:v([-rl])7...7v([-rn])

which implies Ts (X, V),v = L. [|

Now we are prepared to state the completeness of the typed Horn clause calcu-
lus:

Theorem 3.21 (Completeness of deduction) Let (X, C) be a typed logic pro-
gram, V' be a set of typed variables and L be a (X, X, V')-atom with (£,C,V) E L.
Then there exists a (¥, X, V)-atom L' with L =y L' and (£,C,V) F L',

Proof: Let (X,C,V) = L and L = p(t1:11,...,tp:7). By the last lemma,
Ts.c(X,V) = (T14(X), S, 0) is a model for (¥,C). This implies s «(X,V),V E
L. In particular we have Ty «(X,V),id = L (where id(a) = [a] for all & € X and
id(z:7) = x:[7] for all z:7 € V') which implies

(C(t1:m1), -, C(tniTn)) € Opifr],.ra]

By definition of T% ¢(X,V), there exist ti:r] (i = 1,...,n) with (X,C,V) F L'
where L' = p(ty:7y,...,t,:7) and C(t;:1;) = C(t,:7]) for i = 1,...,n. Thus L =
L', as required. [|

The typed Horn clause calculus is only complete up to 7 -equality since 7 -equal
atoms are only compared in the cut rule. For instance, if

p(0:zero)

is the only clause for predicate p:a and zero =7 nat(zero), then (X,C,0) =
p(0:nat(zero)) (by lemma 3.18), but (X,C,0) F p(0:nat(zero)) is not provable
in the typed Horn clause calculus.

3.4.4 Initial model

This section shows the existence of an initial model for any typed logic program.
The carrier set of this initial model contains all canonical terms without type
variables and typed variables. This result is a consequence of the previous section
on the typed Horn clause calculus.

Theorem 3.22 (Initial model) Let (X,C) be a typed logic program. Then
Ts,c :=Ts,c(0,0) is initial in the class of all models for (X, C).

30 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Proof: Let Ts. ¢ = (Traz,S1,91). By lemma 3.20, this is a model for (£,C). Let
I =(4,S,0) be another model for (X, C) and Tx(0,0) be the term interpretation
with ground terms. By lemma 3.8 (free term structure), there exists a unique
Y-homomorphism (o,h) from Tx(},0) into I. In order to show that (o,h) is a
Y-homomorphism from Tx, ¢ into I, we have to prove the following implication

(tl:[Tl]’ R ’tn:[Tn]) € 6I,p:[T1],...,[Tn] = (h(tl:[Tl])a EEE) h(tn[Tn])) € 5p:0([r1]),...,0([rn])

because the only difference between T (0, #) and T ¢ is the denotation of predicate
symbols.

Let p:[r],...,[m] € Predry,, and (ti:[n1],...,tn:[Ta]) € Orpir),..ira]- BY
definition of Tx, ¢, there exist t;:7] with C(¢;:7}) = t;:[;] (i =1,...,n) and

(%,C,0) Fp(th:r, ... 1)

Theorem 3.19 implies (X, C, 0) = p(ti:7, ..., th:7).

= L0 Ep(tr,... t:7)

— L(o,h) B pltrl, i)

— (O O € Bpirtynartiny)

- (h(t1:[1]), -, h(tn:[ma])) € (51,:(,([.,-1]),___’0([.,-"])

Therefore (o, h) is a £-homomorphism from T, ¢ into I which implies the initiality
of Ts.c. |

3.5 Unification

In logic programming we are interested in a systematic method for proving validity
of goals. The typed Horn clause calculus is very inefficient for this purpose. In
untyped Horn clause logic the resolution principle [Rob65] is the basic proof method
where a most general unifier of two atoms must be computed in each resolution step.
We need a similar operation for the resolution method in our typed framework.
As in order-sorted logic, the unification problem is not unitary in our general
framework and therefore complete sets of unifiers must be considered. This section
defines the unification w.r.t. a type specification 7 and presents a non-deterministic
algorithm for computing complete sets of unifiers.

Example 3.23 Consider example 3.2. The first clause for plus
plus (0:nat(zero) ,N:nat(a) ,N:nat(«))
cannot be applied to prove the goal

plus (N1:nat(posint) ,N2:nat(3) ,N3:nat(y))

3.5. UNIFICATION 31

since this would cause the binding of variable N1 to 0 which yields the ill-typed
term 0:nat(posint). In order to avoid such bindings, the unification procedure has
to take into account that N1 and 0 have the non-unifiable types nat(posint) and
nat(zero). On the other hand, if the clause

p(N:nat(zero)) <+ ---
is applied to prove the goal
p(N1l:nat(a))

then the variable N1 is constrained to type nat(zero) which may avoid some un-
necessary search and backtracking steps in the subsequent proof. Therefore the
unification procedure has to consider the types of the terms. An untyped unifica-
tion cannot be applied in our framework.

We have mentioned in Section 3.4 that our proof procedures should manipu-
late well-typed terms rather than canonical terms. Therefore we have introduced
typed substitutions which are mappings on type expressions and well-typed terms
and directly related to ¥-homomorphisms between canonical term interpretations.
Hence we want to define a unifier w.r.t. a type specification 7 as a distinct typed
substitution. Since the composition of two typed substitutions is again a typed
substitution, we can define the following notions (we assume that V, V;, V, are sets
of typed variables):

e Let 0,0' € Subs(X,V,V]) be typed substitutions. We write ¢ =7 o' iff
o(a) =7 o'(a) for all « € X and o(x:7) =7 o'(x:7) for all z:7 € V.

e Let 0 € Subx(X,V,V;) and o' € Subs(X,V, V) be typed substitutions. o is
more general than ¢’ w.r.t. 7 or ¢’ is a T -instance of o, denoted o <7 ¢/,
iff there exists ¢ € Subs(X, Vi, V32) with poo =7 o',

e Let ¢ and ¢’ be (X, X,V)-terms. ¢ and ' are T-unifiable if there exists a
typed substitution o € Suby(X,V, V') with o(t) =7 o(t') for a set of typed
variables V'. In this case o is called a T -unifier for ¢ and ¢'. By SUr(¢,t')
we denote the set of all T-unifiers for ¢ and ¢'.

e Let ¢t and ¢’ be (X,X,V)-terms. We call a set of typed substitutions
CSU(t,t') a complete set of T-unifiers for ¢ and ' if the following
conditions hold:

- OSU’T(tatl) - SUT(tatl)

— For all ¢’ € SUF(t,t") there exists a typed substitution o € CSUF(t,t')
with o <7 ¢'.

32 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

ung

(T) (o, (ti:m = ta:me, Ey)) (poa, (p(ti:m) = ¢(t2:12), B(Er)))
if QS € CSUT(Tl,T2) and not T =T T2

(E1) (o, (z:7 = t:7',E,.)) unif (¢’ oo, o'(E,))
if r=77',x € Var, x does not occur in t:7" and o' = {z:7/t:7}

ung

(E2) (o, (t:7' = x:1, E})) (¢’ o0, o'(E,))
if r=77',x € Var, x does not occur in t:7" and o' = {z:7/t:7}

(D) (o, (f(tr,...,tn):T = f(t),...,th):T", E.)) un (o, (t1 =t],...,th =
th, Er))

if =77 (n>0)

Figure 3.2: Rules for T-unification of well-typed terms. In the first rule (T) the
type substitution ¢ is extended to a typed substitution by ¢(z:7) := z:¢(7) for
all z:7 € V' if 0 € Subs(X,V,V').

