
Multi-paradigm Declarative Languages

Michael Hanus

Christian-Albrechts-University of Kiel
Programming Languages and Compiler Construction

ICLP 2007

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 1

Declarative Programming: The General Idea

Do not no code algorithms and stepwise execution

Describe logical relationships

 powerful abstractions
domain specific languages

 higher programming level

 reliable and maintainable programs
pointer structures ⇒ algebraic data types
complex procedures ⇒ comprehensible parts
(pattern matching, local definitions)

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 2

Declarative Languages: Current Situation

Declarative languages based on different formalisms, e.g.,

Functional Languages
lambda calculus
functions
directed equations
reduction of expressions

Logic Languages
predicate logic
predicates
definite clauses
goal solving by resolution

Constraint Languages
constraint structures
constraints
specific constraint solvers

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 3

Declarative Languages: Features

Functional Languages
higher-order functions
expressive type systems
demand-driven evaluation
optimality, modularity

Logic Languages
compute with partial
information
nondeterministic search
unification

Constraint Languages
specific domains
efficient constraint solving

All features are useful multi-paradigm declarative languages

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 4

Multi-paradigm Declarative Languages

Goal: combine best of declarative paradigms in a single model

efficient execution principles of functional languages
(determinism, laziness)

flexibility of logic languages
(computation with partial information, built-in search)

application-domains of constraint languages
(constraint solvers for specific domains)

avoid non-declarative features of Prolog
(arithmetic, cut, I/O, side-effects)

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 5

Multi-paradigm Declarative Languages: Approaches

Extend logic languages
add functional notation as syntactic sugar
(Ciao-Prolog, Mercury, HAL, Oz,. . .)
defining equations, nested functional expressions
translation into logic kernel
don’t exploit functional information for execution

Extend functional languages
add logic features (logic variables, nondeterminism)
(Escher, TOY, Curry,. . .)
functional syntax, logic programming use
retain efficient (demand-driven) evaluation whenever possible
additional mechanism for logic-oriented computations

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 6

Curry

As a language for concrete examples, we use

Curry [POPL’97,. . .]

multi-paradigm declarative language

extension of Haskell (non-strict functional language)

developed by an international initiative

provide a standard for functional logic languages
(research, teaching, application)

several implementations and various tools available

 http://www.informatik.uni-kiel.de/˜curry

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 7

Basic Concept: Functional Computation

Functional program: set of functions defined by equations/rules

double x = x + x

Functional computation: replace subterms by equal subterms

double (1+2) ⇒ (1+2)+(1+2) ⇒ 3+(1+2) ⇒ 3+3 ⇒ 6

Another computation:
double (1+2) ⇒ (1+2)+(1+2) ⇒ (1+2)+3 ⇒ 3+3 ⇒ 6

And another computation:
double (1+2) ⇒ double 3 ⇒ 3+3 ⇒ 6

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 8

Functional Computation

double x = x + x

double (1+2) ⇒ (1+2)+(1+2) ⇒ 3+(1+2) ⇒ 3+3 ⇒ 6

double (1+2) ⇒ (1+2)+(1+2) ⇒ (1+2)+3 ⇒ 3+3 ⇒ 6

double (1+2) ⇒ double 3 ⇒ 3+3 ⇒ 6

All derivations same result: referential transparency
computed result independent of evaluation order
no side effects
simplifies reasoning and maintenance

Several strategies: what are good strategies?

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 9

Basic Concept: Algebraic Data Types

Values in declarative languages: terms
data Bool = True | False

Definition by pattern matching:
not True = False
not False = True

Replacing equals by equals still valid:

not (not False) ⇒ not True ⇒ False

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 10

Algebraic Data Types: Lists

List of elements of type a

data List a = [] | a : List a

Some notation: [a] ≈ List a
[e1,e2,. . .,en] ≈ e1:e2:. . .:en:[]

List concatenation “++”
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : xs++ys

[1,2,3] ++ [4] ⇒∗ [1,2,3,4]

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 11

From Functional to Functional Logic Programming

List concatenation “++”
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : xs++ys

Use “++” to specify other list functions:

Last element of a list: last xs = e iff ∃ys: ys ++ [e] = xs

Direct implementation in a functional logic language:
search for solutions w.r.t. existentially quantified variables
solve equations over nested functional expressions

Definition of last in Curry
last xs | ys++[e]=:=xs = e where ys,e free

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 12

Functional Logic Programs

Set of functions defined by equations (or rules)

f t1 . . . tn | c = r

f : function name
t1 . . . tn : data terms (constructors, variables)

c : condition (optional)
r : expression

Constructor-based term rewriting system

Non-constructor-based rules
(xs ++ ys) ++ zs = xs ++ (ys ++zs)
last (xs ++ [e]) = e

non-constructive, forbidden to provide efficient evaluation strategy

Rules with extra variables
last xs | ys++[e]=:=xs = e where ys,e free

allowed in contrast to traditional rewrite systems

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 13

Functional Logic Computations: Narrowing

Rewriting not sufficient in the presence of logic variables

Narrowing = variable instantiation + rewriting

Narrowing step: t p,l→r ,σt ′

p : non-variable position in t
l → r : program rule (variant)

σ : unifier for t |p and l
t ′ : σ(t [r]p)

Why not most general unifiers?

