ETAPS2000

Multi-Paradigm Programming
Michael Hanus

Christian-Albrechts-Universitat Kiel

Extend functional languages with features for
[1 logic (constraint) programming
[1 object-oriented programming
[1 concurrent programming

[1 distributed programming

‘ DECLARATIVE PROGRAMMING I

General idea:
e NO coding of algorithms
e description of logical relationships

e powerful abstractions

[1 domain specific languages

e higher programming level

e reliable and maintainable programs

[pointer structures = algebraic data types

[1 complex procedures = comprehensible parts
(pattern matching, local definitions)

DECLARATIVE PROGRAMMING

‘ DECLARATIVE PROGRAMMING: PARADIGI\/ISI

Functional programming:

[1 functions, \-calculus
[equations

[0 (lazy) deterministic reduction

Logic programming:

predicates, predicate logic
logical formulas, Horn clauses

constraint solving (unification)

O O O O

non-deterministic search for solutions

DECLARATIVE PROGRAMMING: PARADIGMS

‘ FUNCTIONAL LOGIC LANGUAGESI

o efficient execution principles of functional languages
e flexibility of logic languages

e avoid non-declarative features of Prolog
(arithmetic, 1/O, cut)

e combine best of both worlds in a single model

[higher-order functions ~» design patterns
[declarative I/O
[1 concurrent constraints

FUNCTIONAL LOGIC LANGUAGES

‘ IMPERATIVE VS. DECLARATIVE PROGRAI\/II\/IINGI

Readability, safety:

function fac(n: nat): nat =
begin

z :=1; p :=1;

while z<n+1 do

begin p := p*z; 2z := z+l1 end;
return(p)
end
fac O =1
fac (n+1) = (n+1) * (fac n)

IMPERATIVE VS. DECLARATIVE PROGRAMMING

Quicksort: Classical imperative version:

procedure gsort(l,r: index) ;
var i,j:indexr; x,w:item
begin
i :=1; jJ :=r;
x := al(1l+r) div 2];
repeat
while al[i] < x do i := i+1;
while x < al[j] do j
if i <= j then
begin w := alil; alil := aljl; aljl := w;

j-1;

i = 1i+1; j := j-1
end
until 1 > j;
if 1 < j then gsort(l,j);
if i < r then gsort(i,r);

end

IMPERATIVE VS. DECLARATIVE PROGRAMMING

Quicksort: Classical imperative version:

procedure qgsort(l,r: index) ;

var i,j:wndex; x,w:item
begin
i :=1; J := r;
x = al(l+r) div 2];
repeat

while al[i] < x do i

while x < a[j] do j

if 1 <= j then

begin w := alil; alil
i := 1i+1; j = j-1

end

until 1 > j;

if 1 < j then gsort(l,j);

if i < r then gsort(i,r);

end

Declarative version:

@sort [1 = [1 \

gsort (x:1) =
gsort (filter (<x) 1)
++ [x]
\\\; ++ gsort (filter (>=x) 12//
1+1;
j-1;

= aljl; aljl := w;

IMPERATIVE VS. DECLARATIVE PROGRAMMING

‘ IMPERATIVE VS. DECLARATIVE PROGRAI\/II\/IINGI

Program development and maintenance:

function f(n: nat): nat =
begin
write(’Hello’);
return(n*n)

end

. z:=f(3)*xf(3)

Optimization: ... x:=f(3); z:=x*x ... (?)

~+ Side effects complicate program optimization and transformation

IMPERATIVE VS. DECLARATIVE PROGRAMMING

\CURRYI

As a language for concrete examples, we use Curry:

multi-paradigm language
extension of Haskell (non-strict functional language)
developed by an international initiative

provide a standard for functional logic languages
(research, teaching, application)

several implementations available

CURRY

‘ BASIS OF DECLARATIVE PROGRAMMING: ALGEBRAIC DATA TYPESI

Values in imperative languages: basic types + pointer structures

Declarative languages: algebraic data types (Haskell-like syntax)

/ data Bool = True | False \

data Nat = Z | S Nat
data List a [] | a : List a -- [a]
Leaf a | Node [Tree a]

_ dataInt=011]-1121-21... -/

Value = dataterm, constructor term:
well-formed expression containing variables and data type constructors

data Tree a

(S Z) 1:(2:[1) [1,2] Node [Leaf 3, Node [Leaf 4, Leaf 5]]

BASIS OF DECLARATIVE PROGRAMMING: ALGEBRAIC DATA TYPES 10

‘FUNCTKNUH_PROGRAMSI

Functions: operations on values defined by equations (or rules)

TN

defined condition -
operatlon data terms (optlonal) expression
///7 Z+y=y Z <y = True ‘\\\
(S x) +y = S(x+y) (S x) <Z = False
(S x) < (Sy) =x<y

[1 ++ ys = ys
(x:x8) ++ ys = x : (xs ++ ys)

depth (Leaf _) =1
depth (Node []) =1
\\\gepth (Node (t:ts)) = max (l+depth t) (depth (Node ts)) 4///

FUNCTIONAL PROGRAMS 11

‘ EVALUATION: COMPUTING VALUESI

Reduce expressions to their values

Replace equals by equals

Apply reduction step to a subterm (redex, reducible expression):

variables in rule’s left-hand side are universally quantified
~» match Ihs against subterm (instantiate these variables)

Z+y=y Z <y = True
(S x) +y = S(x+y) (S x) < Z = False
(S x) < By =x<y

(S 2)+(8Z2) — S (zZ+(s 7)) — S (82

EVALUATION: COMPUTING VALUES

12

‘ EVALUATION STRATEGIES I

Expressions with several redexes: which evaluate first?
Strict evaluation: select an innermost redex (= call-by-value)

Lazy evaluation: select an outermost redex

Z+y=y Z <y = True
(S x) +y = S(x+y) (S x) < Z = False
(S x) < (8y) =x<y

Strict evaluation:
Z < (SZ2)+(8Z) - Z < (S(z+(SZ)) = Z < (S(S 7)) — True

Lazy evaluation:
Z < (S Z)+(S Z) — True

EVALUATION STRATEGIES

13

Strict evaluation might need more steps, but it can be even worse. ..

//> Z+y=y Z <y
(S x) +y = S(xty) (S x) < Z
(S x) < (Sy)

_ £ =

True
False

x<y

~

J

Lazy evaluation:
t72 < f — Z < f — True

Strict evaluation:
7+7 <f —= Z+z < f — Z+Z < f =

|deal strategy: evaluate only needed redexes
(.e., redexes necessary to compute a value)

Determine needed redexes with definitional trees

EVALUATION STRATEGIES

14

‘ DEFINITIONAL TREES [ANTOY 92] I

[1 data structure to organize the rules of an operation
[1 each node has a distinct pattern

[1 branch nodes (case distinction), rule nodes

Z <y = True
x1 < T9
(S x) £7Z = False
Z S il (S 2133) S o
True (S 2133) S Z (S 5133) S <S 334)
False T3 < Ty

DEFINITIONAL TREES [ANTOY 92] 15

‘ EVALUATION WITH DEFINITIONAL TREESI

xr1 < T2
/\
7 < a9 (S x3) < @9
¢ /\
True (Sx3) <7 (S x3) < (S xy)
' '
False T3 < T4

Evaluating function call ¢; < ¢5:

[1 Reduce t; to head normal form (constructor-rooted expression)
O If¢t1 = Z: apply rule