T-unifiers and complete sets of T -unifiers for type expressions are analogously
defined as particular (sets of) type substitutions.

Obviously, the set of all 7T -unifiers is also a complete set of T -unifiers, but
usually we are interested in algorithms which enumerate a complete set of T -unifiers
with some minimality condition. We do not discuss this in detail here. We assume
a given algorithm that enumerates a complete set of T-unifiers for two arbitrary
type expressions and construct an algorithm which enumerates a complete set of
T-unifiers for two arbitrary well-typed terms. We formulate the algorithm as a
non-deterministic procedure for computing a 7 -unifier for a given list of pairs of
well-typed terms.

For that purpose we define a binary relation i on pairs of the form (o, E)
where ¢ is a typed substitution and F is a list of appropriate equations, i.e.,
if 0 € Subs(X,V, V') then E is a list of pairs of (X, X,V’)-terms. We write
(t = t', E,) for an equation list where the pair (¢,¢') is the first equation and E.,

is the list of the remaining equations. The relation g is defined by the rules
in figure 3.2. In the first rule (T) the result types of the left-hand side and the
right-hand side of the first equation are unified by a T -unifier, i.e., the result types
are T -equal after an application of this rule. 7T -equality of these result types is
a precondition for the applicability of the other rules. The rules (E1) and (E2)
eliminate an equation containing a variable in one side. The typed substitution
o' in these elimination rules is well-defined since ¢:7 is well-typed by 7 =7 7’ and

3.5. UNIFICATION 33

lemma 3.7. The rule (D) decomposes an equation if the left-hand side and the
right-hand side are compound terms with the same main functor and arity.

unift ey uni, ep s
Let 22 be the transitive closure of “22. The result of unifying the (¥, X, V)-
terms ¢ and ¢’ is the set

unift
Unif(t,t') :=={ o | (idx,v,({t=t)) (0,0) }
where () denotes the empty list of equations.

unif T

Note that 24" is an extension of Robinson’s unification algorithm [Rob65]
[BC83]: If one term is a variable which does not occur in the other term, then this
variable is bound to the other term. If two composite terms have to be unified, then
all corresponding components of the terms are unified. The only (but essential)
difference is that the types of two terms are T -unified before the terms will be
unified.

We will show that Unif(t,t') is a complete set of T-unifiers for ¢ and ¢'. First
we show that there are no infinite chains in the computation of Uni f(¢,t'):

Lemma 3.24 Let t and t' be (X, X,V)-terms. Then any sequence

(idxv,(t=t)) 2 (0, E) 24 (00, B) 24 ...
terminates.

Proof: We define the complexity ||¢:7|| of a term ¢:7 by
e ||z:7'|| := 1 for all variables z:7 € V

o ||f(ti:m, .. tnm) Tl = ||t + - 4 |||l + 1 for all terms
fltrm, .o tnimn):m € Terms (X, V) (n > 0)

and the type difference tdiff(t:7,t":7") of two terms by

M !
tdiff(t:r, t':r) = {0 ifr=77
iffiim, i) 1 otherwise

The complexity of a list of equations E = (t; = t},...,t; = t},) is defined to be the
triple

k
U wvar(t;) Uuvar(t})
i=1

1Bl = (L

where |- --| denotes the cardinality of a set. The lexicographic ordering on tuples
of natural numbers is a noetherian ordering, i.e., there is no infinite sequence

i=1

k k
Y NEl -+ N thiﬁ(ti,tb)
i=1

34 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

(e1,e32,€3,...) with e; > e;11. By definition of the relation g it is clear that

IE| > [|IE'|| if (o,E) uns (¢', E') since the first rule decrements only the third
component of the complexity, the rules (E1) and (E2) eliminate a variable which
reduces the first component of the complexity, and the last rule decreases the second

component of the complexity. Therefore any g—sequence terminates. [|

In the proofs of the following lemmas we use the notion of 7 -unifiers on lists of
equations: If (¢; = t},...,ty = t) is a list of equations, then a T-unifier for this
list is a typed substitution that 7-unifies each pair t; = ¢} (i = 1,...,k). The next
lemma shows the soundness of the 7 -unification procedure:

Lemma 3.25 Let ¢t and t' be (X, X,V)-terms and o € Unif(t,t'). Then o €
SUr(t,t'), i.e., o is a T -unifier for t and t'.

Proof: Since o € Unif(t,t'), there is a sequence

(00, Fo) 24 (01, B1) 24 ... 2L (o4, ()

where og = idx v and Ep = (t =t'). We show by induction on the elements of the
sequence: For each 0 < ¢ < k there exists a typed substitution ¢; with o = ¢; o g;
and ¢; € SUT(E;).

For i = k we choose ¢ = idx,v (where o}, € Subs(X,V,V")). For the induc-
tion step we assume the existence of a typed substitution ¢; with o} = ¢; o o; and

¢; € SUT(FE;). Since (041, Ei—1) un (0, E;), there are four possible cases:

1. Rule (T) has been applied in this step. Then E;_; = (t;:71 = t2:72, E,.) and
¢ € CSUr(11,72) with 0; = po ;1 and E; = (¢(t1:11) = ¢(ta:m2), p(Ey)).
Hence o, = ¢;00; = ¢p;0¢p00; 1 = ¢p;_100;_1 with ¢; 1 := ¢; o p. Moreover,
if | = r occurs in E;_1, then ¢(I) = ¢(r) occurs in E; and ¢; is a T -unifier
for ¢(1) and ¢(r) which implies ¢; | € SUTF(E;_1).

2. Rule (E1) has been applied in this step. Then E;_; = (z:7 = t:7', E,) with
T=r 7,2 € Var, z & war(t:r'), o; = ¢’ o 0;_1 and E; = o¢'(E,) where
o' = {x:r/t:7}. Hence op = ¢p; 00, = ¢p;o00' 00;1 = ¢—1 001 With
¢i_1 := ¢; o o'. Moreover,

di1(z:r) = @00 (x:7)
= ¢i(t:7)
=7 ¢i(t:7") (since T =7 7')
= ¢;oo'(t:7") (since x & uvar(t:r'))

= ¢i_1(t2Tl)

3.5. UNIFICATION 35

If E, contains an equation [= r, then ¢'(l) = o'(r) occurs in E; and ¢;
is a T-unifier for ¢'(l) and o'(r), i.e., ¢;—1 is a T-unifier for I and r. Thus
¢i—1 € SUT(Ei—1).

3. The application of rule (E2) is symmetric to the previous case.

4. Rule (D) has been applied in this step. Then E;—y = (f(t1,...,tp):T =
f, ..t Ey) with 7 =7 7', 0, = 0,_1 and E; = (¢ = #],...,t, =
!, E.). Hence o = ¢; o 0; = ¢; o 0;—1. Moreover,

Gi(f(t1,. .. tn):T)
= f(gi(t1), ..., ¢i(tn)):¢i(7)
=T (¢z(t1)a --a¢z(n)) ¢z('
=7 f(Bilth), ... di(tn)):¢i(
= ¢i(f(th,. ..) T)

If E,. contains an equation | = r, then [= r occurs also in E;, i.e., ¢; is a
T -unifier for [and r. Thus ¢; € SUr(E;_1).

