Synthesizing Set Functions

Sergio Antoy! Michael Hanus? Finn Teegen?

! Computer Science Dept., Portland State University, Oregon, U.S.A.
antoy@cs.pdx.edu

2 Institut fiir Informatik, CAU Kiel, D-24098 Kiel, Germany.
{mh,fte}@informatik.uni-kiel.de

Abstract. Set functions are a feature of functional logic programming
to encapsulate all results of a non-deterministic computation in a single
data structure. Given a function f of a functional logic program written
in Curry, we describe a technique to synthesize the definition of the
set function of f. The definition produced by our technique is based on
standard Curry constructs. Our approach is interesting for three reasons.
It allows reasoning about set functions, it offers an implementation of
set functions which can be added to any Curry system, and it has the
potential of changing our thinking about the implementation of non-
determinism, a notoriously difficult problem.

1 Introduction

Functional logic languages, such as Curry and TOY, combine the most important
features of functional and logic languages. In particular, the combination of lazy
evaluation and non-determinism leads to better evaluation strategies compared
to logic programming [2]. However, the combination of these features poses new
challenges. In particular, the encapsulation of non-strict non-deterministic com-
putations has not a universally accepted solution so that different Curry systems
offer different implementations for it. Encapsulating non-deterministic compu-
tations is an important feature for application programming when the task is to
show whether some problem has a solution or to compare different solutions in
order to compute the best one.

A realistic example of application is Dijkstra’s algorithm for the shortest path
in a graph [12]. At each iteration, the algorithm selects the “current” node, finds
the set of its unvisited neighbors, and calculates their tentative distances through
the current node. Defining a function that takes a node and non-deterministically
produces a neighboring node is particularly simple. Our work enables us to
find the set of neighbors by encapsulating this non-determinism. In this way, a
relatively complicated problem becomes simple.

However, encapsulating non-determinism is not straightforward. Let S(e)
denote the set of all the values of an expression e. The problem with such an
encapsulation operator is the fact that e might share subexpressions which are
defined outside S(e). For instance, consider the expression

let x = 071 in S(x) (1)

The infix operator “?” denotes a non-deterministic choice, i.e., the expression
“071” has two values: 0 or 1. Since the non-determinism of x is introduced
outside S(x), the question arises whether this should be encapsulated. Strong
encapsulation, which is similar to Prolog’s findall, requires to encapsulate all
non-determinism occurring during the evaluation of the encapsulated expression.
In this case, expression (1) evaluates to the set {0,1}. As discussed in [§8], a dis-
advantage of strong encapsulation is its dependence on the evaluation strategy.
For instance, consider the expression

let x = 071 in (S(x), x) (2)

If the tuple is evaluated from left to right, the first component evaluates to {0, 1}
but the second component non-deterministically evaluates to the values 0 and
1 so that the expression (2) evaluates to the values ({0,1},0) and ({0,1},1).
However, in a right-to-left evaluation of the tuple, x is evaluated first to one of
the values 0 and 1 so that, due to sharing, the expression (2) evaluates to the
values ({0},0) and ({1},1).

To avoid this dependency on the evaluation strategy, weak encapsulation of
S(e) only encapsulates the non-determinism of e but not the non-determinism
originating from expressions created outside e. Thus, weak encapsulation pro-
duces the result values ({0},0) and ({1},1) of (2) independent of the evalu-
ation strategy. Weak encapsulation has the disadvantage that its meaning de-
pends on the syntactic structure of expressions. For instance, the expressions
“let x = 071 in S(x)” and “S(let x = 071 in x)” have different values. To avoid
misunderstandings and make the syntactic structure of encapsulation explicit,
set functions have been proposed [4]. For any function f, there is a set func-
tion fs which computes the set of all the values f for given argument values.
The set function encapsulates the non-determinism caused by the definition of
f but not non-determinism originating from arguments. For instance, consider
the operation

double x = x + x (3)

The result of doubles is always a set with a single element since the definition
of double does not contain any non-determinism. Thus, doubles (071) evaluates
to the two sets {0} and {2}.

Although set functions fit well into the framework of functional logic pro-
gramming, their implementation is challenging. For instance, the Curry sys-
tem PAKCS [16] compiles Curry programs into Prolog programs so that non-
determinism is implemented for free. Set functions are implemented in PAKCS
by Prolog’s findall. To obtain the correct separation of non-determinism caused
by arguments and functions, as discussed above, arguments are completely eval-
uated before the findall encapsulation is invoked. Although this works in many
cases, there are some situations where this implementation does not deliver any
result. For instance, if the complete evaluation of arguments fails or does not
terminate, no result is computed even if the set function does not demand the
complete argument values. Furthermore, if the set is infinite, findall does not

terminate even if the goal is only testing whether the set is empty. Thus, the
PAKCS implementation of set functions is “too strict.”

These problems are avoided by the implementation of set functions in the
Curry system KiCS2, which compiles Curry programs into Haskell programs
and represents non-deterministic values in tree-like structures [9]. A similar but
slightly different representation is used to implement set functions. Due to the
interaction of nested non-determinism, the detailed implementation is quite com-
plex so that a simpler implementation is desirable.

In this paper, we propose a new implementation of set functions that can
be added to any Curry system. It avoids the disadvantages of existing imple-
mentations by synthesizing an explicit definition of a set function for a given
function. Depending on the source code of a function, simple or more complex
definitions of a set function are derived. For instance, nested set functions re-
quire a more complex scheme than top-level set functions, and functions with
non-linear right-hand sides require an explicit implementation of the call-time
choice semantics.