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 14

Functional Logic Computations: Narrowing

Narrowing with mgu’s is not optimal
data Nat = O | S Nat leq O _ = True
add O y = y leq (S _) O = False
add (S x) y = S(add x y) leq (S x) (S y) = leq x y

leq v (add w O)leq v (add w O) {v7→O} True

Another narrowing computation:
leq v (add w O) {w7→O} leq v Oleq v O {v7→Sz} False

And another narrowing computation:
leq v (add w O) {w7→O} leq v O {v7→O} True superfluous!

Avoid last derivation by non-mgu in first step:
leq v (add w O) {v7→Sz,w 7→O} leq (S z) O

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 15

Needed Narrowing [JACM’00]

constructive method to compute positions and unifiers
defined on inductively sequential rewrite systems
basic idea: organize all rules in a definitional tree:
branch nodes (case distinction), rule nodes

Definitional tree of
add O y = y
add (S x) y = S(add x y)

add O x2 = x2 add (Sx) x2 = S(add x x2)

add x1 x2
�

�
��

Q
Q

QQ

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 16

Definitional Trees

leq O _ = True
leq (S _) O = False
leq (S x) (S y) = leq x y

Definitional tree:

leq O x2 = True leq (Sx) x2

leq (Sx) O = False leq (Sx) (Sy) = leq x y

leq x1 x2

�
�

��

Q
Q

QQ

�
�

��

Q
Q

QQ

contains all rules of a function
can be computed at compile time
guides the narrowing strategy

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 17

Needed Narrowing with Definitional Trees

leq O x2 = True leq (Sx) x2

leq (Sx) O = False leq (Sx) (Sy) = leq x y

leq x1 x2

�
�

��

Q
Q

QQ

�
�

��

Q
Q

QQ

Evaluate function call leq t1 t2
1 Reduce t1 to head normal form
2 If t1 = O: apply rule
3 If t1 = (S . . .): reduce t2 to head normal form
4 If t1 variable: bind t1 to O or (S_) and proceed

leq v (add w O) {v7→Sz,w 7→O} leq (S z) O

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 18

Strict Equality

Needed narrowing solves equations t1 =:= t2

Interpretation of “=:=”:

strict equality on terms

t1 =:= t2 satisfied if both sides reducible to same value
(finite data term)

undefined on infinite terms

f = 0 : f
g = 0 : g

 f=:=g does not hold

constructive form of equality (definable by standard rewrite rules)

used in current functional and logic languages

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 19

Needed Narrowing: Properties

Sound and complete (w.r.t. strict equality)

Optimal strategy:
1 No unnecessary steps:

Each step is needed, i.e., unavoidable to compute a solution.
2 Shortest derivations:

If common subterms are shared, derivations have minimal length.
3 Minimal set of computed solutions:

Solutions computed by two distinct derivations are independent.
4 Determinism:

No nondeterministic step during evaluation of ground expressions
(≈ functional programming)

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 20

Extension: Weakly Needed Narrowing

Overlapping rules: parallel-or
or True _ = True
or _ True = True
or False False = False

or s t: reduce s or t?

Solution of current functional logic languages:
nondeterministically select one of the arguments
extend definitional trees with or nodes
extend needed narrowing to weakly needed narrowing

Theoretically better, practically more costly:
parallel evaluation of both arguments

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 21

Nondeterministic Operations

Functional languages: each function call has at most one value

Functional logic languages can handle more:

Nondeterministic choice
x ? y = x
x ? y = y

0?1 (don’t know) evaluates to 0 or 1

Nondeterministic operations/functions
interpretation: mapping from values into sets of values
declarative semantics [JLP’99]
supported in modern functional logic languages
advantage compared to predicates: demand-driven evaluation

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 22

Programming with Nondeterministic Operations

Nondeterministic list insertion
insert e [] = [e]
insert e (x:xs) = (e : x : xs) ? (x : insert e xs)

Permutations of a list
perm [] = []
perm (x:xs) = insert x (perm xs)

Permutation sort
sorted [] = []
sorted [x] = [x]
sorted (x1:x2:xs) | x1 ≤ x2 = x1 : sorted (x2:xs)

psort xs = sorted (perm xs)

Reduced search space due to demand-driven evaluation of (perm xs)

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 23

Programming with Nondeterministic Operations

Advantages of nondeterministic operations as generators:
demand-driven generation of solutions
modular program structure, no floundering

psort[5,4,3,2,1] sorted(permute[5,4,3,2,1])

 ∗ sorted(5:4:permute[3,2,1])︸ ︷︷ ︸
undefined: discard this alternative

Effect: Permutations of [3,2,1] are not enumerated!