) (since 7 =7 7')

-
) (¢; € SUT(E;) by ind. hypothesis)

We obtain for i = 0: o} = ¢ © 09 = ¢ and oy, € SUT(t,1). [|
The next lemma shows the completeness of the T-unification procedure:

Lemma 3.26 Lett andt' be (X, X,V)-terms and @ € SUr(t,t"). Then there exists
a typed substitution o € Unif(t,t') such that § =1 ¢ o o for a typed substitution

0.
Proof: First we prove the following proposition:

Let o € Subs(X,V,V’) be a typed substitution, E be a non-empty list
of (X, X, V')-equations, § € SUr(E). Then there exists a pair (¢', E')

with (o, E) uni (¢/,E") and foo =7 ' oo’ for some typed substitution
0' € SUF(E").

To prove this proposition we assume a 7 -unifier # for the non-empty list of equa-
tions E. We distinguish the following cases:

1. E = (t;:71 = ta:m», E.) and not 7y =7 7. Since § € SUy(t1:71,t2:72), the
restriction of € on T'r(X) is also a T-unifier for 71 and 7». Hence there exists
a type substitution ¢ € CSUr(71,m2) with 0|7, (x) =7 1 o ¢ for some type
substitution . It is straightforward to extend ¢ and v to typed substitutions
such that @ =7 1po¢. Thus there is the following unification step by rule (T):

(0,E) "4 (poo,é(E))

36 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

and oo =7 popoo. To see that) € SUr(¢4(F)) assume an equation | =r
from E. Then

(o) =7 (1) =7 0(r) =7 ¥(o(I))
since 6 is a T -unifier for E.
2. E = (t;:11 = t2:7», E;) and 71 =7 7». Then there are the following cases:

(a) t; € Var: Since 0 is a T-unifier for t1:7 and ta:72, t1 & uvar(ty:m2) and
thus there is the following unification step:

ung

(0, E) (o' 00,0'(Er))

where o' is the typed substitution {¢:7; /t2:71}. It is easy to show that
foo’ =1 6 and therefore oo =1 foo’oo. To see that 8 € SUT(o'(E,))
assume an equation [= r from E,.. Then

(o' (1)) =7 0(1) =7 6(r) =7 6(c’())

since 6 is a T-unifier for E.
(b) t2 € Var: This is symmetric to the previous case.

(c) ti:m1 = f(r1,...,mn):71 and t2:7» is not a typed variable: Since 6 is a

T-unifier for ¢1:7; and t9:75, it must be ty:mo = f(r],...,r}):72. Then

»'n
there is the following unification step:

(0,E) 24 (o,(ry =7,,...,rn =1, E,))

nyHr

0 is a T-unifier for all equations r; = r} and for E, since 6 is a T -unifier
for E.

Hence the proposition is true. Let 6 be a T-unifier for the (X, X, V)-terms ¢ and
t'. By the above proposition, there is a sequence

(idxv,(t =t')) 24 (01, B1) 24 (0, Bo) 2 ...

with § =7 foidx vy =7 61 001 =7 03 009 =7 --- for some typed substitutions

01,05, ... Since all g—sequences are finite (lemma 3.24), there must be a last
element (o, () in the sequence. Thus oy € Unif(t,t') and 6 =1 6, o 5. [|

Theorem 3.27 (T -unification) Let ¢ and t' be (X,X,V)-terms. Then
Unif(t,t') is a complete set of T -unifiers.

3.5. UNIFICATION 37

Proof: Unif(t,t") C SUr(t,t") follows from lemma 3.25 and completeness follows
from lemma 3.26. [|

Example 3.28 Consider the polymorphic signature of example 3.2. The
terms O:zero and N:nat(a) should be unified by our unification procedure.
First, the types of terms zero and nat(a) are T-unified and the result is
the 7T -unifier {a/zero}. Then N is bound to 0 and the result is the T-
unifier {a/zero, N:nat(«)/0:nat(zero)}. For the unification of the terms
s (N1:nat(posint)) :posint and s (N2:nat(a)) :nat(posint) the following steps are per-
formed:

e The types posint and nat(posint) are T-equal and need not be unified.

e By the decomposition rule, the terms Ni:nat(posint) and N2:nat(a) are uni-
fied in the next unification step.

e The types nat(posint) and nat(a) are T-unified. The result is the type
substitution {a/posint}.

e N2 is bound to N1 (or vice versa). Thus the complete result of the unification
is the typed substitution

{a/posint, N2:nat(a)/N1:nat(posint)}
Example 3.29 Consider the following type specification 7 :

TYPEQOPS So0: — type
s1: type — type
so: type — type

TYPEAXIOMS s1(s9) = $o
sa(s0) = So

Thus sp is a common subtype of s; and s;. The unification of the typed terms
X:s1(a) and Y:so(f) requires a T-unifier for the type expressions s;(«) and s2(3)
which can be computed by the narrowing procedure (see remarks at the end of
Section 3.6). Hence the type substitution {a/so,5/so} is a T-unifier for the type
expressions si(«) and s2(83) and the typed substitution

{a/s0, B/s0, X:s1(a)/Y:51(s0)}

is a T-unifier for the terms X:s1(a) and Y:s5(3). Therefore the variables X and Y
are constrained to the common subsort so by the unification procedure (note the
analogy to order-sorted unification [SNGM89]).

38 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

In the next section we will see that resolution is a sound and complete proof pro-
cedure for typed logic programs if the unification procedure used in the resolution
steps computes a complete set of T-unifiers. Therefore the unification procedure
presented in this section gives us some information about the role of different type
systems for logic programming. We have seen that the classical unification algo-
rithm of Robinson can be adapted to the typed framework if the types of terms
are unified before unifying the terms. Hence our unification procedure shows that
the decidability of the typed unification problem is dependent on the decidability
of the unification problem in the type theory: If it is decidable whether two types
are unifiable w.r.t. the type specification 7, then the unification problem for typed

terms w.r.t. 7 is also decidable because all 7g;—sequences terminate (lemma 3.24)
and unifiable terms can always be derived to an empty equation list (lemma 3.26).
Moreover, different type structures influence the complexity of the unification pro-
cedure. For the general case a complex procedure for the unification of type terms
w.r.t. the equational type specification is necessary. But for simpler type structures
a less complex unification procedure may be sufficient:

o If the type structure is many-sorted without overloading, i.e., there are only
basic types and no equations in the type structure and there is exactly one
type declaration for each function and predicate symbol, then all types can
be omitted while unifying two terms or atoms since two composite terms or
atoms with the same functor or predicate, respectively, have always the same

type.

e If the type structure is polymorphic without any equations between types,
then the T -unifier for two types is the unifier of the type expressions in
the free type term algebra. Hence there exists a most general unifier for
two unifiable type terms which can be computed by Robinson’s unification
algorithm. This implies the existence of a most general unifier for two 7-
unifiable typed terms and Robinson’s unification algorithm can be used as a
T -unification procedure on typed terms if type expressions are represented
as first-order terms (cf. [Han89a]). Moreover, if the polymorphic signature
and the typed program satisfy some additional restrictions, it has been shown
that such programs are executable without any type information at run time
[Han89b]. The type system of Mycroft and O’Keefe [MO84] is a special case
of a polymorphic type structure.

e If the type structure is order-sorted, i.e., the type specification contains equa-
tions between types, then there does not exist a most general T -unifier for
any two type expressions. Hence the 7 -unification procedure on typed terms
must compute complete sets of 7-unifiers. Nevertheless, for practical ap-
plications it is desirable that the complete sets of 7 -unifiers are finite which
depends on the type specification. Criteria for finitary or unitary order-sorted

3.6. RESOLUTION 39

unification can be found in [Wal89]. An overview of unification in equational
theories can be found in [SS82].

e For polymorphically order-sorted type structures a full unification procedure
for the equational type theory is necessary. Nevertheless, Smolka [Smo89] has
shown that there are also restricted classes of polymorphically order-sorted
typed logic programs where more efficient unification procedures exist.