The paper is structured as follows. In the next section, we review some aspects
of functional logic programming and Curry. After the definition of set functions in
Sect. 3, we introduce in Sect. 4 plural functions as an intermediate step towards
the synthesis of set functions. A first and simple approach to synthesize set
functions is presented in Sect. 5 before we discuss in Sect. 6 and 7 the extension
to non-linear rules and nested set functions, respectively. Sect. 8 discussed related
work before we conclude in Sect. 9.

2 Functional Logic Programming and Curry

We assume familiarity with the basic concepts of functional logic programming
[5,15] and Curry [17]. Therefore, we briefly review only those aspects that are
relevant for this paper.

Although Curry has a syntax close to Haskell [22], there is an important
difference in the interpretation of rules defining an operation. If there are different
rules that might be applicable to reduce an expression, all rules are applied in a
non-deterministic manner. Hence, operations might yield more than one result on
a given input. Non-deterministic operations, which are interpreted as mappings
from values into sets of values [14], are an important feature of contemporary
functional logic languages. The archetype of non-deterministic operations is the
choice operator “?” defined by

X 7?7 _ =X
-ty =y
Typically, this operator is used to define other non-deterministic operations like
coin = 0 7 1
Thus, the expression coin evaluates to one of the values 0 or 1. Non-deterministic
operations are quite expressive since they can be used to completely eliminate
logic variables in functional logic programs, as shown in [3,11]. Therefore, we
ignore logic variables in the formal development below. For instance, a Boolean

logic variable can be replaced by the non-deterministic generator operation for
Booleans defined by

aBool = False ? True (4)

Passing non-deterministic operations as arguments, as in the expression
double coin, might cause a semantical ambiguity. If the argument coin is eval-
uated before calling double, the expression has two values, 0 and 2. However, if
the argument coin is passed unevaluated to the right-hand side of double and,
thus, duplicated, the expression has three different values: 0, 1, or 2. These two
interpretations are called call-time choice and run-time choice [19]. Contempo-
rary functional logic languages stick to the call-time choice, since this leads to
results which are independent of the evaluation strategy and has the rewriting
logic CRWL [14] as a logical foundation for declarative programming with non-
strict and non-deterministic operations. Furthermore, it can be implemented by
sharing which is already available in implementations of non-strict languages.
In this paper, we use a simple reduction relation, equivalent to CRWL, that we
sketch without giving all details (which can be found in [20]).

A walue is an expression without occurrences of function symbols. To cover
non-strict computations, expressions can also contain the special symbol L to
represent undefined or unevaluated values. A partial value is a value that might
contain occurrences of 1. A partial constructor substitution is a substitution
that replaces variables by partial values. A context C[-] is an expression with
some “hole.” Then expressions are reduced according to the following reduction
relation:

Clf o(t1)...o(tn)] — Clo(r)] where f t1...t, = r is a program rule
and o a partial constructor substitution
Cle] — C[1] where e £ L
The first rule models the call-time choice: if a rule is applied, the actual argu-
ments of the operation must have been evaluated to partial values. The second
rule models non-strictness by allowing the evaluation of any subexpression to
an undefined value (which is intended if the value of this subexpression is not
demanded). As usual, = denotes the reflexive and transitive closure of this re-
duction relation. We also write e = v instead of e - v if v is a (partial) value.

For the sake of simplicity, we assume that programs are already translated
into a simple standard form: conditional rules are replaced by if-then-else ex-
pressions and the left-hand sides of all operations (except for “?”) are uniform
[21] i.e., either the operation is defined by a single rule where all arguments
are distinct variables, or in the left-hand sides of all rules only the last (or any
other fixed) argument is a constructor with variables as arguments where each
constructor of a data type occurs in exactly one rule. Section 3.2 of [21] pro-
vides an algorithm for transforming the rules defining a function into a set of
uniform rules defining the same function. Uniform rules are not overlapping so
that non-determinism is represented by ?-expressions.

3 Set Functions

The purpose of a set function is to encapsulate only the non-determinism caused
by the definition of the corresponding function. Similarly to non-determinism, set
functions encapsulate failures only if they are caused by the function’s definition.
If failed denotes a failing computation, i.e., an expression without a value, the
expression doubles failed has no value (and not the empty set as a value).
Since the meaning of failures and nested set functions has not been discussed
in [4], Christiansen et al. [10] propose a rigorous denotational semantics for set
functions. In order to handle failures and choices in nested applications of set
functions, computations are attached with “nesting levels” so that failures caused
by different encapsulation levels can be distinguished.

In the following, we use a simpler model of set functions. Formally, set func-
tions return sets. However, for simplicity, our implementation returns multisets,
instead of sets, represented as some abstract data type. Converting multisets
into sets is straightforward for the representation we choose. If b is a type, {b}
denotes the type of a set of elements of type b. The meaning of a set function
can be defined as follows:

Definition 1. Given a unary (for simplicity) function f :: a — b, the set func-
tion of f, fs :: a — {b}, is defined as follows: For every partial value t of type
a, value u of type b, and set U of elements of type b, (f t) = u iff (fst) =U
andu e U.

This definition accommodates the different aspects of set functions discussed in
the introduction. If the evaluation of an expression e leads to a failure or choice
but its value is not required by the set function, it does not influence the result
of the set function since e can be derived to the partial value L.

Ezxample 1. Consider the following function:
ndconst x y = x 7 1 (5)

The value of ndconsts 2 failed is {2,1}, and ndconsts (274) failed has the values
{2,1} and {4,1}.

