
FLOPS 2002

Functional Logic Design Patterns

Michael Hanus

Christian-Albrechts-Universität Kiel

joint work with

Sergio Antoy

Portland State University

1

SOME HISTORY AND MOTIVATION

1993 ([POPL’94, JACM’00]): Needed Narrowing
Good (optimal) evaluation strategy for functional logic programs

1995/96 ([ILPS’95, POPL’97]): Design of Curry
“Standard” functional logic language
needed narrowing + residuation/concurrency

1999 ([FROCOS’00]): Efficient implementation of Curry
PAKCS: Portland Aachen Kiel Curry System

Since then: various applications
➜ What are the programming principles?

➜ What are interesting design principles?

➜ What are the advantages compared to purely functional or purely logic
programming?

Some answers: this talk (ongoing work)

FUNCTIONAL LOGIC DESIGN PATTERNS 2

SOME HISTORY AND MOTIVATION

1993 ([POPL’94, JACM’00]): Needed Narrowing
Good (optimal) evaluation strategy for functional logic programs

1995/96 ([ILPS’95, POPL’97]): Design of Curry
“Standard” functional logic language
needed narrowing + residuation/concurrency

1999 ([FROCOS’00]): Efficient implementation of Curry
PAKCS: Portland Aachen Kiel Curry System

Since then: various applications
➜ What are the programming principles?

➜ What are interesting design principles?

➜ What are the advantages compared to purely functional or purely logic
programming?

Some answers: this talk (ongoing work)

FUNCTIONAL LOGIC DESIGN PATTERNS 2-a

DESIGN PATTERNS

• good solution to recurring problems in software design

• not code but recipes to implement particular ideas

• reuse of ideas (not code)

• learn from experts

• introduced in object-oriented software development

• ideas also applicable to other paradigms

Functional logic design patterns:

learn to exploit integrated functional and logic programming features

FUNCTIONAL LOGIC DESIGN PATTERNS 3

DESIGN PATTERNS

• good solution to recurring problems in software design

• not code but recipes to implement particular ideas

• reuse of ideas (not code)

• learn from experts

• introduced in object-oriented software development

• ideas also applicable to other paradigms

Functional logic design patterns:

learn to exploit integrated functional and logic programming features

FUNCTIONAL LOGIC DESIGN PATTERNS 3-a

FUNCTIONAL LOGIC PROGRAMMING

Approach to amalgamate ideas of declarative programming

• efficient execution principles of functional languages
(determinism, laziness)

• flexibility of logic languages
(constraints, built-in search)

• avoid non-declarative features of Prolog
(arithmetic, I/O, cut)

• combine best of both worlds in a single model
➜ higher-order functions
➜ declarative I/O
➜ concurrent constraints

FUNCTIONAL LOGIC DESIGN PATTERNS 4

CURRY

[Dagstuhl’96, POPL’97]

As a language for concrete examples, we use Curry :

• multi-paradigm language
(higher-order concurrent functional logic language,
features for high-level distributed programming)

• extension of Haskell (non-strict functional language)

• developed by an international initiative

• provide a standard for functional logic languages
(research, teaching, application)

• several implementations available (e.g., PAKCS)

; http://www.informatik.uni-kiel.de/~curry

FUNCTIONAL LOGIC DESIGN PATTERNS 5

VALUES

Values in imperative languages: basic types + pointer structures

Declarative languages: algebraic data types (Haskell-like syntax)#

"

!

data Bool = True | False

data Nat = Z | S Nat

data List a = [] | a : List a -- [a]

data Tree a = Leaf a | Node [Tree a]

data Int = 0 | 1 | -1 | 2 | -2 | ...

Value ≈ data term , constructor term :
well-formed expression containing variables and data type constructors

(S Z) 1:(2:[]) [1,2] Node [Leaf 3, Node [Leaf 4, Leaf 5]]

FUNCTIONAL LOGIC DESIGN PATTERNS 6

CURRY PROGRAMS

Functions : operations on values defined by equations (or rules)

f t1 . . . tn | c = r

defined
operation data terms condition

(optional) expression

�

�

�

�

conc [] ys = ys

conc (x:xs) ys = x : conc xs ys

last xs | conc ys [x] =:= xs

= x where x,ys free

last [1,2] ; 2

FUNCTIONAL LOGIC DESIGN PATTERNS 7

EXPRESSIONS

e ::=
c (constants)

x (variables x)

(e0 e1 . . . en) (application)

\x -> e (abstraction)

if b then e1 else e2 (conditional)

e1=:=e2 (equational constraint)

e1 & e2 (concurrent conjunction)

let x1, . . . , xn free in e (existential quantification)