[0 Ift1 = (S...): reduce ¢, to head normal form

EVALUATION WITH DEFINITIONAL TREES

16

‘ PROPERTIES OF REDUCTION WITH DEFINITIONAL TREESI

e Normalizing strategy
l.e., always computes value if it exists =~ sound and complete

e Independent on the order of rules

e Definitional trees can be automatically generated
— pattern matching compiler

e Identical to lazy functional languages (e.g, Miranda, Haskell) for the
subclass of uniform programs
(i.e., programs with strong left-to-right pattern matching)

e Optimal strategy: each reduction step is needed

e Easily extensible to more general classes

PROPERTIES OF REDUCTION WITH DEFINITIONAL TREES 17

‘ HIGHER-ORDER FUNCTIONSI

Functions are first class citizens

[] passing functions as parameters and results
combinator-oriented programming
expressing design patterns

O O

code reuse

map :: (a -> b) -> [a] -> [b]

map f [] =[]
map f (x:xs) = (f x) : map f xs

map (1 +) [2,3,4] ~> [3,4,5]

Partial application: (1 +) is a function of type Int->Int

A-abstraction: \x->1+x (anonymous function)

HIGHER-ORDER FUNCTIONS

18

‘ HIGHER-ORDER FUNCTIONS: EXAMPLES I

Accumulate list elements with a binary operator:

foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

Multiply all list elements: foldr (*) 1 xs

Concatenate a list of lists: concat xs = foldr (++) [] xs

Tree example: computing list of all leaves in a tree:

frontier :: Tree a -> [al
frontier (Leaf v) = [v]
frontier (Node ns) = concat (map frontier ns)

HIGHER-ORDER FUNCTIONS: EXAMPLES

19

Filter all elements in a list satisfying a given predicate:

//rfilter :: (a -> Bool) -> [a] -> [a] ‘\\
filter p [] = []
filter p (x:xs) = if p x then x : filter p xs

\\‘ else filter p xs -/

Now the code for quicksort becomes straightforward:

gsort [] = []
gsort (x:1) = gsort (filter (<x) 1)
++ [x] ++ gsort (filter (>=x) 1)

HIGHER-ORDER FUNCTIONS: EXAMPLES 20

‘APPUCAﬂONZF”“M_PROGRAMMHMSI

Data type for representing HTML expressions:

data HtmlExp = HText String
| HStruct String [(String,String)] [HtmlExp]

HStruct "A" [("HREF","http://...")] [HText "click here"]

Get all hypertext links in an HTML document:

ﬁrefs [0 =[] \

hrefs (HText _ : hs) = hrefs hs

hrefs (HStruct tag attrs shs : hs) =

(if tag=="A" then map snd (filter (\(t,_)->t=="HREF") attrs)
\\\ else []) ++ hrefs shs ++ hrefs hs

APPLICATION: HTML PROGRAMMING

21

‘ NON-DETERMINISTIC EVALUATION I

Previous functions: inductively defined on data structures

Sometimes overlapping rules more natural:

True V Xx = True

x V True = True
False V False

False

First two rules overlap on True V True

~» Problem: no needed argument: evaluate e¢; or e5?

Functional languages: backtracking: Evaluate e, if not successful: es

Disadvantage: not normalizing (e; may not terminate)

NON-DETERMINISTIC EVALUATION 22

‘ NON-DETERMINISTIC EVALUATION I

True V x = True

True

x V True
False V False

Evaluation of ?

1. Parallel reduction of e; and e, [Sekar/Ramakrishnan 93]

False

2. Non-deterministic reduction: try (don’t know) e; or e,

Extension to definitional trees / pattern matching:
Introduce or-nodes to describe non-deterministic selection of redexes

~» non-deterministic evaluation: e — er || en

disjunctive expression

~» hon-deterministic functions

NON-DETERMINISTIC EVALUATION

23

‘ NON-DETERMINISTIC FUNCTIONSI

Functions can have more than one result value:

choose xy = X
choose xy =y

choose 1 2 — 1 | 2

Non-deterministic list insertion and permutations:

//Ensert x []

insert x (y:ys)

[x] N\

choose (x:y:ys) (y:insert x ys)

permute [] =[]
\\Rgrmute (x:xs8) = 1insert x (permute xs))//

permute [1,2,3] —
[1,2,3]1 | [2,1,3]

[2,3,11 | [1,3,2] | [3,1,2] | [3,2,1]

NON-DETERMINISTIC FUNCTIONS

24

‘LOGIC PROGRAMMINGI

Distinguished features:

compute with partial information (constraints)
deal with free variables in expressions
compute solutions to free variables

built-in search

O O O o

non-deterministic evaluation
Functional programming: values, no free variables

Logic programming: computed answers for free variables

Operational extension: instantiate free variables, if necessary

LOGIC PROGRAMMING

25

‘FROI\/I FUNCTIONAL PROGRAMMING TO LOGIC PROGRAI\/II\/IINGI

Evaluate (f x):—bhind x to 0 and reduce (£ 0) to 2, or:
— bind x to 1 and reduce (f 1) to 3

[
w N

Computation step: bind and reduce : b e
p p:bind and feduce : e~ foifer o] fon) e
logic functional disjunctive expression

Reduce: (f 0) ~ 2

Bind and reduce: (f x) ~ {x=0} 2 | {x=1} 3

Compute necessary bindings with needed strategy
~» needed narrowing [Antoy/Echahed/Hanus POPL94/JACM'00]

FROM FUNCTIONAL PROGRAMMING TO LOGIC PROGRAMMING

26

‘ EVALUATION WITH DEFINITIONAL TREESI

xr1 < T2
/\
7 < a9 (S x3) < @9
¢ /\
True (Sx3) <7 (S x3) < (S xy)
' '
False T3 < T4

Evaluating function call ¢; < ¢5:

[1 Reduce t; to head normal form
O If¢t1 = Z: apply rule

[0 Ift1 = (S...): reduce ¢, to head normal form

EVALUATION WITH DEFINITIONAL TREES

27

‘ NEEDED NARROWING I

Evaluating function call ¢; < ¢5:

[1 Reduce t; to head normal form

[Ift1, = Z: apply rule

[0 Ift1 = (S...): reduce ¢, to head normal form
[If ¢, variable: bind ¢; to Z or (S x)

NEEDED NARROWING

28

‘ PROPERTIES OF NEEDED NARROWINGI

Sound and complete (w.r.t. strict equality, no termination requirement)

Optimality:

[0 No unnecessary steps:
Each narrowing step is needed, i.e., it cannot be avoided if a solution should be

computed.

[0 Shortest derivations:
If common subterms are shared, needed narrowing derivations have minimal
length.

0 Minimal set of computed solutions:
Two solutions ¢ and o' computed by two distinct derivations are independent.

PROPERTIES OF NEEDED NARROWING 29

‘ PROPERTIES OF NEEDED NARROWINGI

Determinism:
No non-deterministic step during the evaluation of ground expressions
(=~ functional programming)

Restriction: inductively sequential rules
(i.e., no overlapping left-hand sides)

Extensible to

conditional rules [Hanus ICLP'95]
overlapping left-hand sides [Antoy/Echahed/Hanus ICLP'97]
multiple right-hand sides [Antoy ALP'97]

O O 0O 0O

concurrent evaluation [Hanus POPL97]

PROPERTIES OF NEEDED NARROWING

30

‘STRICT EQUALITYI

Problems with equality in the presence of non-terminating rules:

1. Equality on infinite objects undecidable:

[f =0:1f g =0:g

Is f = g valid?