Given a function f, we want to develop a method to synthesize the defi-
nition fs. A difficulty is that f might be composed of other functions whose
non-determinism should also be encapsulated by fs. This can be solved by in-
troducing plural functions, which are described next.

4 Plural Functions

If f::b— cand g :: a — b are functions, their composition (f o g) is well
defined by (f o g)(z) = f(g(z)) for all = of type a. However, the corresponding
set functions, fs :: b — {c} and gs :: a — {b}, are not composable because
their types mismatch—an output of gs cannot be an input of fs. To support

the composition of functions that return sets, we need functions that take sets
as arguments.3

Definition 2. Let f :: a — b be a function. We call plural function of f any
function fp :: {a} — {b} with the following property: for all X andY such that
fp X =Y, (1) ify €Y then there exists some x € X such that f x =y and (2)
ifeeX and fx =y, theny €Y.

The above definition generalizes to functions with more than one argument. The
following display shows both the type and an example of application of the plural
function, denoted by “++p”, of the usual list concatenation “++:

(++p) :: {[al} -> {[al} -> {[al} 6)

{011, 21} ++p {01, (31} = {[1],[1,3],[2],[2,3]}
Plural functions are unique, composable, and cover all the results of set func-
tions (see Appendix A for details). Since plural functions are an important step
towards the synthesis of set functions, we discuss their synthesis first. To im-
plement plural functions in Curry, we have to decide how to represent sets (our
implementation returns multisets) of elements. An obvious representation are
lists. Since we will later consider non-linear rules and also nested set functions
where non-determinism of different encapsulation levels are combined, we in-
stead use search trees [8] to represent choices between values. The type of a
search tree parameterized over the type of elements can be defined as follows:

data ST a = Val a | Fail | Choice (ST a) (ST a)

Hence, a search tree is either an expression in head-normal form, i.e., rooted
by a constructor symbol, a failure, or a choice between search trees. Although
this definition does not enforce that the argument of a Val constructor is in
head-normal form, this invariant will be ensured by our synthesis method for set
functions, as presented below. For instance, the plural function of the operation
aBool (4) can be defined as

aBoolP :: ST Bool

aBoolP = Choice (Val False) (Val True)

The plural function of the logical negation not defined by
not False = True (7)
not True = False
takes a search tree as an argument so that its definition must match all search
tree constructors. Since the matching structure is similar for all operations per-
forming pattern matching on an argument, we use the following generic opera-
tion to apply an operation defined by pattern matching to a non-deterministic
aurgument:4

3 The notion of “plural function” is also used in [23] to define a “plural” semantics for
functional logic programs. Although the type of their plural functions is identical to
ours, their semantics is quite different.

4 Actually, this operation is the monadic “bind” operation with flipped arguments if
ST is an instance of MonadPlus, as proposed in [13]. Here, we prefer to provide a
more direct implementation.

applyST :: (a — ST b) — STa — STD

applyST £ (Val x) = f x

applyST _ Fail = Fail

applyST f (Choice x1 x2) = Choice (f ‘applyST‘ x1) (f ‘applyST‘ x2)
Hence, failures remain as failures, and a choice in the argument leads to a choice
in the result of the operation, which is also called a pull-tab step [1]. Now the
plural function of not can be defined by (shortly we will specify a systematic
translation method)

notP :: ST Bool — ST Bool

notP = applyST $§ \x — case x of False — Val True

True — Val False

The synthesis of plural functions for uniform programs is straightforward: pat-
tern matching is implemented with applyST and function composition in right-
hand sides comes for free.® For instance, the plural function of

twiceNot x = not (not x)
is

twiceNotP x = notP (notP x)
So far we considered only base values in search trees. If one wants to deal with
structured data, like lists of integers, a representation like ST [Int] is not appro-
priate since non-determinism can occur in any constructor of the list, as shown
by

one23 = (172) : ([1 7 (3:[1))
The expression one23 evaluates to [1], [2], [1,3], and [2,3]. If we select only
the head of the list, the non-determinism in the tail does not show up, i.e.,
head one23 evaluates to two values 1 and 2. This demands for a representation of
head-normal forms with possible search tree arguments. It can be easily derived
for any algebraic data type. The head-normal forms of non-deterministic lists
are the usual list constructors where the cons arguments are search trees:

data STList a = Nil | Cons (ST a) (ST (STList a))

The plural representation of one23 is

one23P :: ST (STList Int)

one23P = Val (Cons (Choice (Val 1) (Val 2))

(Choice (Val Nil) (Val (Coms (Val 3) (Val Nil)))))

The plural function of head is synthesized as

headP :: ST (STList a) — ST a

headP = applyST $ \xs — case xs of Nil — Fail

Cons x — X

so that headP one23P evaluates to Choice (Val 1) (Val 2), as intended.

To provide a precise definition of this transformation, we assume that all
operations in the program are uniform (see Sect. 2). The plural transformation
[-]» of these kinds of function definitions is defined as follows (where C'p denotes
the constructor of the non-deterministic type, like STList, corresponding to the

5 This is a consequence of the fact that ST is a functor. A more general treatment of
these structures can be found in [6].

original constructor C'):
[fz1...en=¢]p = fpai...zy=[e]p

fpx1...xp_1 = applyST $ \z —
fxl...a:n_l (Cl mll...x1¢1)=el case T of
— Cr}; 11 ---T14; — [[61]]7)

far. .. po1 (C" Tp1 .. Tps,) = €n P :
CPH Tp1 ... Tni, — [en]p

Note that x; and zj; have different types in the original and transformed pro-
gram, e.g., an argument of type Int is transformed into an argument of type
ST Int. Furthermore, expressions occurring in the function bodies are trans-
formed according to the following rules:

[z, = =
[Cer...en]p = Val (Cp [e1]p ... [en]p)
[fer-..enlp = fr [edp.. [en]p
[er 7 e2], = Choice [e1]p [e2]p
[failed], = Fail

The presented synthesis of plural functions is simple and yields compositionality
and laziness. Thus, they are a good basis to define set functions, as shown next.