Equational constraints over functional expressions:

conc ys [x] =:= [1,2] ; {ys=[1],x=2}

Further constraints: real arithmetic, finite domain, ports

FUNCTIONAL LOGIC DESIGN PATTERNS 8

EXPRESSIONS

e ::=
c (constants)

x (variables x)

(e0 e1 . . . en) (application)

\x -> e (abstraction)

if b then e1 else e2 (conditional)

e1=:=e2 (equational constraint)

e1 & e2 (concurrent conjunction)

let x1, . . . , xn free in e (existential quantification)

Equational constraints over functional expressions:

conc ys [x] =:= [1,2] ; {ys=[1],x=2}

Further constraints: real arithmetic, finite domain, ports

FUNCTIONAL LOGIC DESIGN PATTERNS 8-a

EXPRESSIONS

e ::=
c (constants)

x (variables x)

(e0 e1 . . . en) (application)

\x -> e (abstraction)

if b then e1 else e2 (conditional)

e1=:=e2 (equational constraint)

e1 & e2 (concurrent conjunction)

let x1, . . . , xn free in e (existential quantification)

Equational constraints over functional expressions:

conc ys [x] =:= [1,2] ; {ys=[1],x=2}

Further constraints: real arithmetic, finite domain, ports

FUNCTIONAL LOGIC DESIGN PATTERNS 8-b

EVALUATION

Naive approach: Flattening
➜ functional notation syntactic sugar for relations

➜ consider result value as additional (initially unbound) argument

➜ n-ary function ; (n+ 1)-ary predicate

➜ target language: Prolog

�
�

�
�

conc([] ,Ys,Ys).

conc([X|Xs],Ys,[X|Zs]) :- conc(Xs,Ys,Zs).

last(Xs,X) :- conc(Ys,[X],Xs).

Disadvantage:
➜ some arguments not needed for computing the result

➜ functional dependencies not exploited by naive flattening

➜ wasting resources, not optimal

FUNCTIONAL LOGIC DESIGN PATTERNS 9

EVALUATION

Naive approach: Flattening
➜ functional notation syntactic sugar for relations

➜ consider result value as additional (initially unbound) argument

➜ n-ary function ; (n+ 1)-ary predicate

➜ target language: Prolog�
�

�
�

conc([] ,Ys,Ys).

conc([X|Xs],Ys,[X|Zs]) :- conc(Xs,Ys,Zs).

last(Xs,X) :- conc(Ys,[X],Xs).

Disadvantage:
➜ some arguments not needed for computing the result

➜ functional dependencies not exploited by naive flattening

➜ wasting resources, not optimal

FUNCTIONAL LOGIC DESIGN PATTERNS 9-a

EVALUATION

Naive approach: Flattening
➜ functional notation syntactic sugar for relations

➜ consider result value as additional (initially unbound) argument

➜ n-ary function ; (n+ 1)-ary predicate

➜ target language: Prolog�
�

�
�

conc([] ,Ys,Ys).

conc([X|Xs],Ys,[X|Zs]) :- conc(Xs,Ys,Zs).

last(Xs,X) :- conc(Ys,[X],Xs).

Disadvantage:
➜ some arguments not needed for computing the result

➜ functional dependencies not exploited by naive flattening

➜ wasting resources, not optimal

FUNCTIONAL LOGIC DESIGN PATTERNS 9-b

LAZY EVALUATION

• functions are lazily evaluated (evaluate only needed redexes)

• support infinite data structures, modularity

• optimal evaluation (also for logic programming)

Distinguish:

flexible (generator) and rigid (consumer) functions

Flexible functions ; logic programming

Rigid functions ; concurrent programming

FUNCTIONAL LOGIC DESIGN PATTERNS 10

FLEXIBLE VS . RIGID FUNCTIONS�

�
	f 0 = 2

f 1 = 3

rigid/flexible status not relevant for ground calls:
f 1 ; 3

f flexible:
f x =:= y ; {x=0,y=2} | {x=1,y=3}

f rigid:
f x =:= y ; suspend

f x =:= y & x =:= 1 ; {x=1} f 1 =:= y (suspend f x)
; {x=1} 3 =:= y (evaluate f 1)
; {x=1,y=3}

Default in Curry: constraints are flexible, all others are rigid

FUNCTIONAL LOGIC DESIGN PATTERNS 11

SET-VALUED FUNCTIONS

Rules must be constructor-based but not confluent:

• more than one rule applicable to a call

• set-valued (non-deterministic) functions

• more than one result on a given input'

&

$

%

data List a = [] | a : List a

x ! y = x

x ! y = y

insert e [] = [e]

insert e (x:xs) = e : x : xs ! x : insert e xs

perm [] = []

perm (x:xs) = insert x (perm xs)

perm [1,2,3] ; [1,2,3] | [1,3,2] | [2,1,3] | ...