From a conceptual point of view our unification procedure shows up the influence
of types in logic programming. But for an efficient operational semantics it is
necessary to omit type information at run time whenever it is possible. In [Han89a]
and [Han89b] it is shown how this could be done in the polymorphic case. Similar
results for the general case are a topic for further research.

3.6 Resolution

The resolution principle in untyped Horn logic (see [Rob65]) can be used as a proof
procedure for typed Horn clause programs if the untyped unification is replaced by
the T -unification as defined in the last section. We call a ¥-clause a variant of
another Y-clause if it is obtained by replacing type variables and typed variables by
other type variables and typed variables, respectively, such that different variables
are replaced by new different variables. Let (X, C) be a typed logic program.

a) Let G be a (X, X, V)-goal and the (X, X,V)-clause L' + G’ be a variant of a
clause from C' with tvar(G) N tvar(L' < G') = 0 and wvar(G) Nuvar(L' «
G') = 0. If there exists a T-unifier o € Subg(X,V,V’) for an atom L € G
and L', then o(G — {L}) Uo(G") is said to be derived by T -resolution
from G relative to o and L' < G'. Notation:

(3,0,V) G ko o(G-{L})Ua(G)

b) Let Gy be a (X, X, Vp)-goal. A (X, C, Vp)-resolution or T -resolution of Gy
is a sequence of the form

(£,CVo) Go oy Gy koy G2 & -+ Ron Gn

where (3,C,V;) G; o1 Gipr with 0501 € Subs(X,V;,Vigy) for i =
0,1,2,...,n—1. The (X, C, Vp)-resolution is called successful if G,, = . In
this case n is called the length of the (2, C, Vp)-resolution and o := gp0-- 00y
is called a computed answer. Notation:

(2,0, V) ko Go

40 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

If we replace the requirement for a 7-unifier for L and L’ by the condition “o €
CSU7r(L,L")”, then the resolution is called a C SUr-resolution (resolution with
complete sets of T -unifiers) and the symbol I is replaced by . If we drop the
requirement for disjoint sets of type variables and typed variables in the goal and
the applied clause, we call the resolution unrestricted and replace the symbol
by fox.

The soundness of T-resolution can be directly proved:

Theorem 3.30 (Soundness of T-resolution) Let (¥,C) be a typed logic pro-
gram and G be a (%, X, V)-goal. If there is a successful T -resolution (X,C, V) ko G
with computed answer o € Subs(X,V, V'), then (£,C,V") E o(G).

Proof: By induction on the length n of a successful (X, C, V)-resolution:
n = 1: Then there is a (X, C, V')-resolution

(E,C,V) G 'EU' @

where o € Subs(X,V, V'), i.e., Gisa (%, C,V)-atom. By definition of T-resolution,
there exists a variant L' of a clause from C with o(L') =7 o(G). Hence
there exist V", a (X, X,V")-clause L" < from C and ¢" € Subs(X,V",V) with
o"(L") = L'. By lemma 3.13, (£,C,V’) | o(L') since o(L') = o o ¢" (L") and
(2,C, V" |= L'. Hence (£,C, V') |E 0(G) by lemma 3.18.

n > 1: Then there is a (2, C, V')-resolution

(E,O,V) G lﬁo'l Gl 'EO'2 G2 'ﬁ lﬁan @

with 0 = g, 0 001 € Subs(X,V,V'). By definition of T-resolution, there exists
a variant L' < G' of a clause from C with o1 (L") =7 01(Lo) where G = GoU{Lo}.
Let oy € Sub(X,V,V1). Then

(2,0, V1) 01(GYU01(Go) o Go & -+ Kop, 0

is a (X, C, V;)-resolution of length n — 1. By induction hypothesis, (X,C,V’) &
0(G") U o(Gy). Since L' + G’ is a variant of a clause from C, there exist V", a
(2, X,V"M-clause L" < G" € C and ¢" € Subg(X,V",V) with ¢"(L" < G") =
L' «+ G@'. By lemma 3.13, (X,C, V') E o(L' + G'). From the fact (X,C, V') E
o(G") we infer (£,C, V') = o(L'). Lemma 3.17 and lemma 3.18 yield (¥,C, V') E
o(Lp). Hence we have (X,C, V') = o(G). |

The completeness of resolution in untyped Horn logic can be proved by a fixpoint
theorem using a transformation on Herbrand interpretations [VEK76] [L1087]. In
[Han91] this proof method is adapted to polymorphic logic programs. In this
chapter we will show the completeness of 7T-resolution for typed logic programs

3.6. RESOLUTION 41

by simulating each deduction in the typed Horn clause calculus by 7 -resolution.
[Pad88] has presented such a proof for many-sorted Horn clause logic with equality,
but he has required that all types are interpreted as non-empty sets. This simplifies
the proof but is not reasonable in our context.

In the rest of this section we assume that (X,C) is a typed logic program.
A few technical lemmas will help to structure the completeness proof. The first
lemma shows that the substitution rule is not necessary if C' (the set of instantiated
clauses) is used in a deduction.

Lemma 3.31 Let (X,C,V) F L < G. Then for any typed substitution o €
Subs(X,V, V") there exists a deduction for (X,C, V') + o(L < G) where only
axioms and cut rules are applied.

Proof: We prove the lemma by induction on the number n of cut rule applications
in a shortest deduction of (X,C,V) F L < G. The case n = 0 is trivial since
o0(Lg) + 00(Go) € C for all Lo + Gy € C and all appropriate typed substitutions
og. Otherwise there is a last application of the cut rule in the deduction, say

(2,0, Vi) b L+ G;U{L}} and (X%,C,V;) - L;j+ G; with L;=71L;
occur in the deduction before the last application of the cut rule. Let o1 €
Subs(X,V;, V). We have to show that (X,C,V)) F o1(L;) < 01(G; U Gj)
can be deduced without an application of the substitution rule. The number of cut
rule applications in shortest derivations of

(E,C,V}) F Ll(—GZU{L:} and (E,C,V;) F L]' (—Gj
is less than n. By induction hypothesis,

(2,C,V)) b oi(Ly) < o1(GiU{L}}) and (2,C,V) F o1(Ly) « 01(G))

can be deduced without an application of the substitution rule. Lemma 3.17 yields
o1(L;) =7 01(L;). By an application of the cut rule, we obtain

(E,é,v;»l) F Ul(Li) (—Ul(GiUG]’)
This proves the lemma. []
Lemma 3.32 If (X,C,V) F L < G where only axioms and cut rules are applied,

then (X,C",V)lgnidx,y L' for all (¥,X,V)-atoms L' =7 L where C' = C U
{P + | P € G}, and each substitution in the T-resolution is equal to idx v .

42 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Proof: The lemma is proved by induction on the length of the deduction. Let
dy,...,d, be a deduction for (X,C,V) F L < G where only axioms and cut rules
are applied and L' be a (¥, X, V)-atom with L' =7 L.