2. Semantics of non-terminating functions:

[f x =1 (x+1) g x =g (x+1)

IS £ 0 =g 0 valid?

Avoided by strict equality: identity on finite objects
(both sides reducible to same ground data term)

STRICT EQUALITY

31

\ EQUATIONAL CONSTRAINTSI

Logic programming: solve goals, compute solutions
Functional logic programming: solve equations

Strict equality: only reasonable notion of equality in the presence of
non-terminating functions

Equational constraint [61 =:= eg}

satisfied if both sides evaluable to unifiable data terms

= e1=:=¢5 does not hold if e; or e, undefined or infinite

= e1=:=e3 and ey, e; data terms = unification in logic programming

EQUATIONAL CONSTRAINTS

32

‘FUNCTKNWH_LOGKZPROGRAMMHME EXAMPLESI

List concatenation;

append :: [a] -> [a] -> [a]

append [] ys
append (x:xs) ys

ys
X : append xs ys

Functional programming:

append [1,2] [3,4] ~> [1,2,3,4]

Logic programming:
append x y =:= [1,2] ~»
{x=01,y=[1,21} | {x=[1]1,y=[21} | {x=[1,2],y=01}

Last list element: [1ast xs | append ys [x] =:= xs = X]

FUNCTIONAL LOGIC PROGRAMMING: EXAMPLES

‘FUNCTKNWH_LOGKZPROGRAMMHMI EXAMPLESI

Infinite list of natural numbers:

from x = x : from (S x)
first Z VS = [
first (S x) (y:ys) = y : first x ys

Lazy functional programming:

first (S(S Z)) (from Z) ~> [Z,(S Z)]

Lazy functional logic programming:

first x (from y) =:= [Z] ~ {x=(S Z),y=Z}

FUNCTIONAL LOGIC PROGRAMMING: EXAMPLES

34

‘PROGRAMMWMSDEMAND{NUVEVSEARCHI

Non-deterministic functions for generating permutations:

//Ensert x []

insert x (y:ys)

permute []

\\Egrmute (x:x8)

= [x]

[

= insert x (permute xs)

~

choose (x:y:ys) (y:insert x ys)

/

Sorting lists with test-of-generate principle:

///sorted [1 = L[]

sorted [x] = [x]
sorted (x:y:ys)

\\\Psort xs = sorted (permute xs)

| x<=y

X

: sorted (y:ys)

~

/

PROGRAMMING DEMAND-DRIVEN SEARCH

35

Advantages of non-deterministic functions as generators:

[1 demand-driven generation of solutions (due to laziness)

[1 modular program structure
psort [5,4,3,2,1] ~ sorted (permute [5,4,3,2,1])

~* sorted (5:4:permute [3,2,1]) |

undefined: discard this alternative

Effect: Permutations of [3,2,1] are not enumerated!

Permutation sort for [n,n—1,...,2,1]: #or-branches/disjunctions

Length of the list: 4 5 6 8 10
generate-and-test | 24 120 720 40320 3628800
test-of-generate 19 59 180 1637 14758

PROGRAMMING DEMAND-DRIVEN SEARCH 36

\SEARCH STRATEGIES AND ENCAPSULATED SEARCHI

How to deal with non-deterministic computation steps?

[1 explore alternatives in parallel ~» parallel architectures
[1 explore alternatives by backtracking ~» Prolog

[1 support flexible search strategies ~» encapsulate search

Disadvantages of fixed search (like backtracking):

[1 no application-dependent strategy or efficiency control
[1 global search: local search has global effects
[1 1/O operations not backtrackable

[1 problems with concurrency and backtracking

Solution: provide primitives for user-definable search strategies
(Oz [Schulte/Smolka 94], Curry [Hanus/Steiner 98])

SEARCH STRATEGIES AND ENCAPSULATED SEARCH

‘ ENCAPSULATED SEARCH I
ldea:

Compute until a non-deterministic step occurs, then give programmer
control over this situation

Search:

[1 solve constraint
[1 evaluate until failure, success, or non-determinism

[1 return resultin a list

First approach to primitive search operator:

[try :: Constraint -> [Constraint]]

ENCAPSULATED SEARCH

38

\ SEARCH OPERATOR: FIRST APPROACHI

[try :: Constraint -> [Constraint]
= 2
=3
try (1=:=2) ~ [] failure
try ([x]=:=[0]) ~ [x=:=0] success
try (£ x=:=3) ~ [x=:=0 & £ 0=:=3,
x=:=1 & £ 1=:=3] disjunction

Problem: incompatible bindings for x in disjunctions!

Solution: abstract search variable in constraints: \x->c

SEARCH OPERATOR: FIRST APPROACH

39

\SEARCH OPERATOR: FINAL APPROACHI

Search goal: constraint with abstracted search variable

Search operator try: maps search goal into list of search goals

[try :: (a->Constraint) -> [a->Constraint]]
= 2
= 3
try \x->1=:= ~ [] failure
try \x-> [x]=:=[0] ~ [\x->x=:=0] success
try \x->f x =:= ~ [\x->x=:=0 & £ 0 =:= 3,
\x->x=:=1 & f 1 =:= 3] disjunction

SEARCH OPERATOR: FINAL APPROACH 40

\ ENCAPSULATED SEARCH: SEARCH STRATEGIESI

try \z->c: evaluate ¢, stop after non-deterministic step

Depth-first search: collect all solutions in a list

///;ll :: (a->Constraint) -> [a->Constraint] i\\\

all g = collect (try g)

where collect [] = [1]
collect [g] = [g]
\\\‘ collect (gl:g2:gs) = concat (map all (gl:g2:gs))4///
all (\xs -> append xs [1] =:= [0,1]) ~ [\xs -> xs=:=[0]]

ENCAPSULATED SEARCH: SEARCH STRATEGIES

41

\ ENCAPSULATED SEARCH: FURTHER SEARCH STRATEGIESI

e compute only the first solution:

[once g = head (all g) where head (x:xs) = x]

Note: lazy evaluation is important here!
(strict languages, like Oz, must define new search operator)

~» lazy evaluation supports better reuse
e findall, best solution search, parallel search, ...

e negation as failure:

[naf ¢ = (all _->c) =:= [] J

~» control failures

ENCAPSULATED SEARCH: FURTHER SEARCH STRATEGIES

42

‘HANDLWMSSOLUHONSI

Extract value of the search variable by application of search goal:

(\X_>X=:=1) freevar ~ freevar=:=
e {freevar=1} success

Prolog’s findall:

unpack :: (a->Constraint) -> a N

unpack g | g x = x

findall g = map unpack (all g) -

Compute all splittings of a list:

findall (\(x,y) —-> append x y =:= [1,2])
= [([1,[1,2]), ([11,[21), ([1,2],[D)]

HANDLING SOLUTIONS

43

‘EXPLOHWMSLAENESSI

Show a list of search goals, as requested by the user:

printloop [] = putStr "no\n"
printloop (a:as) = browse a >> putStr "7 " >>

getChar >>= evalAnswer as

evalAnswer as ’;’ = newline >> printloop as

evalAnswer as ’\n’ = newline >> putStr "yes\n"

Prolog’s top-level: prolog g = printloop (all g)

prolog \(x,y) -> append x y =:= [1,2]
= (0,01,21) 7
([11,[21) 7 <-

yes

prolog \x -> 1=:= = 1o

EXPLOITING LAZINESS

44

Laziness easily supports demand-driven encapsulated search
= Separation of Logic and Control

= Modularity:

e Prolog’s top-level with breadth-first search:
prolog_bfs g = printloop (bfs g)

e Prolog’s top-level with depth-bounded search:
prolog_bound g bd = printloop (bound g bd)

EXPLOITING LAZINESS

45

‘I\/IONADIC INPUT/OUTPUTI

Problem: Handling input/output in a declarative manner?