FUNCTIONAL LOGIC DESIGN PATTERNS 12

SET-VALUED FUNCTIONS

Rules must be constructor-based but not confluent:

• more than one rule applicable to a call

• set-valued (non-deterministic) functions

• more than one result on a given input'

&

$

%

data List a = [] | a : List a

x ! y = x

x ! y = y

insert e [] = [e]

insert e (x:xs) = e : x : xs ! x : insert e xs

perm [] = []

perm (x:xs) = insert x (perm xs)

perm [1,2,3] ; [1,2,3] | [1,3,2] | [2,1,3] | ...

FUNCTIONAL LOGIC DESIGN PATTERNS 12-a

SET-VALUED FUNCTIONS

Rules must be constructor-based but not confluent:

• more than one rule applicable to a call

• set-valued (non-deterministic) functions

• more than one result on a given input'

&

$

%

data List a = [] | a : List a

x ! y = x

x ! y = y

insert e [] = [e]

insert e (x:xs) = e : x : xs ! x : insert e xs

perm [] = []

perm (x:xs) = insert x (perm xs)

perm [1,2,3] ; [1,2,3] | [1,3,2] | [2,1,3] | ...

FUNCTIONAL LOGIC DESIGN PATTERNS 12-b

FEATURES OF CURRY

Curry’s basic operational model:
➜ conservative extension of lazy functional and (concurrent) logic programming

➜ generalization of concurrent constraint programming with lazy (optimal)
strategy

Further features for application programming:
➜ modules

➜ monadic I/O

➜ encapsulated search [PLILP’98]

➜ ports for distributed programming [PPDP’99]

➜ libraries for
• GUI programming [PADL’00]
• HTML programming [PADL’01]
• XML programming
• persistent terms
• . . .

Not relevant for our collection of design patterns

FUNCTIONAL LOGIC DESIGN PATTERNS 13

FEATURES OF CURRY

Curry’s basic operational model:
➜ conservative extension of lazy functional and (concurrent) logic programming

➜ generalization of concurrent constraint programming with lazy (optimal)
strategy

Further features for application programming:
➜ modules

➜ monadic I/O

➜ encapsulated search [PLILP’98]

➜ ports for distributed programming [PPDP’99]

➜ libraries for
• GUI programming [PADL’00]
• HTML programming [PADL’01]
• XML programming
• persistent terms
• . . .

Not relevant for our collection of design patterns

FUNCTIONAL LOGIC DESIGN PATTERNS 13-a

DESIGN PATTERNS VS . IDIOMS

No formal definition, but:
➜ idioms are more language specific

➜ idioms address smaller and less general problems

Example: copy a string in C:�� ��while(*s++ = *t++) ;

Idiom solves simple problem and relies on specific properties of C
➜ strings end with null character

➜ false represented by integer 0

Design patterns are more general in applicability and scope

FUNCTIONAL LOGIC DESIGN PATTERNS 14

DESIGN PATTERNS VS . IDIOMS

No formal definition, but:
➜ idioms are more language specific

➜ idioms address smaller and less general problems

Example: copy a string in C:�� ��while(*s++ = *t++) ;

Idiom solves simple problem and relies on specific properties of C
➜ strings end with null character

➜ false represented by integer 0

Design patterns are more general in applicability and scope

FUNCTIONAL LOGIC DESIGN PATTERNS 14-a

DESIGN PATTERNS VS . IDIOMS

No formal definition, but:
➜ idioms are more language specific

➜ idioms address smaller and less general problems

Example: copy a string in C:�� ��while(*s++ = *t++) ;

Idiom solves simple problem and relies on specific properties of C
➜ strings end with null character

➜ false represented by integer 0

Design patterns are more general in applicability and scope

FUNCTIONAL LOGIC DESIGN PATTERNS 14-b

AN IDIOM IN CURRY

Ensure: a function returns a value only if value satisfies certain property

Define an auxiliary operator suchthat:�
�

�
�

infix 0 ‘suchthat‘

suchthat :: a -> (a->Bool) -> a

x ‘suchthat‘ p | p x = x

Example application: n-queens puzzle

Check all permutations and return only the “safe” ones:�� ��queens x = permute x ‘suchthat‘ safe