We are not overly concerned about the increase in size of a program’s object
code when plural functions are synthesized and added to the program. The source
code of the plural function, fp, of a function f contains the same structural
elements, e.g., pattern matching and nested function calls, as f. Hence the object
code of fp is expected to have a size similar to that of f regardless of the
compilation technique. Since only a fraction of the functions of a program require
the synthesis of the corresponding plural function, the size of the object code
should increase by a factor closer to 1 than to 2.

5 Synthesis of Set Functions: The Simple Way

Plural functions take sets as arguments whereas set functions are applied to
standard expressions which might not be evaluated. To distinguish these possibly
unevaluated arguments from head-normal forms, we add a new constructor to
search trees

data ST a = Val a | Uneval a | Fail | Choice (ST a) (ST a)
and extend the definition of applyST with the rule

applyST f (Uneval x) = f x
Furthermore, plural functions yield non-deterministic structures which might
not be completely evaluated. By contrast, set functions yield sets of values,
i.e., completely evaluated elements. In order to turn a plural function into a

set function, we have to evaluate the search tree structure into the set of their
values. For the sake of simplicity, we represent the latter as ordinary lists. Thus,
we need an operation like

stValues :: ST a — [a]

to extract all the values from a search tree. For instance, the expression
stValues (Choice (Val 1) (Choice Fail (Val 2)))

should evaluate to the list [1,2]. This demands for the evaluation of all the values
in a search tree (which might be head-normal forms with choices at argument
positions) into its complete normal form. We define a type class® for this purpose:

class NF a where
nf :: a — ST a

Each instance of this type class must define a method nf which evaluates a given
head-normal form into a search tree where all Val arguments are completely
evaluated. Instances for base types are easily defined:
instance NF Int where
nf x = Val x

The operation nf is easily extended to arbitrary search trees:”

nfST :: NF a => ST a — ST a

nfST (Val x) = nf x
nfST (Uneval x) = x ‘seq‘ nf x
nfST Fail = Fail

nfST (Choice x1 x2) = Choice (nfST x1) (nfST x2)

Now we can define an operation that collects all the values in a search tree
(without Uneval constructors) into a list by a depth-first strategy:

searchDFS :: ST a — [al]
searchDFS (Val x) = [x]
searchDFS Fail =[]

searchDFS (Choice x1 x2) = searchDFS x1 ++ searchDFS x2
Thus, failures are ignored and choices are concatenated. Combining these two
operations yields the desired definition of stValues:

stValues :: NF a => ST a — [al

stValues = searchDFS . nfST
NF instances for structured types can be defined by moving choices and failures
in arguments to the root:

instance NF a => NF (STList a) where

nf Nil = Val Nil

nf (Cons x xs) = case nfST x of
Choice c1 ¢c2 — Choice (nf (Cons cl xs)) (nf (Coms c2 xs))
Fail — Fail

5 Although the current definition of Curry [17] does not include type classes, many
implementations of Curry, like PAKCS, KiCS2, or MCC, support them.

" The use of seq ensures that the Uneval argument is evaluated. Thus, non-
determinism and failures in arguments of set functions are not encapsulated, as
intended.

y — case nfST xs of
Choice c1 ¢2 — Choice (nf (Comns y c1)) (nf (Comns y c2))
Fail — Fail
ys — Val (Comns y ys)
For instance, the non-deterministic list value [1?72] can be described by the ST
structure
nd01 = Val (Cons (Choice (Val 0) (Val 1)) (Val Nil))
so that stValues nd01 moves the inner choice to the top-level and yields the list
[Cons (Val 0) (Val Nil), Coms (Val 1) (Val Nil)l

which represents the set {[0], [1]}.

As an example for our first approach to synthesize set functions, consider the
following operation (from Curry’s prelude) which non-deterministically returns
any element of a list:

any0f :: [a]l] — a

any0f (x:xs) = x 7 anyOf xs
Since set functions do not encapsulate non-determinism caused by arguments,
the expression any0fs [071,2,3] evaluates to the sets {0,2,3} and {1,2,3}.

In order to synthesize the set function for any0f by exploiting plural func-
tions, we have to convert ordinary types, like [Int], into search tree types, like
STList Int, and vice versa. For this purpose, we define two conversion operations
for each type and collect their general form in the following type class:®

class ConvertST a b where
toValST :ta — b
fromValST :: b — a
Instances for base and list types are easily defined:
instance ConvertST Int Int where
toValST = id
fromValST = id

instance ConvertST a b => ConvertST [a] (STList b) where

toValST [] = Nil
toValST (x:xs) = Cons (toST x) (toST xs)
fromValST Nil =[]

fromValST (Cons (Val x) (Val xs)) = fromValST x : fromValST xs
where the operation toST is like toValST but adds an Uneval constructor:
toST :: ConvertST a b =>a — ST b
toST = Uneval . toValST
The (informal) precondition of fromvalST is that its argument is already fully
evaluated, e.g., by an operation like stValues. Therefore, we define the following
operation to translate an arbitrary search tree into the list of its Curry values:

fromST :: (ConvertST a b, NF b) => ST b — Values a
fromST = map fromValST . stValues

8 Multi-parameter type classes are not yet supported in the Curry systems PAKCS

and KiCS2. The code presented here is more elegant, but equivalent, to the actual
implementation.