Solution: Consider the external world as a parameter to all I/O operations
(Haskell, Mercury)

I/O actions: transformations on the external world

Interactive program: sequence(!) of actions applied to the external world

Type of I/O actions: [IO a ~ World -> (a,wOrld))

But: the “world” is implicit parameter, not explicitly accessible!

MONADIC INPUT/OUTPUT

46

Some primitive I/O actions..

getChar :: IO Char -- read character from stdin
putChar :: Char -> I0 () -- write argument to stdout
return :: a -> I0 a —-- do nothing and return argument

getChar applied to a world ~» character + new (transformed) world

Compose actions: (>>=) :: I0a -> (a->I0b) > I00Db

getChar >>= putChar: copy character from input to output

Specialized composition: ignore result of first action:

(>>) :: 10 a-> I0 b ->I0D
X >y = x >>= _->y

MONADIC INPUT/OUTPUT

47

Example: output action for strings (String ~ [Char])

putStr :: String -> I0 ()

putStr [] = return ()
putStr (c:cs) = putChar c >> putStr cs

Example: read a line

//éetLine :: I0 String N\
getLine = getChar >>= \c ->

if c==’\n’ then return []

\\» else getLine >>= \cs -> return (c:csz//

MONADIC INPUT/OUTPUT

48

Monadic composition not well readable

~» syntactic sugar: Haskell's do notation

do p <- aq ~ a; >>= \p —> as

as

Example: read a line (with do notation)

getlLine = do ¢ <- getChar
if c==’\n’ then return []
else do cs <- getline

return (c:cs)

Note: no I/O in disjunctions (“cannot copy the world”)

~» encapsulate search between 1/O actions

MONADIC INPUT/OUTPUT

49

‘ CONSTRAINT PROGRAMMING I

Logic Programming:

compute with partial information (constraints)
data structures (constraint domain): constructor terms

basic constraint: (strict) equality

O O O O

constraint solver: unification

Constraint Programming: generalizes logic programming by

[1 new specific constraint domains (e.g., reals, finite sets)
[J new basic constraints over these domains

[1 sophisticated constraint solvers for these constraints

CONSTRAINT PROGRAMMING

50

‘CONSTRAINT PROGRAMMING OVER REALSI

Constraint domain: real numbers

Basic constraints: equations / inequations over real arithmetic expressions
Constraint solvers: Gaussian elimination, simplex method

Examples:

5.1 =:= x + 3.5 ~ {x=1.6}

x<=1.5 & x+1.3>=2.8 ~ {x=1.5}

CONSTRAINT PROGRAMMING OVER REALS

51

‘ EXAMPLE:. CIRCUIT ANALYSISI

Define relation cvi between electrical circuit, voltage, and current

Circuits are defined by the data type

data Circuit = Resistor Float
| Series Circuit Circuit

| Parallel Circuit Circuit

Rules for relation cvi:
cvi (Resistor r) vi= v=:=1=%r7 —— Ohm’s law

cvi (Series cl c2) vi-= —— Kirchhoff’s law

v=:=vil+v2 & <cvicl vl i & <cvi c2 v2 1

cvi (Parallel cl1 c2) v i = —— Kirchhoff’s law

1=:=114+12 & <c¢cvi cl1l v i1 & «cvi c2 v 12

EXAMPLE: CIRCUIT ANALYSIS 52

Querying the circuit specification:

Current in a sequence of resistors:
cvi (Series (Resistor 180.0) (Resistor 470.0)) 5.0 i
~ {1 = 0.007692307692307693}

Relation between resistance and voltage in a circuit:

cvi (Series (Series (Resistor r) (Resistor r)) (Resistor r)) v 5.0

~» {v=15.0%r}

Also synthesis of circuits possible

EXAMPLE: CIRCUIT ANALYSIS 53

‘CONSTRAINT PROGRAMMING WITH FINITE DOI\/IAINSI

Constraint domain: finite set of values
Basic constraints: equality / disequality / membership /...

Constraint solvers: OR methods (e.g., arc consistency)

Application areas: combinatorial problems
(job scheduling, timetabling, routing,...)

General method:

[1 define the domain of the variables (possible values)
[1 define the constraints between all variables
[“labeling”, i.e., non-deterministic instantiation of the variables

constraint solver reduces the domain of the variables by sophisticated
pruning techniques using the given constraints

Usually: finite domain = finite subset of integers

CONSTRAINT PROGRAMMING WITH FINITE DOMAINS

54

‘EXAI\/IPLEZ A CRYPTO-ARITHMETIC PUZZLEI

Assign a different digit to each different letter s e n d
such that the following calculation is valid: + m 0 €
m o n e vy
puzzle s endmory =
domain [s,e,n,d,m,o,r,y] 0 9 & -— define domain
s >0 & m>0 & -- define constraints
all_different [s,e,n,d,m,o,r,y] &
1000 * s + 100 * e + 10 * n + d
+ 1000 * m + 100 * o + 10 * r + e
= 10000 * m + 1000 * o + 100 * n + 10 *x e +y &
labeling [s,e,n,d,m,o0,r,y] -- instantiate variables

puzzle s endmory -~ {s=9,e=5,n=6,d=7,m=1,o=O,r=8,y=2}

EXAMPLE: A CRYPTO-ARITHMETIC PUZZLE

55

‘ FROM FUNCTIONAL LOGIC TO CONCURRENT PROGRAI\/II\/IINGI

Disadvantage of narrowing:

[1 functions on recursive data structures ~» narrowing may not terminate

[J all rules must be explicitly known ~> combination with external functions?

Solution: Delay function calls if a needed argument is free

~+» residuation principle [Ait-Kaci et al. 87]
(used in Escher, Le Fun, Life, NUE-Prolog, Oz,...)

Distinguish: rigid (consumer) and flexible (generator) functions

Necessary: Concurrent conjunction of constraints: ¢y & ¢

Meaning: evaluate ¢; and ¢, concurrently, if possible

FROM FUNCTIONAL LOGIC TO CONCURRENT PROGRAMMING 56

‘FLEXIBLE VS. RIGID FUNCTIONSI
f0=2
f1=23

rigid/flexible status not relevant for ground calls:

f1 ~ 3
f flexible:
fx=:=y ~ {x=0,y=2} | {x=1,y=3}
f rigid:
f x =:=y ~ suspend
f x ==y & x=:= ~ {x=1} £ 1 ==y (suspend f x)

~ {x=1} 3 =:=y (evaluate £ 1)
~ {x=1,y=3}

Default in Curry: constraints are flexible, all others are rigid

FLEXIBLE VS. RIGID FUNCTIONS

57

‘PARALLELFUNCTKNWH_PROGRAMMHMBI

Parallel evaluation of arguments:
f tl t2 = letpar x = g ti
y=ht2 1in k xy

with concurrent conjunction of equations:

(: ftlt2 | x=:=gtl&y=ht2 =kxy

Skeleton-based parallel programming:

farm: parallel version of map

farm £ [] = []
farm f (x:xs) | r =:= f x & rs =:= farm f xs
=r rs

PARALLEL FUNCTIONAL PROGRAMMING

58

‘ EXTERNAL FUNCTIONS I

External functions: implemented in another language (e.g., C, Java,...)