; “suchthat” idiom yields terser and more elegant code

Design patterns are more general

FUNCTIONAL LOGIC DESIGN PATTERNS 15

AN IDIOM IN CURRY

Ensure: a function returns a value only if value satisfies certain property

Define an auxiliary operator suchthat:�
�

�
�

infix 0 ‘suchthat‘

suchthat :: a -> (a->Bool) -> a

x ‘suchthat‘ p | p x = x

Example application: n-queens puzzle

Check all permutations and return only the “safe” ones:�� ��queens x = permute x ‘suchthat‘ safe

; “suchthat” idiom yields terser and more elegant code

Design patterns are more general

FUNCTIONAL LOGIC DESIGN PATTERNS 15-a

AN IDIOM IN CURRY

Ensure: a function returns a value only if value satisfies certain property

Define an auxiliary operator suchthat:�
�

�
�

infix 0 ‘suchthat‘

suchthat :: a -> (a->Bool) -> a

x ‘suchthat‘ p | p x = x

Example application: n-queens puzzle

Check all permutations and return only the “safe” ones:�� ��queens x = permute x ‘suchthat‘ safe

; “suchthat” idiom yields terser and more elegant code

Design patterns are more general

FUNCTIONAL LOGIC DESIGN PATTERNS 15-b

STRUCTURE OF DESIGN PATTERNS

Name: a basic name

Intent: the intention of this pattern

Applicability: where it can be used

Structure: the basic structure of the solution

Consequences: properties of applying this pattern

FUNCTIONAL LOGIC DESIGN PATTERNS 16

CONSTRAINED CONSTRUCTOR

Data constructors: create data

Defined operations: manipulate data

Constructors are passive: don’t check for invalid data

Name Constrained Constructor

Intent prevent invoking a constructor that might create invalid data

Applicability a type is too general for a problem

Structure define a function that either invokes a constructor or fails

Consequences invalid instances of a type are never created by the function

FUNCTIONAL LOGIC DESIGN PATTERNS 17

CONSTRAINED CONSTRUCTOR

Data constructors: create data

Defined operations: manipulate data

Constructors are passive: don’t check for invalid data

Name Constrained Constructor

Intent prevent invoking a constructor that might create invalid data

Applicability a type is too general for a problem

Structure define a function that either invokes a constructor or fails

Consequences invalid instances of a type are never created by the function

FUNCTIONAL LOGIC DESIGN PATTERNS 17-a

CONSTRAINED CONSTRUCTOR: EXAMPLE

Missionaries and Cannibals puzzle:

State: # missionaries, # cannibals, boat present? (on one side)

�� ��data State = State Int Int Bool

Initial: State 3 3 True

Function move checks for valid states before moving:

move (State m c True)

| m>=2 && (m-2==0 || m-2>c) && (c==3 || m-2=<c)

= State (m-2) c False -- move 2 missionaries

. . . and 9 other rules with similar complex guards. . .

FUNCTIONAL LOGIC DESIGN PATTERNS 18

CONSTRAINED CONSTRUCTOR: EXAMPLE

Missionaries and Cannibals puzzle:

State: # missionaries, # cannibals, boat present? (on one side)

�� ��data State = State Int Int Bool

Initial: State 3 3 True

Function move checks for valid states before moving:

move (State m c True)

| m>=2 && (m-2==0 || m-2>c) && (c==3 || m-2=<c)

= State (m-2) c False -- move 2 missionaries

. . . and 9 other rules with similar complex guards. . .

FUNCTIONAL LOGIC DESIGN PATTERNS 18-a

CONSTRAINED CONSTRUCTOR: EXAMPLE (CONT’D)

Idea: constructor constrained to create only valid states

�
�

�
�

makeState m c b | valid && safe = State m c b

where valid = 0<=m && m<=3 && 0<=c && c<=3

safe = m==3 || m==0 || m==c

Now, the definition of move becomes straightforward:

�

�

�

�

move (State m c True)

= makeState (m-2) c False -- move 2 missionaries

! makeState (m-1) c False -- move 1 missionary

! makeState m (c-2) False -- move 2 cannibals

! ...

Similarly: create only valid paths from initial state

FUNCTIONAL LOGIC DESIGN PATTERNS 19

CONSTRAINED CONSTRUCTOR: EXAMPLE (CONT’D)

Idea: constructor constrained to create only valid states

�
�

�
�

makeState m c b | valid && safe = State m c b

where valid = 0<=m && m<=3 && 0<=c && c<=3

safe = m==3 || m==0 || m==c

Now, the definition of move becomes straightforward:

�

�

�

�

move (State m c True)

= makeState (m-2) c False -- move 2 missionaries

! makeState (m-1) c False -- move 1 missionary

! makeState m (c-2) False -- move 2 cannibals

! ...