If L « G € C, then (%,C",V) L' knidx,y G is a T-resolution step since
idx,v(L'") =7 idx,v(L). If G consists of k X-atoms, then we achieve the empty
goal with k further unrestricted 7 -resolution steps with substitutions idx v .

If L «+ G ¢ C, then the clause must be derived by an application of the cut
rule, i.e., there are

di = (E,C,V)"L(—G()U{Lo}
dj = (Z,C,V) F Ll — Gl

with Lo =7 L1, G = Go UGy and i,j < n. By induction hypothesis,
(3,0"U{Ly «},V) fridxy L' forall L' =1L (1)

and
(2,0, V) kridx,y Ly forall L} =7 L, (2)

since G = Go U G;. If the clause Ly « is used in resolution (1), then, by (2),
it is possible to replace the resolution step by a sequence of resolution steps that
derives Lo to the empty goal using clauses from C'. Thus (%,C",V)kridx,v L'
for all L' =7 L and each substitution in this 7-resolution is equal to idx,v. [|

Now we can prove the completeness of 7 -resolution:

Theorem 3.33 (Completeness of T-resolution for atoms) Let V,V' be fi-
nite sets of typed variables and A be a (X,X,V)-atom. If ¢ € Subs(X,V,V")
is a typed substitution with (X,C,V") |= o(A), then there exists a set of typed
variables Vi and a typed substitution oq € Subs(X,Vy, V') with (%,C, V) koo A
and o9(A) = o(A).

Proof: W.l.o.g. we assume that o affects only a finite number of type variables
since V is finite, i.e., the type domain tdom(o) is finite. Let (X,C, V') = o(A). By
theorem 3.21, there exists a (£, X, V)-atom A’ with A" =7 ¢(4) and (£,C, V') -
A’. By lemma 3.31 and lemma 3.32, there exists a successful unrestricted 7T -
resolution of the form

(2,0, V") o(A) knidxyv Gi fowidxyr -+ lewidxy 0

In the first resolution step there exist Lo - Ry € C, Vj and o € Subs (X, Vy, V')
with 0'0(L0) =T O'(A) and Uo(Ro) = Gl.

W.lo.g. we assume (tdom(co) U tvar(A)) Ntvar(Le <+ Ry) = O and wvar(V) N
wvar(Vy) = 0 (otherwise we choose an appropriate variant of Lo + Ry and an

3.6. RESOLUTION 43

appropriate typed substitution og). We define Vo := V Uwar(Ly < Rp) and
combine o and o into a typed substitution o7 € Subs(X, Vh, V') with

_ Jo(a) if a€tdom(o)Utvar(A)
oi(a) = { oo(a) otherwise

and
o1 (1) = o(xr) areV
BT YV oo(aer) if @i € var(Lg < Rp)

Then g1 (A) = O'(A) =T Uo(Lo) =01 (Lo) and Ul(Ro) = Uo(Ro) = Gl. Therefore
(E,C,Vb) A lﬁo'l Gl

is a T-resolution step. If Gy = @, then the proof is finished, otherwise there is a
second resolution step

(Eaéavl) Gl lﬁRZ’dX,V’ G2

Let L} «+ R} € C be the clause used in this resolution step, i.e., there exist L
Ry € C, V/ and o] € Subs(X,V/, V') with o{(L1 < Ry) = L} + R}. Similarly
to the first resolution step, we combine o] and idx y+ into a typed substitution
o2 € Subs(X,V1,V"), where V; := V' Uwvar(Ly <+ Ry), such that

(3,0,V1) Gi oz Gs

is a T-resolution step. Since V' C Vi, we can extend o1 to a typed substitution
o1 € Subs(X, Vo, V7). Hence we obtain the T-resolution

(E,C,VO) A lﬁgl G1 lEU2 Go

with o3(01(4)) = 02(0(A4)) = 0(A4) and 02 0 01 € Subs(X, Vo, V'). If we apply
the transformation of the second resolution step in the same way to the remaining
resolution steps, we obtain a 7T -resolution

(2707‘/0) A 'ﬁal Gl |§02 lﬁon 0
with o, 0---001(A) =0(A) and 5, 0+ - 00y € Subs (X, Vp, V).]

We need the next lemma to prove the completeness of T-resolution for general
goals:

Lemma 3.34 Let G be a (£, X,V)-goal with var(G) = {x1:11,...,2n:Tn}. Let p
be a new symbol that does not occur in ¥, ¥' := (H, Func, PredU{p:i,...,Ta}),
L:=p(zy:m,...,20:7,) and C' := CU{L < G}. Then

E,C0V)EeG = (E,0V)Edl)
for all o € Subs: (X, V,V").

44 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Proof: Let (X,C, V') E o(G) and M' be a model for (¥',C"). Then M’ is also
a model for (¥/,C) and M',var(L < G) = L < G. By lemma 3.13, M",V' =
o(L) + o(G). Suppose v is a variable assignment for (X, V') in M'. M' is also
a model for (X,C) if we omit the interpretation of the predicate symbol p in M.
Therefore M',v |= 0(G). M',v |E o(L) + o(G) implies M',v | o(L). Hence we
obtain M', V' = o(L). n

Theorem 3.35 (Completeness of T-resolution) Let V be a finite set of typed
variables and G be a (X, X,V)-goal. If ¢ € Subs(X,V, V") is a typed substitution
with (£,C, V') &= o(G), then there exist a set of typed variables Vo and a typed
substitution g € Subs,(X,Vy, V') with (X, C,Vs) koo G and 0o (G) = o(G).

Proof: Let var(G) = {x1:11,...,2n:7n} and p, L, ¥’ and C' be defined as in the
last lemma. (2,C, V") = o(G) implies (X',C", V') = 0(L). By theorem 3.33, there
exist V and a typed substitution og € Subs (X, Vo, V') with (X',C", V) oo L and
0o(L) = o(L). Since the only clause for the elimination of an atom with predicate
symbol p is L + G, there is a resolution

(E,C’,VO) L |E0'1 O'1(G) lﬁg'Q Gy - lﬁﬂ'n @

with o9 = 0, 0---007. We can combine the typed substitution o; with the typed
substitution o2 in the second resolution step and obtain a (¥, C, Vy)-resolution for
G with the same computed answer. []

We need the following lemma to prove completeness of C'SUr-resolution:
Lemma 3.36 (CSU-lemma) If there is a T -resolution
(5,0,V) G kot Gy koy G2 & -+ ko, 0
for the (X, X,V)-goal G, then there exists a C'SUr-resolution
(2,CV) G kool Gy freoy Gy e -+ fkeoy, 0

where g!,0---00] € Subx(X,V,V'). Furthermore, there exists a typed substitution
¢ € Subs(X, V', V") with ¢ogl,0---00] = 0,0---007.

Proof: By induction on the length n of the 7 -resolution:

If n =1, then (%,C,V) G goy 0. Hence there exists a variant L <) of a clause
from C with 01(G) =7 01(L). By definition of complete sets of 7 -unifiers, there
exist a unifier 0] € CSU(G, L) with o] € Subs(X,V,V') and a typed substitution
¢ € Subs(X,V', V") with o0} =7 1. Thus (%,C,V) G koo 0 is a CSUr-
resolution for G.