Conceptually definable by an infinite set of equations, e.g.,

0+0 = 0 1+0 = 1 2+0 = 2
O+1 =1 141 = 2
0+2 = 2

Definition not accessible, infinite disjunctions

[1 suspend external function calls until arguments are fully known, i.e., ground
[Bonnier/Maluszynski 88, Boye 91]

[1 no extension to presented computation model (external functions are rigid), but
not possible in narrowing-based languages!

[reuse of existing libraries

EXTERNAL FUNCTIONS

59

‘ STANDARD ARITHI\/IETICI

Implementation of standard arithmetic (+, -, *,...) as external functions:
0,1,2,...: constructors

+, —, *,.... external functions

x=:=2+3%4 ~ {x=14}

x=:=2%3+y ~ {} x=:=6+y (suspend)

Xxtx=:=y & x=:=
~ {x=2} 2+2=:=y (suspend x+x)
~ {x=2} 4=:=y (evaluate 2+2)

~ {x=2, y=4}

= Rigid functions as passive constraints (Life)

STANDARD ARITHMETIC

60

External functions as passive constraints:

digit 0 = success

digit 9 = success

The constraint digit acts as a generator:
xtx=:=y & x*x=:=y & digit x

~ {x=0, y=0} | {x=2, y=4}

STANDARD ARITHMETIC

61

‘HIGHER-ORDER FUNCTIONAL LOGIC PROGRAI\/II\/IINGI

map :: (a -> b) -> [a] -> [b]

map f [] = [1]
map f (x:xs) = (f x) : map f xs

Functional programming: map (1 +) [2,3,4] ~» [3,4,5]
Logic programming: map f [2,3,4] =:= [3,4,5] ~» ?77?
[1 consider application function £ $ x = (f x) as external

[consider partial applications as data terms

[0 first-order definition of application function ($) (as in [Warren 82)):

+) $x
(+x) $y

(+ x) -- right-hand side is data term

x+y —-—- evaluate right-hand side

HIGHER-ORDER FUNCTIONAL LOGIC PROGRAMMING 62

Reasonable: application function ($) is rigid

~» delay applications of unknown functions

~map f [2,3,4] suspends

Other solutions possible but more expensive:

O ($) is flexible ~» guess unknown functions

[1 solver for higher-order equations
(higher-order unification, higher-order needed narrowing)

HIGHER-ORDER FUNCTIONAL LOGIC PROGRAMMING

63

‘ UNIFICATION OF DECLARATIVE COMPUTATION MODELSI

Computation model

Restrictions on programs

Needed narrowing

Weakly needed narrowing
(~Babel)

Resolution (~Prolog)

Lazy functional languages
(~Haskell)

Parallel functional langs.
(~Goffin, Eden)

Residuation (~Life, Oz)

Inductively sequential rules; optimal strategy

only flexible functions

only (flexible) predicates (~ constraints)

no free variables in expressions

only rigid functions, concurrent conjunction

constraints are flexible; all others are rigid

UNIFICATION OF DECLARATIVE COMPUTATION MODELS 64

\ CONCURRENT OBJECTS WITH STATEI

Modeling objects with state as a (rigid!) constraint function:

[1 first parameter: current state

[1 second parameter: message stream (rigid ~ wait for input)

Example: Counter object

///rdata CounterMessage = Set Int | Inc | Get Int ‘\\\
counter :: Int -> [CounterMessage]l -> Constraint
counter eval rigid -- declare as rigid
counter _ (Set v : ms) = counter v ms
counter n (Inc : ms) = counter (n+1) ms
counter n (Get v : ms) = v=:=n & counter n ms

\\\‘counter [= success 4///

CONCURRENT OBJECTS WITH STATE

‘CONCURRENT OBJECTS WITH STATE: A COUNTERI

~

J

//rcounter _ (Set v : ms) = counter v ms
counter n (Inc : ms) = counter (n+l) ms
counter n (Get v : ms) = v=:=n & counter n ms
\\‘counter _ [= guccess
counter 0 s & -- create counter object
s =:= [Set 41, Inc, Get x]

~ {x=42, s=...}

Also: incremental instantiation of s (message sending)

Several sending processes ~ merge message streams

CONCURRENT OBJECTS WITH STATE: A COUNTER

66

‘ PORTS FOR DISTRIBUTED SYSTEI\/ISI

Distributed systems: n — 1-communication with dynamic connections

Port [Janson et al. 93, AKL]: constraint between multiset p and stream s
satisfied if elements in p and s are identical

Input 1 \

T Stream s
T g eme

Input n /

Two constraints on ports:

openPort p s open port p with stream s
send m p constrain p to hold message m

Previous counter with two clients:
openPort p s &> counter O s & clientl p & client2 p

PORTS FOR DISTRIBUTED SYSTEMS

67

‘ PORTS FOR DISTRIBUTED SYSTEI\/ISI

e communication based on logic (constraint solving)
e simple extension of base semantics

e send instantiates end of stream s (in constant time)
s_tail =:= (m:new_s_tail)

~» Strict communication

e provides efficient implementation
(senders have no access to old messages)

e free variables in messages = reply channels

e dynamic extension of senders (pass port variable)

PORTS FOR DISTRIBUTED SYSTEMS

68

‘EXTERNALIDORTSI

I/O actions for external communication
(between different programs running on different machines):

openNamedPort :: String -> I0 [al

connectPort :: String -> I0 (Port a)

openNamedPort pn: open new external port with global name pn and return
stream of incoming messages

connectPort pn: return port with global name pn

(similar concepts: external objects in Oz, registered processes in Erlang)

EXTERNAL PORTS

69

A simple example: a global counter server

The server side: (started on medoc.cs.uni-kiel.de)

main = openNamedPort '"counter" >>= c_server

c_server s | counter 0 s = done

The client side:

client pn m = connectPort pn >>= sendPort m

sendPort msg p | send msg p = done

Increment the global counter:

client "counter@medoc.cs.uni-kiel.de" Inc

Ask the counters current value:

client "counter®@medoc.cs.uni-kiel.de" (Get v) ~ {v=...