10

As already mentioned, we use lists to represent multisets of values:

type Values a = [a]
However, one could also use another (abstract) data type to represent multisets
or even convert them into sets, if desired.

Now we have all parts to synthesize a set function: convert an ordinary value
into its search tree representation, apply the plural function on it, and translate
the search tree back into the multiset (list) of the values contained in this tree.
We demonstrate this by synthesizing the set function of any0f.

The uniform representation of any0f performs complete pattern matching on
all constructors:

any0f [] failed
any0f (x:xs) = x 7 anyOf xs

We easily synthesize its plural function according to the scheme of Sect. 4:

any0fP :: ST (STList Int) — ST Int
any0fP = applyST $ \xs —
case xs of Nil — Fail

Cons x xs — Choice x (anyOfP xs)

Finally, we obtain its set function by converting the argument into the search
tree and the result of the plural function into a multiset of integers:

any0fS :: [Int] — Values Int

any0fS = fromST . anyO0fP . toST
The behavior of our synthesized set function is identical to their original defini-
tion, e.g., any0fS [071,2,3] evaluates to the lists [0,2,3] and [1,2,3], i.e., non-
determinism caused by arguments is not encapsulated. This is due to the fact
that the evaluation of arguments, if they are demanded inside the set function,
are initiated by standard pattern matching so that a potential non-deterministic
evaluation leads to a non-deterministic evaluation of the synthesized set function.

In contrast to the strict evaluation of set functions in PAKCS, as discussed in

the introduction, our synthesized set functions evaluate their arguments lazily.
For instance, the set function of ndconst defined in Example 1 is synthesized as
follows:

ndconstP :: ST Int — ST Int — ST Int

ndconstP nx ny = Choice nx (Val 1)

ndconstS :: Int — Int — Values Int

ndconstS x y = fromST (ndconstP (toST x) (toST y))
Since the second argument of ndconstS is never evaluated, the expression
ndconstS 2 failed evaluates to [2,1] and ndconstS (274) (375) yields the lists
[2,1] and [4,1]. The set function implementation of PAKCS fails on the first
expression and yields four results on the second one. Hence, our synthesized set
function yields better results than PAKCS, in the sense that it is more com-
plete and avoids duplicated results. Moreover, specific primitive operations, like
findall, are not required.

The latter property is also interesting from another point of view. Since

PAKCS uses Prolog’s findall, the evaluation strategy is fixed to a depth-first
search strategy implemented by backtracking. Our implementation allows more

11

flexible search strategies by modifying the implementation of stValues. Actually,
one can generalize search trees and stValues to a monadic structure, as done in
[7,13], to implement various strategies for non-deterministic programming.

A weak point of our current synthesis is the handling of failures. For instance,
the evaluation of any0fS [failed,1] fails (due to the evaluation of the first list
element) whereas any0fs [failed,1] = {1} according to Def. 1. To correct this
incompleteness, failures resulting from argument evaluations must be combined
with result sets. This can be done by extending search trees and distinguishing
different sources of failures, but we omit it here since a comprehensive solution
to this issue will be presented in Sect. 7 when nested applications of set functions
are discussed.

6 Adding Call-Time Choice

We have seen in Sect. 1 that the expression double (071) should evaluate to the
values 0 or 2 due to the call-time choice semantics. Thus, the set function of

doubleO1 :: Int

double01 = double (071)
should yield the multiset {0,2}. However, with the current synthesis, the corre-
sponding set function yields the list [0,1,1,2] and, thus, implements the run-
time choice. The problem arises from the fact that the non-deterministic choice
in the synthesized plural function

doubleO1P :: ST Int

double01P = doubleP (Choice (Val 0) (Val 1))
is duplicated by doubleP. In order to implement the call-time choice, the same
decision (left or right choice) for both duplicates has to be made. Instead, the
search operation searchDFS handles these choices independently and is unaware
of the duplication.

To tackle this problem, we follow the idea implemented in KiCS2 [9] and
extend our search tree structure by identifiers for choices (represented by the
type ID) as follows:

data ST a = Val a | Uneval a | Fail | Choice ID (ST a) (ST a)

The changes to previously introduced operations on search trees, like applyST
or nfST, are minimal and straightforward as we only have to keep a choice’s
identifier in their definitions. The most significant change occurs in the search
operation. As shown in [9], the call-time choice can be implemented by storing
the decision for a choice, when it is made for the first time, during the traversal
of the search tree and looking it up later when encountering the same choice
again. We introduce the type
data Decision = Left | Right

for decisions and use an association list? as an additional argument to the search
operation to store such decisions. The adjusted depth-first search then looks as
follows:

9 Of course, one can replace such lists by more efficient access structures.

12

searchDFS :: [(ID,Decision)] — ST a — [a]

searchDFS _ (Val x) = [x]

searchDFS _ Fail =[]

searchDFS m (Choice i x1 x2) = case lookup i m of
Nothing — searchDFS ((i,Left):m) x1 ++

searchDFS ((i,Right):m) x2
Just Left — searchDFS m x1
Just Right — searchDFS m x2