Similarly: create only valid paths from initial state

FUNCTIONAL LOGIC DESIGN PATTERNS 19-a

CONSTRAINED CONSTRUCTOR

Name Constrained Constructor

Intent prevent invoking a constructor that might create invalid data

Applicability a type is too general for a problem

Structure define a function that either invokes a constructor or fails

Consequences invalid instances of a type are never created by the function

Not available in functional languages:

if a function call fails, then the entire computation fails

FUNCTIONAL LOGIC DESIGN PATTERNS 20

SEARCH FOR SOLUTIONS

Search problem:
➜ search space

➜ look for elements satisfying particular properties

➜ search strategies

Avoid enumeration of all elements by defining solutions incrementally

Example: Stagecoach : finding path between cities

Topology of a problem: distance function between cities'

&

$

%

distance Boston Chicago = 1500

distance Boston NewYork = 250

...

distance Denver LosAngeles = 1000

distance Denver SanFrancisco = 800

distance SanFrancisco LosAngeles = 300

FUNCTIONAL LOGIC DESIGN PATTERNS 21

SEARCH FOR SOLUTIONS

Search problem:
➜ search space

➜ look for elements satisfying particular properties

➜ search strategies

Avoid enumeration of all elements by defining solutions incrementally

Example: Stagecoach : finding path between cities

Topology of a problem: distance function between cities'

&

$

%

distance Boston Chicago = 1500

distance Boston NewYork = 250

...

distance Denver LosAngeles = 1000

distance Denver SanFrancisco = 800

distance SanFrancisco LosAngeles = 300

FUNCTIONAL LOGIC DESIGN PATTERNS 21-a

STAGECOACH EXAMPLE

Task: find a path from Boston to Los Angeles

Solution: sequence of connected cities, first = Boston, last = Los Angeles

Instead of enumerating all potential solutions: incremental construction

Partial solution: sequence of connected cities, first = Boston

Complete solution: partial solution with last = Los Angeles

Strategy: extend partial solution until complete solution reached

FUNCTIONAL LOGIC DESIGN PATTERNS 22

STAGECOACH EXAMPLE

Task: find a path from Boston to Los Angeles

Solution: sequence of connected cities, first = Boston, last = Los Angeles

Instead of enumerating all potential solutions: incremental construction

Partial solution: sequence of connected cities, first = Boston

Complete solution: partial solution with last = Los Angeles

Strategy: extend partial solution until complete solution reached

FUNCTIONAL LOGIC DESIGN PATTERNS 22-a

STAGECOACH EXAMPLE (CONT’D)

Extend a partial solution:�

�
	addCity (c:cs) | distance c c1 =:= d1

= c1:c:cs where c1,d1 free

Specification of search problem has three components:
➜ extend a partial solution
➜ initial partial solution
➜ complete to check for completeness of solution

Non-deterministic search function:�

�

�

�

searchNonDet :: (ps->ps) -> ps -> (ps->Bool) -> ps

searchNonDet extend initial complete = solve initial

where

solve psol = if complete psol then psol

else solve (extend psol)

Solve: searchNonDet addCity [Boston] (\(c:_)->c==LosAngeles)

FUNCTIONAL LOGIC DESIGN PATTERNS 23

STAGECOACH EXAMPLE (CONT’D)

Extend a partial solution:�

�
	addCity (c:cs) | distance c c1 =:= d1

= c1:c:cs where c1,d1 free

Specification of search problem has three components:
➜ extend a partial solution
➜ initial partial solution
➜ complete to check for completeness of solution

Non-deterministic search function:�

�

�

�

searchNonDet :: (ps->ps) -> ps -> (ps->Bool) -> ps

searchNonDet extend initial complete = solve initial

where

solve psol = if complete psol then psol

else solve (extend psol)

Solve: searchNonDet addCity [Boston] (\(c:_)->c==LosAngeles)

FUNCTIONAL LOGIC DESIGN PATTERNS 23-a

STAGECOACH EXAMPLE (CONT’D)

Extend a partial solution:�

�
	addCity (c:cs) | distance c c1 =:= d1

= c1:c:cs where c1,d1 free

Specification of search problem has three components:
➜ extend a partial solution
➜ initial partial solution
➜ complete to check for completeness of solution

Non-deterministic search function:�

�

�

�

searchNonDet :: (ps->ps) -> ps -> (ps->Bool) -> ps

searchNonDet extend initial complete = solve initial

where

solve psol = if complete psol then psol

else solve (extend psol)

Solve: searchNonDet addCity [Boston] (\(c:_)->c==LosAngeles)

FUNCTIONAL LOGIC DESIGN PATTERNS 23-b

STAGECOACH EXAMPLE (CONT’D)

Advantages:

• natural formulation of stepwise extension as set-valued function

• non-deterministic specifications are often simpler and more adaptable

add eastbound connections:
addCity (c:cs) | distance c1 c =:= d1

= c1:c:cs where c1,d1 free

• apply other search strategies:

searchDepthFirst addCity [Boston] (\(c:_)->c==LosAngeles)

FUNCTIONAL LOGIC DESIGN PATTERNS 24

STAGECOACH EXAMPLE (CONT’D)

Advantages:

• natural formulation of stepwise extension as set-valued function

• non-deterministic specifications are often simpler and more adaptable

add eastbound connections:
addCity (c:cs) | distance c1 c =:= d1

= c1:c:cs where c1,d1 free

• apply other search strategies:

searchDepthFirst addCity [Boston] (\(c:_)->c==LosAngeles)

FUNCTIONAL LOGIC DESIGN PATTERNS 24-a

STAGECOACH EXAMPLE (CONT’D)

Advantages:

• natural formulation of stepwise extension as set-valued function

• non-deterministic specifications are often simpler and more adaptable

add eastbound connections:
addCity (c:cs) | distance c1 c =:= d1

= c1:c:cs where c1,d1 free

• apply other search strategies:

searchDepthFirst addCity [Boston] (\(c:_)->c==LosAngeles)

FUNCTIONAL LOGIC DESIGN PATTERNS 24-b

INCREMENTAL SOLUTION

Name Incremental Solution

Intent compute solutions in an incremental manner

Applicability a solution consists of a sequence of steps

Structure non-deterministically extend a partial solution stepwise

Consequences avoid explicit representation of the search space

FUNCTIONAL LOGIC DESIGN PATTERNS 25

EXAMPLE : REPRESENTATION OF GRAPHS

Basic datatypes in declarative programming: lists, trees

Often more natural: graph structures

Example: GUIs ≈ tree structure with dependencies

Graphs as standard algebraic datatypes:�
�

�
�

data Graph = Graph [Node] [Edge]

data Node = Node Int

data Edge = Edge Int Int

g1 = Graph [Node 1, Node 2, Node 3]

[Edge 1 2, Edge 3 2, Edge 1 3, Edge 3 3]

Composing graphs: (addGraph g1 g1) ; intended structure?

FUNCTIONAL LOGIC DESIGN PATTERNS 26

EXAMPLE : REPRESENTATION OF GRAPHS

Basic datatypes in declarative programming: lists, trees

Often more natural: graph structures

Example: GUIs ≈ tree structure with dependencies

Graphs as standard algebraic datatypes:�
�

�
�

data Graph = Graph [Node] [Edge]

data Node = Node Int

data Edge = Edge Int Int

g1 = Graph [Node 1, Node 2, Node 3]

[Edge 1 2, Edge 3 2, Edge 1 3, Edge 3 3]

Composing graphs: (addGraph g1 g1) ; intended structure?

FUNCTIONAL LOGIC DESIGN PATTERNS 26-a

EXAMPLE : REPRESENTATION OF GRAPHS

Basic datatypes in declarative programming: lists, trees

Often more natural: graph structures

Example: GUIs ≈ tree structure with dependencies

Graphs as standard algebraic datatypes:�
�

�
�

data Graph = Graph [Node] [Edge]

data Node = Node Int

data Edge = Edge Int Int

g1 = Graph [Node 1, Node 2, Node 3]

[Edge 1 2, Edge 3 2, Edge 1 3, Edge 3 3]

Composing graphs: (addGraph g1 g1) ; intended structure?

FUNCTIONAL LOGIC DESIGN PATTERNS 26-b

EXAMPLE : REPRESENTATION OF GRAPHS

Basic datatypes in declarative programming: lists, trees

Often more natural: graph structures

Example: GUIs ≈ tree structure with dependencies

Graphs as standard algebraic datatypes:�
�

�
�

data Graph = Graph [Node] [Edge]

data Node = Node Int

data Edge = Edge Int Int

g1 = Graph [Node 1, Node 2, Node 3]

[Edge 1 2, Edge 3 2, Edge 1 3, Edge 3 3]

Composing graphs: (addGraph g1 g1) ; intended structure?