EXTERNAL PORTS

70

\A NAME SERVERI

Messages: “PutName n ¢” (assign: to namen) “GetName n 2"

//ﬁ;meserver = openNamedPort '"nameserver" >>= serverloop _—;6\\

serverloop n2i (GetName n i : ms) | i=:=(n2i n)

= serverloop n2i ms

serverloop n2i (PutName n i : ms) = serverloop new_n2i ms
\\\\where new_n2i m = 1f m==n then i1 else n2i m 4///

The client side:

client "nameserver@..." (PutName "talk" 42)

client "nameserver@..." (GetName "talk" x) -~ {x=42}

A NAME SERVER

‘A HIERARCHICAL NAME SERVERI

Internet domain name server: ask master server if name locally unknown

Implementation by slight modification of previous name server:

//ggrverloop n2i (GetName n i : ms)
| if (n2i n)==0 then send (GetName n i) master
else i=:=(n2i n)

= serverloop n2i ms

where new_ n2i m = if m==n then 1 else n2i m

\\ifrverloop n2i (PutName n i : ms) = serverloop new_n2i ms

~

/

A HIERARCHICAL NAME SERVER

72

\ A COMPUTATION SERVER I

Strict communication, no RPCs ~» no direct way to distribute work

Computation server: accepts messages (f,x,y)

[:start_cserver = openNamedPort '"compserver" >>= compserver :}

compserver ((f,x,y) : ms) | y=:=(f x) = compserver ms

Client side: client "compserver@cs" (prime,1000,p) ~ {p=7919}

[1 consider partially applied function calls as data terms

[1 asynchronous RPCs
(free result variable ~ “promise”)

[1] concurrent server:

compserver eval rigid
compserver ((f,x,y) : ms) = y=:=(f x) & compserver ms

A COMPUTATION SERVER

73

‘A MODEL FOR MULTI-PARADIGM PROGRAI\/II\/IINGI

Integration of different programming paradigms is possible

Functional programming is a good starting point:

[1 lazy evaluation ~» modularity, optimal evaluation
[higher-order functions ~» code reuse, design patterns
[0 polymorphism ~- type safety, static checking

Stepwise extensible in a conservative manner to cover

[logic programming: non-determinism, free variables
[1 constraint programming: specific constraint structures

[1 concurrent programming: suspending function calls, synchronization on logical
variables

[1 object-oriented programming: constraint functions, ports

]

imperative programming: monadic 1/O, sequential composition
[1 distributed programming: external ports

A MODEL FOR MULTI-PARADIGM PROGRAMMING

74

‘WHY INTEGRATION OF DECLARATIVE PARADIGMS? I

e Mmore expressive than pure functional languages
(compute with partial information/constraints)

e Mmore structural information than in pure logic programs (functional
dependencies)

e more efficient than logic programs (determinism, laziness)

e functions: declarative notion to improve control in logic programming
e avoid impure features of Prolog (arithmetic, 1/0O)

e combine research efforts in FP and LP

e do not teach two paradigms, but one: declarative programming
[Hanus PLILP’97]

e choose the most appropriate features for application programming

WHY INTEGRATION OF DECLARATIVE PARADIGMS? 75

‘APPLICATION OF MULTI-PARADIGM LANGUAGESI

So far: high-level approach to

[1 search problems
[] constraint solving

1 distributed systems

In the following: appropriate to develop domain-specific languages for

[1 graphical user interfaces
[parsing
[HTML/CGI programming

APPLICATION OF MULTI-PARADIGM LANGUAGES

76

‘ FUNCTIONAL LoGic GUI PROGRAI\/II\/IINGI

[Hanus PADLOO]

Graphical User Interfaces (GUIs) have a

[1 layout structure ~» hierarchical structure, algebraic data type
[1 logical structure ~» dependencies in the layout structure

Tcl/Tk: assign strings to layout elements ~» run-time errors

Here: use logical variables as references ~» compiler errors

A simple “Hello world” GUI.

runWidget "Hello"
(TkCol [TkLabel [TkText "Hello world!"],
TkButton tkExit [TkText "Stop"l])

FUNCTIONAL LoGgIc GUI PROGRAMMING

77

\ LAYOUT STRUCTURE OF GUISI

Specify hiearchical GUI layout as a “TkWidget” term:

data TkWidget a =
TkButton (GUIRef -> a) [TkConfItem a]
TkCheckButton [TkConfItem a]

|

| TkEntry [TkConfItem al
| TkLabel [TkConfItem a]
| TkScale Int Int [TkConfItem a]
| TkTextEdit [TkConfItem a]

| TkRow [TkWidget al]
| TkCol [TkWidget al

LAYOUT STRUCTURE OF GUIs

\ EXAMPLE: A COUNTER GUI I

A specification of a counter GUI:

&| Counter Demo

TkCol
[TkEntry [TkRef val, TkText "0"],
TkRow [TkButton (tkUpdate incr val) [TkText "Increment"],
TkButton (tkSetValue val "0") [TkText "Reset"],
TkButton tkExit [TkText "Stop"l]]

where val free

[the free variable val is a reference to the entry widget
[0 wvalis used in the event handlers of other widgets
[1 val is part of the logical structure of the GUI

ExXAMPLE: A COUNTER GUI

79

\ L OGICAL STRUCTURE OF GUISI

Configuration options for GUIs:

data TkConfltem a =

TkText String -- 1nitial text
| TkBackground String —-— background color
| TkRef TkRefType -— widget reference

| TkCmd (GUIRef -> a) -— event handler

TkRef: reference to a widget, used in event handlers

(TkRefType Is abstract ~» argument is a logical variable)

tkExit :: GUIRef -> I0 ()

tkGetValue :: TkRefType -> GUIRef -> IO String

tkSetValue :: TkRefType -> String -> GUIRef -> I0 ()

tkUpdate :: (String->String) -> TkRefType -> GUIRef -> I0 ()

Remark: event handlers also available as constraints

LOGICAL STRUCTURE OF GUIs

80

‘EXAMPLEZTEMPERATURE(:ONVERTERI

Convert a temperature from Celsius into Fahrenheit:

& Temperature CLonversion

Temperature in Fahrenheit: 86

TkCol [TkLabel [TkText "Temperature in Celsius:"],
TkScale 0 100 [TkRef cels, TkCmd convert],
TkRow [TkLabel [TkText "Temperature in Fahrenheit: "],
TkMessage [TkRef fahr, TkBackground "white"]]]

where cels,fahr free

convert gr =
tkGetValue cels gr >>= \cs ->
tkSetValue fahr (show ((parselntcs) *9 ‘div‘5+32)) gr

EXAMPLE: TEMPERATURE CONVERTER

81

\GUIS WITH STATE: A DESK CALCULATORI

Implementation consists of two parts:

1. Object for storing the state

state: (operand, accumulator function)
messages: Display s, Button b

2. GUI for showing the state

GUIs WITH STATE: A DESK CALCULATOR

82

Object for storing the state:

Message Display s: instantiate s with current display

calcMgr (d,f) (Display s : ms) = s =:= (show d) &>
calcMgr (d,f) ms

Message Button b: the user has pressed button b

calcMgr (d,f) (Button b : ms)
| isDigit b = calcMgr (10*d+ordb-ord’0’, f) ms

| b=="+’ = calcMgr (0, ((f d) +)) ms

| b=="-"’ = calcMgr (0, ((f d) -)) ms

| b==7%’ = calcMgr (0, ((f d) *)) ms

| b==/" = calcMgr (0, ((f d) ‘div‘)) ms
| b==’=’ = calcMgr (f d, id) ms

| b=="C’ = calcMgr (0, id) ms

GUIs WITH STATE: A DESK CALCULATOR

83

GUI for showing the state with a reference cm to calculator object:

calc_GUI cm =

[¢] Calculator

TIIB"

i Bl e S

where display free

TkRow
TkRow
TkRow
TkRow

(map
(map
(map
(map

cbutton
cbutton
cbutton

cbutton

TkCol [TkEntry [TkRef display, TkText "0"],

[;1;,;2;,;3;,;+;]),

[’4’,’5’,’6’,’—’]),
[’7’,’8’,’9’,’*’]),
[;CJ,;O;,;z;,;/;])]

cbutton b = TkButton (click b) [TkText [bl]

click b gr

[0 model-view-controller paradigm a la Smalltalk-80

send (Button b) cm &>
send (Display d) cm &>
tkCSetValue display d gr

[1 different (distributed) views on one application

GUIs WITH STATE: A DESK CALCULATOR

84

‘FUNCTIONAL LoGgIc GUI PROGRAMMING: SUI\/II\/IARYI

Functional features useful for

[1 layout specification
[event handlers (data structures with functional components)
[1 application-oriented extensions

