Multi-paradigm Declarative Languages

Michael Hanus (CAU Kiel)

Michael Hanus

Christian-Albrechts-University of Kiel
Programming Languages and Compiler Construction

ICLP 2007

Multi-paradigm Declarative Languages

ICLP 2007

Declarative Programming: The General Idea

Do not no code algorithms and stepwise execution

Describe logical relationships

~ powerful abstractions
e domain specific languages

~ higher programming level

~ reliable and maintainable programs
@ pointer structures = algebraic data types
e complex procedures = comprehensible parts
(pattern matching, local definitions)

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Declarative Languages: Current Situation

Declarative languages based on different formalisms, e.g.,

Functional Languages Logic Languages
@ lambda calculus @ predicate logic
@ functions @ predicates
@ directed equations @ definite clauses
@ reduction of expressions @ goal solving by resolution

Constraint Languages
@ constraint structures
@ constraints

@ specific constraint solvers

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Declarative Languages: Features

Functional Languages

Logic Languages

@ higher-order functions @ compute with partial
@ expressive type systems information
@ demand-driven evaluation @ nondeterministic search
@ optimality, modularity @ unification

Constraint Languages

@ specific domains
@ efficient constraint solving

All features are useful ~» multi-paradigm declarative languages

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Multi-paradigm Declarative Languages

Goal: combine best of declarative paradigms in a single model

e efficient execution principles of functional languages
(determinism, laziness)

o flexibility of logic languages
(computation with partial information, built-in search)

@ application-domains of constraint languages
(constraint solvers for specific domains)

@ avoid non-declarative features of Prolog
(arithmetic, cut, I/O, side-effects)

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Multi-paradigm Declarative Languages: Approaches

Extend logic languages

@ add functional notation as syntactic sugar
(Ciao-Prolog, Mercury, HAL, Oz,...)

@ defining equations, nested functional expressions
@ translation into logic kernel
@ don’t exploit functional information for execution

Extend functional languages

@ add logic features (logic variables, nondeterminism)
(Escher, TQY, Curry,...)

@ functional syntax, logic programming use
@ retain efficient (demand-driven) evaluation whenever possible
@ additional mechanism for logic-oriented computations

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

As a language for concrete examples, we use

@ multi-paradigm declarative language

@ extension of Haskell (non-strict functional language)
@ developed by an international initiative

@ provide a standard for functional logic languages
(research, teaching, application)

@ several implementations and various tools available

~ http://www.informatik.uni-kiel.de/ curry

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Basic Concept: Functional Computation

Functional program: set of functions defined by equations/rules

double x = x + x)

Functional computation: replace subterms by equal subterms

double (1+2) = (1+2)+(1+2) = 3+ (1+2) = 3+3 = 6

Another computation:
double (1+2) = (1+2)+(1+2) = (1+42)+3 = 3+

Y

And another computation:
double (1+2) = double 3 = 3+3 = 6

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Functional Computation

double x = x + x)
double (1+2) = (14+2)+ (1+2) = 3+(1+2) = 343 = 6
double (142) = (142)+(1+2) = (1+2)+3 = 343 = 6

double (1+2) = double 3 = 343 = 6

All derivations ~~ same result: referential transparency
@ computed result independent of evaluation order
@ no side effects
@ simplifies reasoning and maintenance

Several strategies: what are good strategies?

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Basic Concept: Algebraic Data Types

Values in declarative languages: terms

data Bool = True | False

Definition by pattern matching:

not True = False
not False = True

Replacing equals by equals still valid:

not (not False) = not True = False

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Algebraic Data Types: Lists

List of elements of type a
data List a = [l | a : List a

Some notation: [a] ~ List a
[€1,62,...,6n] = €1:€2:...:€n:[]

List concatenation “++”

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

From Functional to Functional Logic Programming

List concatenation “++”

(++) :: [a]l] —> [a] —-—> [a]
[] ++ ys = ys
(x:xs) t+ ys = x : xst+ys

Use “++” to specify other list functions:
Last elementof alist: last xs = e iff Jys: ys ++ [e] = xs
Direct implementation in a functional logic language:

@ search for solutions w.r.t. existentially quantified variables
@ solve equations over nested functional expressions

Definition of 1ast in Curry

last xs | ystt[e]=:=xs = e where ys,e free

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Functional Logic Programs

Set of functions defined by equations (or rules)

f : function name

ty ... t, : data terms (constructors, variables)
¢ : condition (optional)
r : expression