FUNCTIONAL LOGIC DESIGN PATTERNS 26-c

LOCALLY DEFINED GLOBAL IDENTIFIER

Solution: local definition of names → globally unique identifiers

Unbound local variables as identifiers:
g1 = Graph [Node n1, Node n2, Node n3]

[Edge n1 n2, Edge n3 n2, Edge n1 n3, Edge n3 n3]

where n1,n2,n3 free

Scope of n1,n2,n3 local to g1

➜ g1 is compositional (like lists, trees)
➜ (addGraph g1 g1) contains six different nodes

Instantiate node identifiers, e.g., for visualization tools:�

�

�

�

finalizeGraph (Graph ns es) = Graph (numberNodes 1 ns) es

where numberNodes _ [] = []

numberNodes n (Node ni : nodes)

| ni =:= n -- assign unique identifier

= Node ni : numberNodes (n+1) nodes

FUNCTIONAL LOGIC DESIGN PATTERNS 27

LOCALLY DEFINED GLOBAL IDENTIFIER

Solution: local definition of names → globally unique identifiers

Unbound local variables as identifiers:
g1 = Graph [Node n1, Node n2, Node n3]

[Edge n1 n2, Edge n3 n2, Edge n1 n3, Edge n3 n3]

where n1,n2,n3 free

Scope of n1,n2,n3 local to g1

➜ g1 is compositional (like lists, trees)
➜ (addGraph g1 g1) contains six different nodes

Instantiate node identifiers, e.g., for visualization tools:�

�

�

�

finalizeGraph (Graph ns es) = Graph (numberNodes 1 ns) es

where numberNodes _ [] = []

numberNodes n (Node ni : nodes)

| ni =:= n -- assign unique identifier

= Node ni : numberNodes (n+1) nodes

FUNCTIONAL LOGIC DESIGN PATTERNS 27-a

LOCALLY DEFINED GLOBAL IDENTIFIER

Name Locally Defined Global Identifier

Intent ensure that a local name is globally unique

Applicability a global identifier is declared in a local scope

Structure introduce local names as logic variables to be bound later

Consequences local names are globally unique

Useful for GUI and HTML programming with compositional structures
[PADL’00, PADL’01]

Not available in functional languages (lack of free variables)

; imperative or non-compositional approaches to graph programming

FUNCTIONAL LOGIC DESIGN PATTERNS 28

LOCALLY DEFINED GLOBAL IDENTIFIER

Name Locally Defined Global Identifier

Intent ensure that a local name is globally unique

Applicability a global identifier is declared in a local scope

Structure introduce local names as logic variables to be bound later

Consequences local names are globally unique

Useful for GUI and HTML programming with compositional structures
[PADL’00, PADL’01]

Not available in functional languages (lack of free variables)

; imperative or non-compositional approaches to graph programming

FUNCTIONAL LOGIC DESIGN PATTERNS 28-a

IMPROVING GRAPH REPRESENTATIONS

Disadvantage of previous graph representation:

node identifiers are integers ; does not enforce unbound variables

Solution: hide type of identifiers with private constructor#

"

!

module Graph(NodeId,...) where

...

data NodeId = NodeId Int -- constructor not exported

data Node = Node NodeId

data Edge = Edge NodeId NodeId

Effect:
➜ definition of graph instances remain identical

➜ arguments of Node are always unbound variables

FUNCTIONAL LOGIC DESIGN PATTERNS 29

IMPROVING GRAPH REPRESENTATIONS

Disadvantage of previous graph representation:

node identifiers are integers ; does not enforce unbound variables

Solution: hide type of identifiers with private constructor#

"

!

module Graph(NodeId,...) where

...

data NodeId = NodeId Int -- constructor not exported

data Node = Node NodeId

data Edge = Edge NodeId NodeId

Effect:
➜ definition of graph instances remain identical

➜ arguments of Node are always unbound variables

FUNCTIONAL LOGIC DESIGN PATTERNS 29-a

OPAQUE TYPE

Name Opaque Type

Intent ensure that values of a datatype are hidden

Applicability define instances of a type whose values are unknown

Structure wrap values with a private constructor

Consequences values can only be denoted by free variables

Not available in functional languages (lack of free variables)

FUNCTIONAL LOGIC DESIGN PATTERNS 30

FINDING INJECTIVE INDEX-VALUE MAPPINGS

Example: Crypto-arithmetic puzzle

SEND + MORE = MONEY (Problem)

9567 + 1085 = 10652 (Solution)

Task: finding injective mapping from indices (S, E,. . .) to values (digits)

Our solution: instead of generate-and-test, compute it concurrently

Declare one variable for each letter: vs,ve,vn,vd,vm,vo,vr,vy

Set up constraints: vd+ve =:= c0*10+vy &

vn+vr+c0 =:= c1*10+ve &

ve+vo+c1 =:= c2*10+vn &

vs+vm+c2 =:= c3*10+vo & c3 =:= vm

with carries: ci = 0!1

FUNCTIONAL LOGIC DESIGN PATTERNS 31

FINDING INJECTIVE INDEX-VALUE MAPPINGS

Example: Crypto-arithmetic puzzle

SEND + MORE = MONEY (Problem)