Logic programming features useful for

[1 dealing with dependencies inside a structure (free variables)
[1 handling state (concurrent objects)

Distributed features ~» GUIs for distributed applications
Specification (rather than imperative programming) of GUIs

Domain-specific language for GUIs, but:

no extension to base language necessary

FUNCTIONAL LoGIc GUI PROGRAMMING: SUMMARY

85

‘FUNCTIONAL LOGIC PROGRAMMING OF PARSERSI

[Caballero/Lopez-Fraguas FLOPS’99]
Logic programming of parsers:

nonterminals consume corresponding tokens (difference lists)
definite clause grammars for nice notation

non-deterministic grammars/parsing

O O 0O 0O

resulting representations as arguments

Functional programming of parsers:

[1 parsers consume corresponding tokens
[1 powerful parser combinators

[1 more complex handling of alternatives and representations

FUNCTIONAL LOGIC PROGRAMMING OF PARSERS

86

Functional logic programming of parsers:

simpler handling of representations and alternatives due to

[J non-deterministic functions

[1 free variables as arguments

Parser = function of type [token] -> [token]
Argument: list of tokens to be parsed
Result: list of remaining unparsed tokens

A parser recognizing token ’a’:

parse_a (’a’:ts) = ts

A parser recognizing a given token:

terminal sym (t:ts) | sym=:=t = ts

Parser recognizing the empty word:

empty sentence = sentence

FUNCTIONAL LOGIC PROGRAMMING OF PARSERS

87

\PARSER COI\/IBINATORSI

Parser combinators: higher-order functions to combine parsers

Alternative of two parsers p and q: combinator p <[> g
(p <I> q) sentence = p sentence

(p <I> q) sentence = g sentence

Sequence of two parsers p and q: combinator p <*> q
(pl <*> p2) sO0 | pl sO =:=s1 = p2 sl

Repetition of a parser: (zero or more times)
star p = (p <*> star p) <[> empty

Parser for a(alb)*:
terminal ’a’ <*> star (terminal ’a’ <|> terminal ’b?)

PARSER COMBINATORS

88

‘EXAMPLEZPARSWKSPAUNDROMESI

A parser for palindromes over the alphabet {a, b}
pali = empty <[> a <[> b <[> a<*¥>pali<*>a <[> b<*>pali<*>Db
a = terminal ’a’

b = terminal ’Db’

Checking a sentence for a palindrome:

pali "abaaba" =:= []

Using logic programming features, we can also generate palindromes:
pali [x,y,z] =:= []
~S {X=’a’,y=’a’,z=’a’} | {X=’a’,y=’b’,z=’a’}

| {X=’b’,y=’a’,z=’b’} | {X=’b’,y=’b’,z=’b’}

EXAMPLE: PARSING PALINDROMES

89

‘ PARSERS WITH REPRESENTATIONSI

Parsers should not only check a list of tokens but also return a
representation (e.g., abstract syntax tree)

[1 Functional programming: parsers have result (rep,tokens)

[1 Logic programming: parsers have rep argument ~» simpler definitions

Parser with representation =~ rep -> [token] -> [token]

Representation argument:

[1 usually free variable

(1 will be instantiated during parsing

PARSERS WITH REPRESENTATIONS 90

‘ PARSER COMBINATORS WITH REPRESENTATIONSI

Alternative of two parsers p and q: combinator p <|[|> g
(p <> q) rep = p rep <[> q rep

(reuse combinator for parsers without representation)

Attach representation exp to a parser p: combinator p >>> exp

(p >>> exp) rep s_in | ps_in =:=s_out & exp =:=rep = s_out

Repetition of a parser with representation: (representation is list)
star p = ©p r <> (star p) rs >>> (r:rs)
<||> empty >>> []

At least one repetition of a parser:

some p = p r <*> star p rs >> (r:rs)

PARSER COMBINATORS WITH REPRESENTATIONS 91

‘ EXAMPLE: PARSER FOR ARITHMETIC EXPRESSIONSI

expr = term t <*> plus_minus op <*> expr e >>> (op t e)
<|[[> term
term = factor f <*> prod_div op <*> term t >>> (op f t)

<||> factor

factor = terminal ’(’ <*> expr e <*> terminal ’)’ >>> e
<||> num
plus_minus = terminal ’+’ >>> (+4)
<|I> terminal ’-’ >>> (-)
prod_div = terminal ’*’ >>> (%)

<||> terminal ’/’ >>> div

num = some digit 1 >>> numeric_value 1

Example: expr val "(10+5%2)/4" =:= [] ~» {val=b}

EXAMPLE: PARSER FOR ARITHMETIC EXPRESSIONS

92

‘FUNCTIONAL L OGIC PARSING: SUI\/II\/IARYI

Higher-order features useful for

[J combining parsers (parsers are functions)

[1 computing representations

Logic programming features useful for

[1 dealing with alternatives (non-deterministic functions)
[1 managing representations (free variables in arguments)

[] parsing with constraints

Domain-specific language for parsing, but:

no extension to base language necessary

FUNCTIONAL LOGIC PARSING: SUMMARY

93

‘APPLICATIONZ HTML/CGI PROGRAI\/II\/IINGI

Early days of the World Wide Web: web pages with static contents

Common Gateway Interface (CGl): web pages with dynamic contents

Retrieval of a dynamic page:

[] server executes a program
[1 program computes an HTML string, writes it to stdout

[1 server sends result back to client

HTML with input elements (forms):

[1 client fills out input elements
[input values are sent to server

[1 server program decodes input values for computing its answer

APPLICATION: HTML/CGI PROGRAMMING

94

\ TRADITIONAL CGlI PROGRAMMING I

CGI programs on the server can be written in any programming language

[J access to environment variables (for input values)
[writes a string to stdout

Scripting languages: (Perl, Tk,...)

[1 simple programming of single pages
[1 error-prone: correctness of HTML result not ensured
[1 difficult programming of interaction sequences

Specialized languages: (MAWL, DynDoaoc,...)

[HTML support (structure checking)
[interaction support (partially)
[1 restricted or connection to existing languages

TRADITIONAL CGlI PROGRAMMING

95

\CGI PROGRAMMING IN A MULTI-PARADIGM LANGUAGEI

Library in multi-paradigm language

Exploit functional and logic features for

HTML support (data type for HTML structures)
simple access to input values (free variables and environments)

simple programming of interactions (event handlers)

O O O O

wrapper for hiding details

Exploit imperative features for

[1 environment access (files, data bases,. . .)

Domain-specific language for HTML/CGI programming

CGI PROGRAMMING IN A MULTI-PARADIGM LANGUAGE

96

‘ MODELING HTI\/ILI

Data type for representing HTML expressions:

data HtmlExp = HText String
| HStruct String [(String,String)] [HtmlExp]

Some useful abbreviations:

htxt s = HText (htmlQuote s) -— plain string
bold hexps = HStruct "B" [] hexps -- bold font
italic hexps = HStruct "I" [] hexps -- italic font
hi hexps = HStruct "H1" [] hexps -- main header

Example: [h1 [htxt "1. Hello World"],
italic [htxt "Hello"], bold [htxt "world!"]]