When extracting all the values from a search tree, we initially pass an empty list
to the search operation since no decisions have been made at that point:

stValues :: NF a => ST a — [al

stValues = searchDFS [] . nfST
Finally, we have to ensure that the choices occurring in synthesized plural func-
tions are provided with unique identifiers. To this end, we assume a type IDSupply
that represents an infinite set of such identifiers along with the following opera-
tions:

initSupply :: IDSupply

uniquelD :: IDSupply — 1ID

leftSupply, rightSupply :: IDSupply — IDSupply
The operation initSupply yields an initial identifier set. The operation uniqueID
yields an identifier from such a set while the operations leftSupply and
rightSupply both yield disjoint subsets without the identifier obtained by
uniqueID (see [9] for a discussion about implementing these operations.). When
synthesizing plural functions, we add an additional argument of type IDSupply
and use the aforementioned operations on it to provide unique identifiers to ev-
ery choice. The synthesized set function has to pass the initial identifier supply
initSupply to the plural function. In the case of double01, it looks as follows:

doubleO1P :: IDSupply — ST Int

double01P s = doubleP (leftSupply s)

(Choice (uniqueID s) (Val 0) (Val 1))

double01S :: Values Int

double01S = fromST (doubleP initSupply)
With this modified synthesis, the set function yields the expected result [0,2].
Note that this extended scheme is necessary only if some operation involved in
the definition of the set function has rules with non-linear right-hand sides, i.e.,
might duplicate argument expressions. For the sake of readability, we omit this
extension in the next section where we present another extension necessary when
set functions are nested.

7 Synthesis of Nested Set Functions

So far we considered the synthesis of set functions that occur only at the top-level
of functional computations, i.e., which are not nested inside other set functions.
The synthesis was based on the translation of functions involved in the definition
of a set function into plural functions and extracting all the values represented

13

by a search tree into a list structure. If set functions are nested, the situation
becomes more complicated since one has to define the plural function of an inner
set function. Moreover, choices and failures produced by different set functions,
i.e., levels of encapsulations, must be distinguished according to [10]. Although
nested set functions are seldom used, a complete implementation of set functions
must consider them. Therefore, we discuss in this section how we can extend the
scheme proposed so far to accommodate nested set functions.

The original proposal of set functions [4] emphasized the idea to distinguish
non-determinism of arguments from non-determinism of the function definition.
However, the influence of failing computations and the combination of nested
set functions was not specified. These aspects are discussed in [10] where a
denotational semantics for functional logic programs with weak encapsulation
is proposed. Roughly speaking, an encapsulation level is attached to failures
and choices. These levels are taken into account when value sets are extracted
from a nested non-determinism structure to ensure that failures and choices are
encapsulated by the function they belong to and not any other. We can model
this semantics by extending the structure of search trees as follows:

data ST a = Vala | Uneval a | Fail Int | Choice Int (ST a) (ST a)

The additional argument of the constructors Fail and Choice specifies the en-
capsulation level.

Consider the definition
notf = nots failed (8)

and the expression notfs. Although the right-hand side of notf fails because the
argument of not is demanded w.r.t. the definition (7), the source of the failure
is inside its definition so that the failure is encapsulated and the result of notfs
is the empty set. However, if we define

nots x = nots x (9)

and evaluate notss failed, the computation fails since the failure comes from
outside and is not encapsulated. These issues are discussed in [10] where it has
been argued that failures outside encapsulated search should lead to a failure
instead of an empty set only if there are no other results. For instance, the ex-
pression any0fs failed has no value (since the demanded argument is an outside
failure) whereas the value of the expression

any0fs [failed,1] (10)

is the set with the single element 1. This semantics can be implemented by
comparing the levels of failures occurring in search trees (see [10] for details).
With the extension of search trees introduced above, we are well prepared
to implement this semantics in Curry itself except for one point: outside failures
always lead to a failure of the complete evaluation if their value is needed in
the encapsulated search. Thus, the evaluation of (10) will always fail. In order to
avoid this, we have to transform such a failure into the search tree element Fail 0
(where 0 is the “top” encapsulation level, i.e., outside any set function). For this
purpose, we modify the definitions of applyST and nfST on arguments matching

14

the Uneval constructor by checking whether the evaluation of the argument to a
head-normal form fails:!?

applyST f (Uneval x) = if isFail x then Fail 0 else f x

nfST (Uneval x) = if isFail x then Fail 0 else x ‘seq‘ nf x
Then one can synthesize plural and set functions similarly to the already pre-
sented scheme. In order to set the correct encapsulation level in Fail and Choice
constructors, every function has the current encapsulation level as an additional
argument. Finally, one also has to synthesize plural functions of set functions if
they are used inside other set functions. For instance, the set function of not has
type

notS :: Bool — Values Bool
but the plural function of this set function must represent the result set again
as a search tree, i.e., it has the type

notSP :: Int — ST Bool — ST (STList Bool)
(the first argument is the encapsulation level). To evaluate the search tree struc-
ture returned by such plural set functions, we need an operation which behaves
similarly to stValues but returns a search tree representation of the list of values,
i.e., this operation has the type

stValuesP :: NF a => Int — ST a — ST (STList a)
Note that this operation also takes the encapsulation level as its first argument.
For instance, failures are only encapsulated (into an empty list) if they are on
the same level, i.e., there is the following defining rule for stValuesP:

stValuesP e (Fail n) = if n==e then Val Nil else Fail n
Choices are treated in a similar way where failures in different alternatives are
merged to their maximum level according to the semantics of [10], e.g.,

stValuesP 1 (Choice 1 (Fail 0) (Fail 1))
evaluates to Val Nil (representing the empty set of values).