9567 + 1085 = 10652 (Solution)

Task: finding injective mapping from indices (S, E,. . .) to values (digits)

Our solution: instead of generate-and-test, compute it concurrently

Declare one variable for each letter: vs,ve,vn,vd,vm,vo,vr,vy

Set up constraints: vd+ve =:= c0*10+vy &

vn+vr+c0 =:= c1*10+ve &

ve+vo+c1 =:= c2*10+vn &

vs+vm+c2 =:= c3*10+vo & c3 =:= vm

with carries: ci = 0!1

FUNCTIONAL LOGIC DESIGN PATTERNS 31-a

FINDING INJECTIVE INDEX-VALUE MAPPINGS

Example: Crypto-arithmetic puzzle

SEND + MORE = MONEY (Problem)

9567 + 1085 = 10652 (Solution)

Task: finding injective mapping from indices (S, E,. . .) to values (digits)

Our solution: instead of generate-and-test, compute it concurrently

Declare one variable for each letter: vs,ve,vn,vd,vm,vo,vr,vy

Set up constraints: vd+ve =:= c0*10+vy &

vn+vr+c0 =:= c1*10+ve &

ve+vo+c1 =:= c2*10+vn &

vs+vm+c2 =:= c3*10+vo & c3 =:= vm

with carries: ci = 0!1

FUNCTIONAL LOGIC DESIGN PATTERNS 31-b

SEND + MORE = MONEY (CONT’D)

Variables vs,ve,... initially unbound ; constraints suspend

Bind variables to digits so that mapping is injective

Here: use an inverse mapping from values to variables identified by tokens

Inverse mapping ≈ store: initially: 10 free variables:

store = [s0,s1,s2,s3,s4,s5,s6,s7,s8,s9]

where s0,s1,s2,s3,s4,s5,s6,s7,s8,s9 free

Bind letters to digits (fails if not possible injectively):

digit token | store !! x =:= token = x

where x = 0!1!2!3!4!5!6!7!8!9

vs = nzdigit ′S′

ve = digit ′E′

vn = digit ′N′

...

FUNCTIONAL LOGIC DESIGN PATTERNS 32

SEND + MORE = MONEY (CONT’D)

Variables vs,ve,... initially unbound ; constraints suspend

Bind variables to digits so that mapping is injective

Here: use an inverse mapping from values to variables identified by tokens

Inverse mapping ≈ store: initially: 10 free variables:

store = [s0,s1,s2,s3,s4,s5,s6,s7,s8,s9]

where s0,s1,s2,s3,s4,s5,s6,s7,s8,s9 free

Bind letters to digits (fails if not possible injectively):

digit token | store !! x =:= token = x

where x = 0!1!2!3!4!5!6!7!8!9

vs = nzdigit ′S′

ve = digit ′E′

vn = digit ′N′

...

FUNCTIONAL LOGIC DESIGN PATTERNS 32-a

SEND + MORE = MONEY (CONT’D)

Variables vs,ve,... initially unbound ; constraints suspend

Bind variables to digits so that mapping is injective

Here: use an inverse mapping from values to variables identified by tokens

Inverse mapping ≈ store: initially: 10 free variables:

store = [s0,s1,s2,s3,s4,s5,s6,s7,s8,s9]

where s0,s1,s2,s3,s4,s5,s6,s7,s8,s9 free

Bind letters to digits (fails if not possible injectively):

digit token | store !! x =:= token = x

where x = 0!1!2!3!4!5!6!7!8!9

vs = nzdigit ′S′

ve = digit ′E′

vn = digit ′N′

...

FUNCTIONAL LOGIC DESIGN PATTERNS 32-b

CONCURRENT DISTINCT CHOICES

Name Concurrent Distinct Choices

Intent ensure that a mapping from indexes to values is injective

Applicability index-value pairs are computed concurrently

Structure bind a unique token to a variable indexed by a value

Consequences the index-value relation is an injective mapping

Not available in functional languages (lack of free variables)

Not available in pure logic languages
(lack of concurrency + functional notation)

FUNCTIONAL LOGIC DESIGN PATTERNS 33

CONCLUSIONS

Functional logic design patterns

• a few patterns applicable in various situations
➜ Constrained Constructor
➜ Incremental Solution
➜ Concurrent Distinct Choices
➜ Locally Defined Global Identifier
➜ Opaque Type

• intended for functional logic languages

• initial approach in this area

• will be extended. . .

More examples on functional logic patterns:
http://www.cs.pdx.edu/~antoy/flp/patterns

More infos on Curry:
http://www.informatik.uni-kiel.de/~curry

FUNCTIONAL LOGIC DESIGN PATTERNS 34