~» 1. Hello World
Hello world!

MODELING HTML

97

Advantages:

[1 static checking of HTML structure (well-balanced parentheses)

[flexible dynamic documents

[1 functions for computing HTML documents

Converting tree structure (leaves contain strings) into nested HTML lists:

///aata Tree a

htmlTree

ulist

ulist items

\\\%item hexps

Leaf a | Node [Tree a]

:: Tree String -> [HtmlExp]

htmlTree (Leaf s) = [htxt sl
htmlTree (Node trees) = [ulist (map htmlTree trees)]

[[HtmlExp]] -> HtmlExp
HStruct "UL" [] (map litem items)

HStruct "LI" [] hexps

~

/

MODELING HTML

98

‘ HTML INPUT FORMSI

Specific HTML elements for dealing with user input
<INPUT TYPE="TEXT" NAME="INPTEXT" VALUE="fill out!">

Form is submitted ~-»
clients sends the current value of this field (identified by "INPTEXT")

Expressible as HTML term:
HStruct "INPUT" [("TYPE","TEXT"), ("NAME","INPTEXT"),
("VALUE","fill out!")] []

Problems:

[server program must decode input values
[1 server program must know right names of field identifiers (" INPTEXT")

[1 error-prone

HTML INPUT FORMS 99

‘ABSTRACT INPUT FORI\/ISI

Solution:

[1 use free variables as references to input fields (CGI references)

[1 collect input values in CGI environments:
mapping from CGI references to strings

[1 associate event handlers to submit buttons

[1 event handlers take a CGI environment and produces an HTML form

Implementation:

straightforward in a functional logic language!

ABSTRACT INPUT FORMS 100

‘ABSTRACT INPUT FORMS: ||\/IPLEI\/IENTATIONI

CGl references:
data CgiRef = —-—- data constructor not exported

[J no construction of wrong references
[1 only free variables of type CgiRef
[1 global wrapper function instantiates with the right strings

HTML elements with CGlI references:
data HtmlExp = ... | HtmlCRef HtmlExp CgiRef

Example: Text fields with a CGI reference and initial contents
textfield :: CgiRef -> String -> HtmlExp
textfield (CgiRef ref) contents =

HtmlCRef (HStruct "INPUT" [("TYPE",6"TEXT"),
("NAME" ,ref), ("VALUE", contents)])

(CgiRef ref)

ABSTRACT INPUT FORMS: IMPLEMENTATION 101

HTML form: title + list of HTML expressions
data HtmlForm = Form String [HtmlExp]

Example: simple form with a single input element (a text field)
Form "Form" [hl [htxt "A Simple Form"],
htxt "Enter a string:", textfield sref ""]

CGI environments: map CGI references to strings
type CgiEnv = CgiRef -> String

Event handlers have type CgiEnv -> I0 Form

Event handlers are associated to submit buttons:
user presses a submit button
~» execute associated event handler with current environment

ABSTRACT INPUT FORMS: IMPLEMENTATION 102

‘ EXAMPLE: FORM TO REVERSE/DUPLICATE A STRINGI

File Edit VYiew Go Communicator Help

Enter a string .I

Beverse strjrrgl DCuplicate strjngl

o | | 58 0 @D £ 2
Form "Question" [htxt "Enter a string: ", textfield tref "", hr,
button "Reverse string" revhandler,

button "Duplicate string" duphandler]
where tref free

revhandler env = return $ Form "Answer"
[h1 [htxt ("Reversed input: " ++ rev (env tref))]]

duphandler env = return $§ Form "Answer"
[h1 [htxt ("Duplicated input: " ++ env tref ++ env tref)]]

EXAMPLE: FORM TO REVERSE/DUPLICATE A STRING 103

‘ACCESSING THE WEB SERVER ENVIRONI\/IENTI

Form to show the contents of an arbitrary file stored at the server:

Form "Get File" [htxt "Enter local file name:",
textfield fileref "",
button "Get file!" handler]

where fileref free

handler env =
do contents <- readFile (env fileref)
return $§ Form "Answer"
[h1 [htxt ("Contents of file " ++ env fileref)],

verbatim contents]

ACCESSING THE WEB SERVER ENVIRONMENT 104

\ HTML/CGI PROGRAMMINGI

The main form is executed by a wrapper function
runcgi :: String -> I0 HtmlForm -> I0 ()

[1 takes a title string and a form and transforms it into HTML text
[0 replaces all CGl references by unique strings

[1 decodes input values and invokes associated event handler

Event handlers return forms rather than HTML expressions

[1 sequences of interactions

[1 use control abstractions (branching, recursion) of underlying language

[1 state between interactions handled by CGI environments

Note: no language extension necessary (CGl library)

multi-paradigm languages as scripting languages

HTML/CGI PROGRAMMING

105

‘A FEW FURTHER MULTI-PARADIGM LANGUAGESI

Erlang (Ericsson)

[1 developed by Ericsson for telecommunication applications

[concurrent functional language with features to support the development of
robust distributed systems

[reduced development time and maintainance

Escher (University of Bristol)

extension of Haskell by features for logic programming
functions are evaluated by residuation

explicit disjunctions for logic programming

O O O 0O

simplification rules for logic formulas

A FEW FURTHER MULTI-PARADIGM LANGUAGES 106

Mercury (University of Melbourne)

[1 logic/functional language with highly optimized execution algorithm
[origin: logic programming (syntax) with type/mode/determinism annotations

[1 adapted concepts from functional programming, strict semantics

Oz (DFKI Saarbricken)

[1 concurrent constraint language with features for higher-order functional,
object-oriented, and distributed programming

[1 operational behavior: residuation

[1 search via explicit disjunctions and search operators

A FEW FURTHER MULTI-PARADIGM LANGUAGES 107

Toy (Univ. Complutense de Madrid)

[1 prototype for a functional logic language
[1 based on lazy narrowing, supports non-deterministic functions

[1 contraints, in particular, disequality constraints

...and, of course, there are many, many more. ..

A FEW FURTHER MULTI-PARADIGM LANGUAGES 108

‘ IMPLEMENTATIONS OF CURRYI

Several implementations available:

e Interpreter in Prolog: TasteCurry-System

e Compiler Curry—Java [Hanus/Sadre ILPS'97/JFLP99]

(Java threads for concurrency and non-determinism)

[1 portable

[simplified implementation (garbage collection, threads)

[slow but (hopefully!) better Java implementations in the future

o [Antoy/Hanus FroCoS'00]: Efficient implementation by transformation
Into Sicstus-Prolog (reuse of various constraint solvers)
(also Sloth-System [Marino/Rey WFLP'98])

= PACS (Portland Aachen Curry System)

http://www-i2.informatik.rwth-aachen.de/ hanus/pacs

e abstract Curry machine [Lux FLOPS'99]

IMPLEMENTATIONS OF CURRY 109

‘CONCLUSIONSI

Appropriate abstractions are important for software development and
maintainance

Multi-paradigm languages have the potential to express these abstractions
High-level languages support domain-specific languages

Multi-paradigm programming

[1 possible and advantageous

[1 constraint functional logic programming: many improvements in recent years

[1 imperative/concurrent/distributed + declarative programming:
possible but many different approaches

More infos on Curry:

http://www-i2.informatik.rwth-aachen.de/“hanus/curry

CONCLUSIONS 110