Now we can define notSP by evaluating the result of notP with stValuesP

where the current encapsulation level is increased:

notSP e x = stValuesP (e+1) (notP (e+1l) x)
The plural function of notf (8) is straightforward (note that the level of the
generated failure is the current encapsulation level):

notfP :: Int — ST (STList Bool)

notfP e = notSP e (Fail e)
The set function of notf is synthesized as presented before except that we addi-
tionally provide 1 as the initial encapsulation level (this is also the level encap-
sulated by fromST):

notfS :: Values (Values Bool)

notfS = fromST (notfP 1)
As we have seen, nested set functions can be synthesized with a scheme similar
to simple set functions. In order to correctly model the semantics of [10], an en-

10 This requires a specific primitive isFail to catch failures, which is usually supported
in Curry implementations to handle exceptions.

15

capsulation level is added to each translated operation which is used to generate
the correct Fail and Choice constructors. In order integrate the synthesized set
functions into standard Curry programs, arguments passed to synthesized set
functions must be checked for failures when their values are demanded.

The extensions presented in the previous and this section can be combined
without problems. Concrete examples for this combination and more examples
for the synthesis techniques presented in this paper are available on-line.!! In
particular, there are also examples for the synthesis of higher-order functions,
which we omitted in this paper due to the additional complexity of synthesizing
the plural functions of higher-order arguments.

8 Related Work

The problems caused by integrating encapsulated search in functional logic pro-
grams are discussed in [8] where the concepts of strong and weak encapsulation
are distinguished. Weak encapsulation fits better to declarative programming
since the results do not depend on the order of evaluation. Set functions [4]
make the boundaries between different sources of non-determinism clear. The
semantical difficulties caused by nesting set functions are discussed in [10] where
a denotational semantics for set functions is presented.

The implementation of backtracking and non-determinism in functional lan-
guages has a long tradition [25]. While earlier approaches concentrated on em-
bedding Prolog-like constructs in functional languages (e.g., [18,24]), the imple-
mentation of demand-driven non-determinism, which is the core of contemporary
functional logic languages [2], has been less explored. A monadic implementa-
tion of the call-time choice is developed in [13] which is the basis to translate a
subset of Curry to Haskell [7]. Due to performance problems with this generic
approach, KiCS2, another compiler from Curry to Haskell, is proposed in [9].
Currently, KiCS2 is the only system implementing encapsulated search and set
functions according to [10], but the detailed implementation is complex and,
thus, difficult to maintain. This fact partially motivated the development of the
approach described in this paper.

9 Conclusions

We have presented a technique to synthesize the definition of a set function of
any function defined in a Curry program. This is useful to add set functions
and encapsulated search to any Curry system so that an explicit handling of
set functions in the run-time system is not necessary. Thanks to our method,
one can add a better (i.e., less strict) implementation of set functions to the
Prolog-based Curry implementation PAKCS or simplify the run-time system of
the Haskell-based Curry implementation KiCS2.

' https://github.com/finnteegen/synthesizing-set-functions

16

A disadvantage of our approach is that it increases the size of the trans-
formed program due to the addition of the synthesized code. Considering the
fact that the majority of application code is deterministic and not involved in
set functions, the increased code size is acceptable. Nevertheless, it is an inter-
esting topic for future work to evaluate the increase of code size for application
programs and try to find better synthesis principles (e.g., for specific classes of
operations) which produce less additional code.

Our work has the potential of both immediate and far reaching paybacks.
We offer a set-based definition of set functions simpler and more immediate
than previous ones. We offer a notion of plural function that is original and
natural. In Appendix A, we show interesting relationships between the two that
allow us to better understand, reason about and compute with these concepts.
The immediate consequence is an implementation of set functions competitive
with previous proposals.

It is well known that a non-deterministic function can be implemented by a
deterministic function that enumerates its results. A direct approach [25] may
sacrifice laziness. An approach that preserves laziness [13] is cumbersome for
the programmer and may sacrifice efficiency. An intriguing aspect of our work
is the possibility of replacing any non-deterministic function, f, in a program
with its set function, which is deterministic, by enumerating all the results of f.
Our long-term goal is to execute this transformation automatically at compile
time without affecting the laziness of a program and without intervention of
the programmer. Thus, an (often non-deterministic) functional logic program
would become a deterministic program. A consequence of this change is that the
techniques for the implementation of non-determinism, such as backtracking,
bubbling and pull-tabbing, which are the output of a tremendous intellectual
effort of the last few decades, would no longer be an explicit element of the
implementation or a concern of the programmer.

References

1. A. Algaddoumi, S. Antoy, S. Fischer, and F. Reck. The pull-tab transforma-
tion. In Proc. of the Third International Workshop on Graph Computation Mod-
els, pages 127-132. Enschede, The Netherlands, 2010. Available at http://gcm-
events.org/gcm2010/pages,/gem2010-preproceedings.pdf.

2. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of
the ACM, 47(4):776-822, 2000.

3. S. Antoy and M. Hanus. Overlapping rules and logic variables in functional logic
programs. In Proceedings of the 22nd International Conference on Logic Program-
ming (ICLP 2006), pages 87-101. Springer LNCS 4079, 2006.

4. S. Antoy and M. Hanus. Set functions for functional logic programming. In Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’09), pages 73-82. ACM Press, 2009.