Constructor-based term rewriting system

Rules with extra variables

last xs | ystt[e]=:=xs = e where ys,e free

%l(l)%—c dn Qr ﬂtrasgor%t |t| Ir ég%ﬁY(ﬁgean evaluation strategy

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Functional Logic Computations: Narrowing

Rewriting not sufficient in the presence of logic variables ~~

Narrowing = variable instantiation + rewriting

Narrowing step: t~p /ot

p : non-variable position in ¢
| — r : program rule (variant)
o : unifier for |, and /

v o(tlr]p)

Why not most general unifiers?

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Functional Logic Computations: Narrowing

Narrowing with mgu’s is not optimal

data Nat = O | S Nat leqg O - = True
add O y =Yy leqg (S _) O = False
add (S x) y = S(add x v) leg (S x) (S vy) = leg x vy

legv (add w O)legv (add w O) ~ [0} True

Another narrowing computation:
legv (add w O) ~fys0} leqv Oleqv O ~yy .5, False

And another narrowing computation:

legv (add w O) ~ry-0} 1leqv O ~yy.0p True superfluous!

Avoid last derivation by non-mgu in first step:
legv (add w O) ~(ysz,we0} 1€d (S5z) O

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Needed Narrowing [JACM’00]

@ constructive method to compute positions and unifiers
@ defined on inductively sequential rewrite systems

@ basic idea: organize all rules in a definitional tree:
branch nodes (case distinction), rule nodes

Definitional tree of

add O y = Yy
add (S x) y = S(add x vy)
add x1 x2
add O x2 = x2 add (Sx) x2 = S (add x x2)

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Definitional Trees

leg O . = True
leqg (S _) O = False
leg (S x) (S y) = leg x vy
Definitional tree:
leg x1 x2
leqg O x2 = True leq (Sx) x2
leg (Sx) O = False leq (Sx) (Sy) = leqg x vy

@ contains all rules of a function
@ can be computed at compile time
@ guides the narrowing strategy

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Needed Narrowing with Definitional Trees

leg x1 x2

leg O x2 = True leg (Sx) x2

leg (Sx) O = False leg (Sx) (Sy) = leg x vy

Evaluate function call 1eq # &

@ Reduce t; to head normal form

Q If t; = 0: apply rule

Q Ifty =(s...): reduce t to head normal form

Q If t; variable: bind t; to 0 or (s_) and proceed

legv (add w O) ~(vsz,we0} 1€qd (Sz) O

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Strict Equality

Needed narrowing solves equations t; =:= b

Interpretation of “=:=":
@ strict equality on terms

@ 1y =:= b satisfied if both sides reducible to same value
(finite data term)

@ undefined on infinite terms

£f=0:f ~» £ =:=g does not hold
g=0:g

@ constructive form of equality (definable by standard rewrite rules)

@ used in current functional and logic languages

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Needed Narrowing: Properties

Sound and complete (w.r.t. strict equality)

Optimal strategy:
@ No unnecessary steps:
Each step is needed, i.e., unavoidable to compute a solution.

@ Shortest derivations:
If common subterms are shared, derivations have minimal length.

© Minimal set of computed solutions:
Solutions computed by two distinct derivations are independent.
© Determinism:
No nondeterministic step during evaluation of ground expressions
(=~ functional programming)

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Extension: Weakly Needed Narrowing

Overlapping rules: parallel-or

or True _ = True
or __ True = True
or False False = False

or s t:reducesort?

Solution of current functional logic languages:
@ nondeterministically select one of the arguments
@ extend definitional trees with or nodes
@ extend needed narrowing to weakly needed narrowing

Theoretically better, practically more costly:
@ parallel evaluation of both arguments

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages

ICLP 2007

Nondeterministic Operations

Functional languages: each function call has at most one value

Functional logic languages can handle more:

Nondeterministic choice

X ?7y =X
x?y =y

0?1 (don’tknow) evaluatesto 0 or 1

Nondeterministic operations/functions
@ interpretation: mapping from values into sets of values
@ declarative semantics [JLP’99]
@ supported in modern functional logic languages
@ advantage compared to predicates: demand-driven evaluation

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Programming with Nondeterministic Operations

Nondeterministic list insertion

insert e [] = [e]

insert e (x:xs) (e ¢+ X : Xs) ? (x : insert e xs)