3.6. RESOLUTION 45

If n > 1, then there is a T-resolution
(%,CV) G koy Gi Koy G2 & -+ Ron, 0

Hence there exists a variant L' < G' of a clause from C with oy (L") =7 o1 (L) where
G = Go U {L}. By definition of C'SUr, there exist a unifier of € CSUr(L', L)
with o] € Subs(X,V,V') and a typed substitution ¢ € Subs(X,V', V") with
pooy =7 o1. If G} :=0](GoUG"), then

(2,0,V) G kool G| fosod GY

is a T-resolution with G5 =7 G5 (w.l.o.g. we assume that ¢ does not alter any
type variables or typed variables from the clause used in the second resolution
step). Since

(E,C,V”) G» 'EO'S lﬁ(]n 0

is a T-resolution for G5 and Gy =7 GY, it is clear from the definition of T -resolution
that there exists a T -resolution

(2707 V”) GIQI |E0-3 lﬁo-n @
for G4 of the same length and with the same 7 -unifiers. Hence
(E,C,V’) Gll 'EO'2O¢ GIQI 'EO'S 'EUn 0

is a T-resolution for G} of length n — 1. By induction hypothesis, there exists a
CSUq-resolution

(5,C,V") Gy Reoy Gy fe

T

cO';L 0

where o], 0 +-- 0 g € Subs(X,V', V1), and there exists a typed substitution p €
Subs (X, V1,V2) with poa), 0---00) =7 0, 0--- 003 0¢. Hence we obtain a
C SUs-resolution

(E,C,V) G 'Ecﬂ'i Gll 'Ecﬂ'é GIQ 'Ec 'ECU'I 0

n

where o),0- - -00] € Subs(X,V, V1), and p € Subs(X, V1, V2) is a typed substitution
with

! ! !
poo,0---00y =T 0,0---0020)00] =7 0p0---00300].
]

The completeness of C' SUr-resolution follows from completeness of T-resolution
and C'SU-lemma, 3.36:

46 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Theorem 3.37 (Completeness of C'SUr-resolution) Let (X,C) be a typed
logic program, V' be a finite set of typed variables and G be a (X,X,V)-goal.
If 0 € Subs(X,V,V') is a typed substitution with (X,C,V"') = o(G), then there
exist a set of typed variables Vo and a typed substitution og € Subs(X,Vp, V1)
with (3,C,Vy) ke 0o G, and there is a typed substitution ¢ € Subs,(X,V;,V') with
H(00(G)) =1 0(G).

Proof: By completeness theorem 3.35, there exist a set of typed variables 4 and a
T -resolution of the form

(2707‘/0) G 'ﬁal Gl 'Eo'2 G2 IE 'ﬁan @

with o 0---00y € Subs(X,V, V') and g,,0---001(G) = 0(G). CSU-lemma 3.36
yields a C'SUp-resolution

(5,C.V) G Feoy Gy oy Gy - Reoy, 0
and a typed substitution ¢ € Subs(X,V;,V') (where og := o), 0---00] €
Subs (X, Vo, V1)) with ool 0---00](G) =1 0,0---001(G) = o(G).]

Soundness theorem 3.30 and completeness theorem 3.37 justify the implemen-
tation of C'SUs-resolution as a proof method for typed logic programs. A complete
resolution method must enumerate all possible derivations. If we use a backtracking
method like Prolog, the resolution method becomes incomplete because of infinite
derivations (in our typed framework the search tree may have an infinite depth
as well as an infinite breadth because CSU7 (L, L") may be an infinite set). If we
accept this drawback, we can implement the resolution like Prolog with the dif-
ference that the unification is extended to typed terms. In Section 3.5 we have
shown that the classical unification algorithm can be used if the types of the terms
are unified before unifying the terms. For the unification of type expressions w.r.t.
the type specification a unification procedure for equational theories is needed. It
is known that the narrowing procedure [Sla74] [Fay79] [Hul80] (a combination of
unification and term rewriting) can be used for this purpose. Narrowing an ex-
pression is applying to it the most general substitution such that the expression is
reducible and then reduce it. But the narrowing procedure computes a complete
set of unifiers w.r.t. an equational theory only if the set of equations is a canon-
ical (i.e., confluent and terminating) term rewriting system. A set of equations
can be transformed into a canonical term rewriting system by the Knuth-Bendix
procedure [KB70] which is successful for our applications. For instance, let 7 be
a type structure for integer numbers with appropriate subtype relationships, i.e.,
zero and posint are subtypes of the natural numbers, and the negative integers
and the natural numbers are subtypes of the integer numbers. Therefore 7 is the
following equational specification:

3.6. RESOLUTION 47

TYPEOPS zero: — tlype
posint: — type
nat: type — type
negint: — type
int: type — type

TYPEAXIOMS nat(zero) = zero
nat(posint) = posint
int(negint) = negint
int(nat(a)) = nat(a)

The Knuth-Bendix procedure transforms this specification into the following set, of
rewrite rules:

nat(zero) = zero
nat(posint) = posint
int(negint) = negint
int(nat(a)) = nat(a)
int(zero) = zero
int(posint) = posint

All equations are oriented from left to right and two additional rewrite rules are
generated (“zero and posint are subtypes of the integer numbers”) which corre-
sponds to the computation of the transitive closure of the subtype relation specified
in 7. This set of rewrite rules is a canoncial term rewriting system and therefore
the narrowing procedure w.r.t. these rules can be used to compute T -unifiers for
two type expressions. Thus the resolution procedure can be implemented by the
following two steps:

1. Transform the given type specification into a canonical term rewriting system.
For this purpose the Knuth-Bendix completion procedure can be applied. It
computes the transitive closure of the subtype relation.

2. The T-unification procedure for typed terms can be implemented like the
classical unification procedure with the difference that types are T-unified by
the narrowing procedure w.r.t. the rewrite rules computed in step 1 before
unifiying corresponding terms.

Note that the 7 -unification procedure can be simplified if the type specification
does not contain subtype relations (see remarks at the end of Section 3.5). If the
type specification contains subtype relations, then these subtype relations have
influence on the success or failure of unification. Therefore type information at

48 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

run time is not superfluous in the context of logic programming but may avoid
unnecessary computations since variables can be constraint to values and to types
by the 7 -unification prodedure. Therefore typed logic programs can be executed
more efficiently than their untyped equivalents [SS85] [HV87]. One reason for
this efficiency is the existence of a procedure which decides whether a system of
type constraints has a solution. As shown above, we solve type constraints by
a narrowing procedure which is based on the type equations. This is sufficient
to solve type constraints in order-sorted type structures, but in a more general
setting narrowing cannot decide the solvability of constraints but enumerates only
a complete set of solutions. Narrowing can only be used as a decision procedure
if each narrowing derivation is finite. Hullot [Hul80] has shown that a terminating
T-unification algorithm can be constructed by narrowing if any basic narrowing
derivation for the right-hand sides of the rules is finite. This is the case in our
simple examples and therefore narrowing on type expressions yields a decidability
unification procedure for our examples. For another polymorphically order-sorted
typed framework, Smolka [Smo89] has shown that type constraints can be efficiently
solved. Therefore the development of efficient type constraint solvers for (restricted
classes of) our framework is a topic for further research.

