
CurryDoc:
A Documentation Tool for Declarative Programs

Michael Hanus?

Institut für Informatik, Christian-Albrechts-Universität Kiel
D-24098 Kiel, Germany, mh@informatik.uni-kiel.de

In Proc. 11th International Workshop on Functional and (Constraint) Logic
Programming, WFLP 2002 (M. Falaschi, Ed.), Grado (Italy), pp. 225–228, 2002

Abstract. In this system demonstration we present CurryDoc, a tool
for the automatic generation of documentation manuals in HTML for-
mat from programs written in the declarative multi-paradigm language
Curry. The documentation is generated by combining comments in the
source program with information extracted from the program. It extends
other tools with a similar goal (e.g., javadoc, lpdoc) by the inclusion
of information in the generated documents which has been computed by
analyzing the structure and approximating the run-time behavior of the
program. CurryDoc is completely implemented in Curry and is used to
generate the documentation of the libraries included in PAKCS, a freely
available implementation of Curry.

1 Overview

Curry [3, 8] is a declarative multi-paradigm programming language that com-
bines in a seamless way the most important features from functional, logic,
constraint, and concurrent programming paradigms. Curry has been used in a
number of non-trivial applications, like GUI programming [4], web programming
[5], implementing graphical programming environments [7], or partial evaluators
[1]. As usual in application programming, the implementation of such systems
require the use of many libraries to avoid programming everything from scratch.
This demands for an adequate documentation of such libraries, which is the
motivation for this work.

In order to produce up-to-date program documentation with a modest ef-
fort, it is preferable to generate such documentation automatically from source
programs, as done, for instance, in the tools javadoc1 or lpdoc [9]. The general
idea of such tools is to put some documentation information into the source files
(e.g., special comments in javadoc, or special directives or clauses in lpdoc).
Then, the documentation tool extracts this documentation information and re-
structures it in a specific format (e.g., HTML pages with hyperlinks, man pages,
info files). The CurryDoc tool follows a similar idea but extends this functional-
ity by the inclusion of information that is often relevant to the programmer but
not directly present in the program. Beyond type information (note that, like

? This research has been partially supported by the German Research Council (DFG)
under grant Ha 2457/1-2, by the DAAD/NSF under grant INT-9981317, and by the
DAAD under the programme Acciones Integradas Hispano-Alemanas.

1 http://java.sun.com/j2se/javadoc/



in Haskell, function types need not be written in Curry programs but can be
inferred by a type inferencer), this includes information about the overlapping
of patterns in function definitions (which might cause unexpected nondetermin-
istic computations), complete pattern matching (is there a matching rule for all
ground calls?), solution completeness (are all non-ground calls to this function
solvable in the sense of logic programming, or do some calls suspend?), indeter-
ministic computations due to external communication or committed choice, etc.
Since the computation of some of this information requires the global analysis
of the program, the CurryDoc tool also includes a program analyzer.

In general, the CurryDoc tool generates the documentation for a Curry pro-
gram (i.e., the main module and all its imported modules) in HTML format.
The generated HTML pages contain information about all data types and func-
tions exported by a module as well as links between the different entities, and
the information about functions mentioned above combined with documentation
comments provided by the programmer.

A documentation comment starts with “---” (note that standard comments
start with “--”) before the definition of the documented entity. The comments
can also contain several special tags like:
@author - the author of a module
@version - the version of a module
@cons id - a comment for the constructor id of a datatype (in datatype com-

ments)
@param id - a comment for a parameter id of a function (in function comments)
@return - a comment for the return value of a function (in function comments).

The following example shows a Curry program with documentation comments:

--- This is an example module.
--- @author Michael Hanus
--- @version 0.1

module example where

--- The function conc concatenates two lists. It is defined as
--- flexible so that it can also be used to split a given list.
--- @param xs - the first list
--- @param ys - the second list
--- @return a list containing all elements of xs and ys
conc eval flex
conc [] ys = ys
conc (x:xs) ys = x : conc xs ys
-- this comment will not be included in the documentation

--- The function last computes the last element of a given list.
--- @param xs - the given input list
--- @return last element of the input list
last xs | conc ys [x] =:= xs = x where x,ys free

--- This datatype defines polymorphic trees.
--- @cons Leaf - a leaf of the tree
--- @cons Node - an inner node of the tree
data Tree a = Leaf a | Node [Tree a]

2



The documentation for this module is generated by simply typing the com-
mand “currydoc example.” This command puts the HTML documentation files
for the module and all its imported modules into the directory DOC_example
together with some index files (e.g., all functions or constructors). A part of
the documentation generated by CurryDoc from this input program is shown in
Fig. 1.

2 Implementation

CurryDoc is completely implemented in Curry, where the program analysis part
is based on the library Flat for meta-programming in Curry [2] and partially
reused from the programming environment CIDER [7]. Basically, CurryDoc pro-
cesses the main module and all imported modules and produces the documenta-
tion for each single module. The module documentation is generated by reading
the program source file to extract all documentation comments and by loading an
intermediate representation of the program as data using the meta-programming
library Flat. The latter representation is used to extract the lists of all exported
data types and functions. The rules of the functions are analyzed in order to com-
pute the information about the behavior of functions. Finally, this information
is combined with the documentation comments to generate the corresponding
HTML documentation files by the use of Curry’s HTML library [5].

The implementation of CurryDoc is freely available and included in the latest
distribution of PAKCS [6].
Acknowledgements. The author is grateful to Sergio Antoy for fruitful dis-
cussions and suggestions that led to the development of the CurryDoc tool.

References

1. E. Albert, M. Hanus, and G. Vidal. A Practical Partial Evaluator for a Multi-
Paradigm Declarative Language. Journal of Functional and Logic Programming,
Vol. 2002, No. 1, 2002.

2. FlatCurry: An intermediate representation for Curry programs. Available at
http://www.informatik.uni-kiel.de/˜curry/flat, 2001.

3. M. Hanus. A Unified Computation Model for Functional and Logic Programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pp. 80–93, 1997.

4. M. Hanus. A Functional Logic Programming Approach to Graphical User Inter-
faces. In International Workshop on Practical Aspects of Declarative Languages
(PADL’00), pp. 47–62. Springer LNCS 1753, 2000.

5. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third
International Symposium on Practical Aspects of Declarative Languages (PADL’01),
pp. 76–92. Springer LNCS 1990, 2001.

6. M. Hanus, S. Antoy, J. Koj, P. Niederau, R. Sadre, and F. Steiner. PAKCS:
The Portland Aachen Kiel Curry System. Available at http://www.informatik.uni-
kiel.de/˜pakcs/, 2002.

7. M. Hanus and J. Koj. An Integrated Development Environment for Declarative
Multi-Paradigm Programming. In Proc. of the International Workshop on Logic

3



Programming Environments (WLPE’01), pp. 1–14, Paphos (Cyprus), 2001. Also
available at http://arXiv.org/abs/cs.PL/0111039.

8. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.7). Avail-
able at http://www.informatik.uni-kiel.de/˜curry, 2000.

9. M. Hermenegildo. A Documentation Generator for (C)LP Systems. In Proc. of the
1st Int. Conf. on Computational Logic, pp. 1345–1361. Springer LNAI 1861, 2000.

Fig. 1. Example for documentation generated by CurryDoc

4