4

Permutations of a list

perm [] = []
perm (x:xs) = insert x (perm xs)

N

Permutation sort

sorted [] = []

sorted [x] = [x]

sorted (x1l:x2:xs) | x1 < x2 = x1 : sorted (x2:xs)
psort xs = sorted (perm xs)

Reduced search space due to demand-driven evaluation of (perm xs)

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Programming with Nondeterministic Operations

Advantages of nondeterministic operations as generators:
@ demand-driven generation of solutions
@ modular program structure, no floundering
psort [5,4,3,2,1] ~» sorted (permute [5,4,3,2,11)

*

~ sorted (5:4 :permute [3,2,11])

undefined: discard this alternative
Effect: Permutations of [3, 2, 1] are not enumerated!

Permutation sort for [n, n—1, ..., 2, 1] #or-branches/disjunctions

Length of the list: | 4 5 6 8 10
generate-and-test | 24 120 720 40320 3628800
test-of-generate 19 59 180 1637 14758

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Call-Time vs. Need-Time Choice

Subtle aspect of nondeterministic operations: treatment as arguments

coin = 0 2?2 1 double = x+x }

double coin
~» coln+coin s O | 1 | 1 | 2 need-time choice

~ double 0 | double 1 ~* 0 | 2 call-time choice

Call-time choice
@ semantics with “least astonishment”
@ declarative foundation: CRWL calculus [JLP’99]
@ implementation: demand-driven + sharing
@ used in current functional logic languages

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Residuation

Narrowing
@ resolution extended to functional logic programming
@ sound, complete
@ efficient (optimal) by exploiting functional information

Alternative principle: Residuation (Escher, Life, NUE-Prolog, Oz,...)
@ evaluate functions only deterministically
@ suspend function calls if necessary
@ encode nondeterminism in predicates or disjunctions
°

concurrency primitive required:
“cl & c2”evaluates constraints c1 and c2 concurrently

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Residuation: Example

add O y = VY nat O = Success

add (S x) y = S(add x vy) nat (S x) = nat x J
Evaluate function add by residuation:

add y O =:= S O & nat ynat y

—{y—sx} add (S x) O =:= S O & nat x

=1} S (add x O) =:= S O & nat

=10 add x O =:= 0 & nat x

(%0} add O O =:= O & Success

-0 O =:= O & Success

—{} Success & Success

- sSuccess

Michael Hanus (CAU Kiel)

Multi-paradigm Declarative Languages ICLP 2007

Narrowing vs. Residuation

Residuation

@ sound and complete @ incomplete (floundering)
@ possible nondeterministic @ deterministic evaluation of
evaluation of functions functions
@ optimal for particular @ supports concurrency
classes of programs (declarative concurrency)
@ method to connect external
functions

No clear winner ~» combine narrowing + residuation

Possible by adding flexible/rigid tags in definitional trees
@ flexible function: evaluated by narrowing
@ rigid function: suspends on free argument variable

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

External Operations

Narrowing not applicable (no explicit defining rules available)
Appropriate model: residuation

Declarative interpretation: defined by infinite set of rules

External arithmetic operations

0 +0=020 0 = 0=20
0 +1=1 1 «~1=1
1 +1 =2 2 x 2 =4

Implemented in some other language:
@ rules not accessible
@ can’t deal with unevaluated/free arguments
@ reduce arguments to ground values before the call
@ suspend in case of free variable (residuation)

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Higher-order Operations

Important technique for generic programming and code reuse

Map a function on all list elements

map :: (a—->b) -> [a] -> [Db]

map _ [] = [1]

map £ (x:xs) = £ x : map f xs

map double [1,2,3] ~*[2,4,6]
map (\x—>x*x) [2,3,4] ~F [4,9,16]

Implementation:

@ primitive operation apply: apply fe ~ fe

@ sufficient to support higher-order functional programming
Problem: application of unknown functions?