3.7 Applications

We have mentioned in the introduction that a new application of our proposed
framework for typed logic programming is the possibility of higher-order logic pro-
gramming with polymorphic and order-sorted type structures. It is clear that our
framework combines polymorphic and order-sorted type structures (take the union
of the type specifications of examples 3.1 and 3.2, or example 3.3). A semanti-
cally clean amalgamation of higher-order objects with logic programming needs
a higher-order logic. Miller and Nadathur [MN86] have proposed a higher-order
logic programming language based on the typed lambda calculus. The operational
semantics is based on resolution with a unification procedure for typed lambda
expressions which is a complex and semi-decidable problem. Moreover, the proof
procedure is only complete for goals which contain no type variables.

Warren [War82] has argued that no extension to Horn clause logic is necessary
because the usual higher-order programming techniques can be simulated in first-
order Horn clause logic. The general idea is an explicit definition of a predicate
apply which is used for the application of an (at compile time) unknown predicate
to some arguments. It is shown in [Han89b] that Warren’s approach is incompatible
with polymorphic type systems for logic programming like [MO84] and [Smo89].
Since we have dropped some restrictions of these type systems, we can use Warren’s
approach to integrate higher-order programming techniques in our framework.

3.7. APPLICATIONS 49

Example 3.38 We give an example for the definition of a predicate map which
applies a binary predicate to corresponding elements of two lists. To define the
type of map we must express the type of binary predicates which are arguments
to other predicates. Therefore we introduce a type constructor pred2 that denotes
the type of binary predicates, i.e., the type specification for our example program
is:

TYPEOPS int: — type
bool: - type
list: type — type
pred2: type, type — type

)

For each binary predicate p of type “rq, 2" we introduce a corresponding constant
Ap of type “pred2(ri,72)”. The relation between each predicate p and the constant
Ap is defined by clauses for the predicate apply2. Hence we get the following
example program for the predicate map (we omit the definitions of the predicates
inc and bool and the type annotations in program clauses):

func [J: — list(a)

func [..]..]: a, list(a), — list(x)
func Anot: — pred2(bool,bool)

func Ainc: — pred2(int,int)

pred not: bool, bool

pred inc: int, int

pred map: pred2(a,f), list(a), list(B)
pred apply2: pred2(a,f), a, B

vars P:pred2(a,f), El:a, E2:83, Li:list(a), L2:list(f),
B1,B2:bool, I1,I2:int

map (P, [1,[1) «

map (P, [E1|L1],[E2|L2]) <« apply2(P,E1,E2), map(P,L1,L2)
apply2(Anot,B1,B2) < not(B1,B2)

apply2(Ainc,I1,I2) < inc(I1,I2)

The first two clauses constitute the standard definition of the predicate map (cf.
[SS86], p. 281), and the clauses for apply?2 relate the predicate names to the corre-
sponding binary predicates. Since the semantics of typed logic programs is based on
a typed first-order logic, the predicate symbol map is semantically not interpreted
as a higher-order predicate. The constants Anot and Ainc are also interpreted as

50 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

values and not as relations. But the clauses for apply2 ensures that in every model
of the program the constants Anot and Ainc are related to the binary predicates
not and inc, respectively.

This example shows the possibility to deal with higher-order objects in our
typed framework. Higher-order objects are related to predicates by particular
clauses for an apply predicate. It is also possible to permit lambda expressions
which can be translated into new identifiers and apply clauses for these identifiers
(see [War82] and [CvER90] for more discussion). The translation was explicitly
done in our examples, but this is a simple task and can be automatically done. If
the underlying system implements indexing on the clauses, e.g., indexing on the
first arguments of predicates (as done in most compilers for Prolog, cf. [War83]
[Han88]), then there is no essential loss of efficiency in our translation scheme for
higher-order objects in comparison to a specific implementation of higher-order
objects [War82].

More details about this method of higher-order logic programming in a poly-
morphically typed framework can be found in [Han89b].

3.8 Conclusions

We have presented a general framework for typed logic programming. It consists
of a specification of a type structure and a set of well-typed Horn clauses together
with type declarations for the syntactic objects occurring in the set of Horn clauses.
For the definition of the type structure we have used equational specifications. This
allows the specification of both polymorphic and order-sorted type structures and
has the advantage that there exist well-known unification procedures for a lot of
equational theories. We have defined a procedure to enumerate complete sets of
unifiers for typed terms with respect to a type specification which is based on a
unification procedure for the equational type specification. Furthermore, we have
shown that resolution is sound and complete if this unification procedure is used
to unify an atom with a clause head. This framework permits polymorphic and
order-sorted type structures and the possibility of the application of useful logic
programming techniques like lemma generation and higher-order programming.
The presented framework yields a new view on the role of types in logic program-
ming. A type specification can be compiled into a suitable unification algorithm
which is used in the resolution procedure. Therefore different type structures im-
ply different unification algorithms. A many-sorted type structure does not require
any type information at run time, in a polymorphic type structure a most general
unifier exists for two unifiable terms and can be computed by Robinson’s unifica-
tion algorithm, and in order-sorted type structures there may exist several unifiers
which are not comparable, but a complete set of unifiers can be computed by a
procedure which is based on a unification procedure for the type theory.

3.8. CONCLUSIONS 51

Further work remains to be done. We have mentioned that the presence of
types at run time is not superfluous but may reduce the search space of the reso-
lution method. Nevertheless, there are a lot of cases where type annotations can
be omitted at run time and the unification remains to be correct. For polymorphic
type structures these cases are analyzed in [Han89a] and [Han89b]. New criteria
for omitting type annotations must be developed in our general typed framework.
Another important point is the automatic inference of types. For practical appli-
cations it is tedious to write typed program clauses since each syntactic element
must be given an appropriate type. Therefore it is necessary to deduce the right
types for a clause without type annotations by a type inference algorithm. This is
a difficult problem in our general framework but their are successful approaches to
the type inference problem for restricted classes of type structures. For instance, in
the case of polymorphic type structures the type inference algorithm of ML [DM82]
can be used to infer the types of the variables in a clause if the types of all functions
and predicates are explicitly declared [Han89a]. For a restricted class of polymor-
phically order-sorted type structures Smolka has found an algorithm which infers
the types of variables in most cases [Smo89]. Similar solutions must be developed
for particular instances of our approach.

52 CHAPTER 3. LOGIC PROGRAMMING WITH TYPE SPECIFICATIONS

Bibliography

[BC83]

[BGRY)

[Chu40)]

[CMS7]

[CVER90]

[CW85]

[DHSS]

[DM82]

[EMS5]

M. Bidoit and J. Corbin. A Rehabilitation of Robinson’s Unification
Algorithm. In Proc. IFIP ’83, pp. 909-914. North-Holland, 1983.

R. Barbuti and R. Giacobazzi. A Bottom-Up Polymorphic Type Infer-
ence in Logic Programming. Technical Report 27/89, Dip. di Informat-
ica, Universita di Pisa, 1989.

A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, Vol. 5, pp. 5668, 1940.

W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer,
third rev. and ext. edition, 1987.

M.H.M. Cheng, M.H. van Emden, and B.E. Richards. On Warren’s
Method for Functional Programming in Logic. In Proc. Seventh Inter-

national Conference on Logic Programming, pp. 546-560. MIT Press,
1990.

L. Cardelli and P. Wegner. On Understanding Types, Data Abstrac-
tion, and Polymorphism. acm computing surveys, Vol. 17, No. 4, pp.
471-523, 1985.

R. Dietrich and F. Hagl. A polymorphic type system with subtypes
for Prolog. In Proc. ESOP 88, Nancy, pp. 79-93. Springer LNCS 300,
1988.