5. S. Antoy and M. Hanus. Functional logic programming. Communications of the
ACM, 53(4):74-85, 2010.

6. R. Atkey and Johann P. Interleaving data and effects. Journal of Functional
Programming, 25, 2015.

17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

B. Brafel, S. Fischer, M. Hanus, and F. Reck. Transforming functional logic pro-
grams into monadic functional programs. In Proc. of the 19th International Work-
shop on Functional and (Constraint) Logic Programming (WFLP 2010), pages
30-47. Springer LNCS 6559, 2011.

B. Brafel, M. Hanus, and F. Huch. Encapsulating non-determinism in functional
logic computations. Journal of Functional and Logic Programming, 2004(6), 2004.
B. Brafel, M. Hanus, B. Peemdoller, and F. Reck. KiCS2: A new compiler from
Curry to Haskell. In Proc. of the 20th Int. Workshop on Functional and (Con-
straint) Logic Programming (WFLP 2011), pages 1-18. Springer LNCS 6816, 2011.
J. Christiansen, M. Hanus, F. Reck, and D. Seidel. A semantics for weakly en-
capsulated search in functional logic programs. In Proc. of the 15th International
Symposium on Principle and Practice of Declarative Programming (PPDP’13),
pages 49-60. ACM Press, 2013.

J. de Dios Castro and F.J. Lopez-Fraguas. Extra variables can be eliminated
from functional logic programs. Electronic Notes in Theoretical Computer Science,
188:3-19, 2007.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math.,
1(1):269-271, 19509.

S. Fischer, O. Kiselyov, and C. Shan. Purely functional lazy nondeterministic
programming. Journal of Functional programming, 21(4&5):413-465, 2011.

J.C. Gongzalez-Moreno, M.T. Hortala-Gonzélez, F.J. Lopez-Fraguas, and
M. Rodriguez-Artalejo. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming, 40:47-87, 1999.

M. Hanus. Functional logic programming: From theory to Curry. In Programming
Logics - Essays in Memory of Harald Ganzinger, pages 123—-168. Springer LNCS
7797, 2013.

M. Hanus, S. Antoy, B. Brafel, M. Engelke, K. Hoppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System.
Available at http://www.informatik.uni-kiel.de/ pakcs/, 2018.

M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Avail-
able at http://www.curry-language.org, 2016.

R. Hinze. Prolog’s control constructs in a functional setting - axioms and implemen-
tation. International Journal of Foundations of Computer Science, 12(2):125-170,
2001.

H. Hussmann. Nondeterministic algebraic specifications and nonconfluent term
rewriting. Journal of Logic Programming, 12:237-255, 1992.

F.J. Lopez-Fraguas, J. Rodriguez-Hortal4, and J. Sanchez-Herndndez. A simple
rewrite notion for call-time choice semantics. In Proceedings of the 9th ACM SIG-
PLAN International Conference on Principles and Practice of Declarative Pro-
gramming (PPDP’07), pages 197-208. ACM Press, 2007.

J.J. Moreno-Navarro, H. Kuchen, R. Loogen, and M. Rodriguez-Artalejo. Lazy
narrowing in a graph machine. In Proc. Second International Conference on Alge-
braic and Logic Programming, pages 298-317. Springer LNCS 463, 1990.

S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

A. Riesco and J. Rodriguez-Hortala. Singular and plural functions for functional
logic programming. Theory and Practice of Logic Programming, 14(1):65-116,
2014.

S. Seres, M. Spivey, and T. Hoare. Algebra of logic programming. In Proc. ICLP’99,
pages 184-199. MIT Press, 1999.

18

25. P. Wadler. How to replace failure by a list of successes. In Functional Programming
and Computer Architecture, pages 113-128. Springer LNCS 201, 1985.

19

A Properties of Plural Functions

This section contains some interesting properties of plural functions.
Lemma 1. The plural function of a function is unique.

Proof. Suppose that both f; and fo are plural functions of some function f. Let
X be any set such that f; X =Y; and fo X = Y5, for some Y; and Y5. We show
Y; CYs. For any y € Yy, by Def. 2, point (1), applied to f1, there exists some
x in X such that f x = y. Since x € X and f5 is a plural function of f, Def. 2,
point (2), implies that y is in Y5. By symmetry, Yo C Y. Hence, f1 = fo. O

Lemma 2. If f and g are composable functions, then (f o g)p = fpogp.

Proof. First, we prove that for any X, (fog)p X 2 (fp o gp) X. Suppose
fr (gp X) = Z for some sets X and Z. There exists a set Y such that gp X =Y
and fp Y = Z. If z is some element of Z, then there exists some y in Y such
that z is a value of g y, and there exists some z in X such that y is a value f z.
Consequently z is a value of (f o g)(x) and z is an element of (f o g)p X. The
proof that for any X, (fog)p X C (fp ogp) X is similar. ad

The following claim establishes key relationships between the set and the plural
functions of a function.

Theorem 1. For any function f, argument x of f, and argument X of fp:

1. fsxz=fp{x} and
2. fpX=Wfsax, VrelX.

Proof. We prove that fs x C fp {z}. If y € fs z, then, by Def. 1, y is a value of
f x, then, by Def. 2, y is an element of fp {x}. The proof that fs O fp {z}
is similar. Hence condition (1) holds.

We now prove that fp X CW fsz, Vr € X. For any X, if y € fp X, by Def. 2,
there exists some = € X such that y is a value of f z. By Def. 1, y € fs . The
proof that fp X D W fs z, Vo € X is similar. Hence condition (2) holds. O

20