@ instantiate function variable: costly

@ pragmatic solution: function application is rigid (i.e., no guessing)

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Constraints

@ occur in conditions of conditional rules
@ restrict applicability: solve constraints before applying rule

@ no syntactic extension necessary:
constraint =~ expression of type Success

Basic constraints

—— strict equality
(=:=) :: a —> a —> Success

—— concurrenct conjunction
(&) :: Success —> Success —> Success

-— always satisfied
success :: Success

last xs | yst+[e] =:=xs = e where ys,e free J

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Constraints

Constraints are ordinary expressions ~~ pass as arguments or results

Constraint combinator

allValid :: [Success] —> Success
allvalid [] = success
allvValid (c:cs) = c & allValid cs

Constraint programming: add constraints to deal with specific domains

Finite domain constraints

domain :: [Int] —> Int —-> Int —> Success
allDifferent :: [Int] —> Success
labeling :: [LabelingOption] —-> [Int] —-> Success

Integration of constraint programming as in CLP

Combined with lazy higher-order programming

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Constraints: SuDoku Solver

9 2 5
4 6 3
3 6
SuDoku puzzle: 9 x 9 matrix of digits 9 5 2 -
Representation: matrix m (list of lists of FD variables) 5 UINE : 3
5 2 4
1 6 9
sudoku :: [[Int]] —> Success
sudoku m =
domain (concat m) 1 9 &
allvalid (map allDifferent m) &
allvalid (map allDifferent (transpose m)) &
allvalid (map allDifferent (squaresOfNine m)) &
labeling [FirstFailConstrained] (concat m)

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Function Patterns

Requirement on programs: constructor-based rules

Last element of a list
last (xs++ [e]) = e —— not allowed

Eliminate non-constructor pattern:

last xs | yst++t[e]=:=xs = e where ys,e free

Disadvantage: strict equality evaluates all arguments

last [failed, 3] ~* failure (instead of 3)

Solution: allow function patterns (patterns with defined functions)
Possible due to functional logic kernel!

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Function Patterns: Transformational Semantics

Function pattern ~ set of patterns where functions are evaluated

Evaluations of xs++[e]

xst+le]l ~iq e [e]
XS++[e] Wr(SH[Xl] [Xll eJ
xs++[e] NQZSHﬂxl,XZ} [x1,x2,e]

.

Interpretation of last (xs++[e]) = e

last [e] = e
last [x1,e] = e
last [x1,x2,e] = e

@ last [failed, 3] ~* 3
@ implementation: demand-driven function pattern unification
@ powerful concept to express transformation problems

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Encapsulated Search

Encapsulating nondeterministic search is important
@ declarative I/O ~ transformation on the outside world
@ “can’t clone the outside world”
@ nondeterministic search between I/O must be encapsulated

@ complication: demand-driven evaluation + sharing + “findall”

let y=coin in findall (...y...))

@ evaluate coin inside or outside the capsule?
@ order of solutions might depend on evaluation time

Better: encapsulate search on I/O (top) level

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Encapsulated Search

Search primitive on 1/O level
getSearchTree :: a —> IO (SearchTree a)
data SearchTree a = Or [SearchTree a]

| Val a
| Fail

@ strong encapsulation (clone search expression):
avoid sharing problems

@ compute search tree demand-driven

@ define concrete search strategies as tree traversals

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Applications

Application areas: areas of individual paradigms +

Functional logic design patterns

@ constraint constructor: generate only valid data
(functions, constraints, programming with failure)

@ locally defined global identifier: structures with unique references
(functions, logic variables)

General advantage: high-level interfaces for application libraries
@ GUIs
@ web programming
@ databases
@ distributed programming
° ...

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Applications: GUI Programming

,.a,v,rqpq

Increment. | Reset I Stop

Jaz

Graphical User Interfaces (GUIs)
@ layout structure: hierarchical structure ~~ algebraic data type
@ logical structure: dependencies in structure ~- logic variables
@ event handlers ~ functions associated to layout structures

@ advantages: compositional, less error prone

Specification of a counter GUI

Col [Entry [WRef val, Text "O", Background "yellow"],
Row [Button (updateValue incr val) [Text "Increment"],
Button (setValue val "0O") [Text "Reset"],
Button exitGUI [Text "Stop"] 1]
where val free

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007

Conclusions

Combining declarative paradigms is possible and useful

@ functional notation: more than syntactic sugar

@ needed narrowing: sound, complete, optimal

demand-driven search ~~» search space reduction

exploit functions: better strategies without loosing generality

residuation ~~ concurrency, clean connection to external functions
more declarative style of programming: no cuts, no side effects,. . .

appropriate abstractions for high-level software development

One paradigm: EeEYETEVIVEN ol nlulale)

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages

ICLP 2007