L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. In Proc. 9th Annual Symposium on Principles of Programming
Languages, pp. 207-212, 1982.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1:
Equations and Initial Semantics, volume 6 of EATCS Monographs on
Theoretical Computer Science. Springer, 1985.

53

o4

[Fay79]

[GMS4]

[GTWTS)

[GZ86]

[Han87]

[Han88|

[Han89a]

[Han89b]

[Han90]

[Han91]

[HMMS6]

[Hul80)

BIBLIOGRAPHY

M.J. Fay. First-Order Unification in an Equational Theory. In Proc.
4th Workshop on Automated Deduction, pp. 161-167, Austin (Texas),
1979. Academic Press.

J.A. Goguen and J. Meseguer. Completeness of Many-Sorted Equa-
tional Logic. Report No. CSLI-84-15, Stanford University, 1984.

J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An Initial Algebra
Approach to the Specification, Correctness, and Implementation of Ab-
stract Data Types. In R. Yeh, editor, Current Trends in Programming
Methodology, volume 4, pp. 80-149. Prentice Hall, Englewood Cliffs NJ,
1978.

Y. Gang and X. Zhiliang. An Efficient Type System for Prolog. In
Proc. IFIP 86, pp. 355-359. North-Holland, 1986.

W. Hankley. Feature Analysis of Turbo Prolog. SIGPLAN Notices,
Vol. 22, No. 3, pp. 111-118, 1987.

M. Hanus. Formal Specification of a Prolog Compiler. In Proc. of
the Workshop on Programming Language Implementation and Logic
Programming, pp- 273-282, Orléans, 1988. Springer LNCS 348.

M. Hanus. Horn Clause Programs with Polymorphic Types: Semantics
and Resolution. In Proc. of the TAPSOFT ’89, pp. 225-240. Springer
LNCS 352, 1989. Extended version in [Han91].

M. Hanus. Polymorphic Higher-Order Programming in Prolog. In
Proc. Sizth International Conference on Logic Programming (Lisboa),
pp- 382-397. MIT Press, 1989.

M. Hanus. A Functional and Logic Language with Polymorphic Types.
In Proc. Int. Symposium on Design and Implementation of Symbolic
Computation Systems, pp. 215-224. Springer LNCS 429, 1990.

M. Hanus. Horn Clause Programs with Polymorphic Types: Semantics
and Resolution. Theoretical Computer Science, Vol. 89, pp. 63-106,
1991.

R. Harper, D.B. MacQueen, and R. Milner. Standard ML. LFCS
Report Series ECS-LFCS-86-2, University of Edinburgh, 1986.

J.-M. Hullot. Canonical Forms and Unification. In Proc. 5th Confer-
ence on Automated Deduction, pp. 318-334. Springer LNCS 87, 1980.

BIBLIOGRAPHY 99

[HV87]

[KB70]

[L1087]

[MHSS]

[Mis84]

[MNB86]

[MO84]

[Nai87]

[Pad8s)

[Pois6]

[Rob65]

[Sla74]

[SLCSS]

M. Huber and I. Varsek. Extended Prolog with Order-Sorted Resolu-
tion. In Proc. 4th IEEE Internat. Symposium on Logic Programming,
pp- 34-43, San Francisco, 1987.

D.E. Knuth and P.B. Bendix. Simple Word Problems in Universal
Algebras. In J. Leech, editor, Computational Problems in Abstract
Algebra, pp. 263—-297. Pergamon Press, 1970.

J.W. Lloyd. Foundations of Logic Programming. Springer, second,
extended edition, 1987.

J.C. Mitchell and R. Harper. The Essence of ML. In Proc. of the 15th
ACM Symposium on Principles of Programming Languages, pp. 28—46,
San Diego, 1988.

P. Mishra. Towards a theory of types in Prolog. In Proc. IEEE In-
ternat. Symposium on Logic Programming, pp. 289-298, Atlantic City,
1984.

D.A. Miller and G. Nadathur. Higher-Order Logic Programming. In
Proc. Third International Conference on Logic Programming (London,),
pp- 448-462. Springer LNCS 225, 1986.

A. Mycroft and R.A. O’Keefe. A Polymorphic Type System for Prolog.
Artificial Intelligence, Vol. 23, pp. 295-307, 1984.

L. Naish. Specification = Program + Types. In Proc. Foundations of
Software Technology and Theoretical Computer Science, pp. 326—339.
Springer LNCS 287, 1987.

P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS
Monographs on Theoretical Computer Science. Springer, 1988.

A. Poigné. On Specifications, Theories, and Models with Higher Types.
Information and Control, Vol. 68, No. 1-3, 1986.

J.A. Robinson. A Machine-Oriented Logic Based on the Resolution
Principle. Journal of the ACM, Vol. 12, No. 1, pp. 23-41, 1965.

J.R. Slagle. Automated Theorem-Proving for Theories with Simplifiers,
Commutativity, and Associativity. Journal of the ACM, Vol. 21, No. 4,
pp. 622-642, 1974.

Ph. Schnoebelen, D. Lugiez, and H. Comon. A Semantics for Poly-
morphic Subtypes in Computer Algebra. Technical Report RR 711,
Laboratoire d’Informatique Fondamentale et d’Intelligence Artificelle,
Grenoble, France, 1988.

56

[Smo89]

[SNGMS9)

[$582]

[SS85]

[SS86]
[VEK76]

[Walg9)]

[War82]

[War83]

[XW88a]

[XW88b]

[Zob87]

BIBLIOGRAPHY

G. Smolka. Logic Programming over Polymorphically Order-Sorted
Types. Dissertation, FB Informatik, Univ. Kaiserslautern, 1989.

G. Smolka, W. Nutt, J.A. Goguen, and J. Meseguer. Order-Sorted
Equational Computation. In Hassan ATt-Kaci and Maurice Nivat,
editors, Resolution of Equations in Algebraic Structures, Volume 2,
Rewriting Techniques, chapter 10, pp. 297-367. Academic Press, New
York, 1989.

J. Siekmann and P. Szabé. Universal Unification and a Classification of
Equational Theories. In Proc. 6th Conference on Automated Deduction,
pp. 369-389. Springer LNCS 138, 1982.

M. Schmidt-Schauss. A Many Sorted Calculus with Polymorphic Func-
tions Based on Resolution and Paramodulation. In Proc. 9th IJCAL
W. Kaufmann, 1985.

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

M.H. van Emden and J.A. Kowalski. The Semantics of Predicate Logic
as a Programming Language. Journal of the ACM, Vol. 23, No. 4, pp.
733-742, 1976.

U. Waldmann. Unification in Order-Sorted Signatures. Technical Re-
port 298, FB Informatik, Univ. Dortmund, 1989.

D.H.D. Warren. Higher-order extensions to PROLOG: are they
needed? In Machine Intelligence 10, pp. 441-454, 1982.

D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Note
309, SRI International, Stanford, 1983.

J. Xu and D.S. Warren. A Theory of Types and Type Inference in
Logic Programming. Technical Report 88/15, SUNY at Stony Brook,
1988.

J. Xu and D.S. Warren. A Type Inference System For Prolog. In
Proc. 5th Conference on Logic Programming & 5th Symposium on Logic
Programming (Seattle), pp. 604—619, 1988.

J. Zobel. Derivation of Polymorphic Types for Prolog Programs. In
Proc. Fourth International Conference on Logic Programming (Mel-
bourne), pp. 817-838. MIT Press, 1987.