Permutation sort for [n,n−1,. . .,2,1]: #or-branches/disjunctions

Length of the list: 4 5 6 8 10
generate-and-test 24 120 720 40320 3628800
test-of-generate 19 59 180 1637 14758

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 24

Call-Time vs. Need-Time Choice

Subtle aspect of nondeterministic operations: treatment as arguments

coin = 0 ? 1 double = x+x

double coin

 coin+coin ∗ 0 | 1 | 1 | 2 need-time choice

 double 0 | double 1 ∗ 0 | 2 call-time choice

Call-time choice
semantics with “least astonishment”
declarative foundation: CRWL calculus [JLP’99]
implementation: demand-driven + sharing
used in current functional logic languages

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 25

Residuation

Narrowing
resolution extended to functional logic programming
sound, complete
efficient (optimal) by exploiting functional information

Alternative principle: Residuation (Escher, Life, NUE-Prolog, Oz,. . .)
evaluate functions only deterministically
suspend function calls if necessary
encode nondeterminism in predicates or disjunctions
concurrency primitive required:
“c1 & c2” evaluates constraints c1 and c2 concurrently

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 26

Residuation: Example

add O y = y nat O = Success
add (S x) y = S(add x y) nat (S x) = nat x

Evaluate function add by residuation:

add y O =:= S O & nat ynat y

→{y7→Sx} add (S x) O =:= S O & nat x

→{} S (add x O) =:= S O & nat x

→{} add x O =:= O & nat x

→{x7→O} add O O =:= O & Success

→{} O =:= O & Success

→{} Success & Success

→{} Success

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 27

Narrowing vs. Residuation

Narrowing
sound and complete
possible nondeterministic
evaluation of functions
optimal for particular
classes of programs

Residuation
incomplete (floundering)
deterministic evaluation of
functions
supports concurrency
(declarative concurrency)
method to connect external
functions

No clear winner combine narrowing + residuation

Possible by adding flexible/rigid tags in definitional trees
flexible function: evaluated by narrowing
rigid function: suspends on free argument variable

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 28

External Operations

Narrowing not applicable (no explicit defining rules available)

Appropriate model: residuation

Declarative interpretation: defined by infinite set of rules

External arithmetic operations
0 + 0 = 0 0 * 0 = 0
0 + 1 = 1 1 * 1 = 1
1 + 1 = 2 2 * 2 = 4
... ...

Implemented in some other language:
rules not accessible
can’t deal with unevaluated/free arguments
reduce arguments to ground values before the call
suspend in case of free variable (residuation)

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 29

Higher-order Operations

Important technique for generic programming and code reuse

Map a function on all list elements
map :: (a->b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

map double [1,2,3] ∗ [2,4,6]
map (\x->x*x) [2,3,4] ∗ [4,9,16]

Implementation:
primitive operation apply: apply f e f e

sufficient to support higher-order functional programming
Problem: application of unknown functions?

instantiate function variable: costly
pragmatic solution: function application is rigid (i.e., no guessing)

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 30

Constraints

occur in conditions of conditional rules

restrict applicability: solve constraints before applying rule

no syntactic extension necessary:
constraint ≈ expression of type Success

Basic constraints
-- strict equality
(=:=) :: a -> a -> Success

-- concurrenct conjunction
(&) :: Success -> Success -> Success

-- always satisfied
success :: Success

last xs | ys++[e]=:=xs = e where ys,e free

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 31

Constraints

Constraints are ordinary expressions pass as arguments or results

Constraint combinator
allValid :: [Success] -> Success
allValid [] = success
allValid (c:cs) = c & allValid cs

Constraint programming: add constraints to deal with specific domains

Finite domain constraints
domain :: [Int] -> Int -> Int -> Success
allDifferent :: [Int] -> Success
labeling :: [LabelingOption] -> [Int] -> Success

Integration of constraint programming as in CLP

Combined with lazy higher-order programming

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 32

Constraints: SuDoku Solver
9 2 5

4 6 3
3 6

9 2
5 8

7 4 3
7 1

5 2 4
1 6 9

SuDoku puzzle: 9× 9 matrix of digits

Representation: matrix m (list of lists of FD variables)

SuDoku Solver with FD Constraints
sudoku :: [[Int]] -> Success
sudoku m =
domain (concat m) 1 9 &
allValid (map allDifferent m) &
allValid (map allDifferent (transpose m)) &
allValid (map allDifferent (squaresOfNine m)) &
labeling [FirstFailConstrained] (concat m)

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 33

Function Patterns

Requirement on programs: constructor-based rules

Last element of a list
last (xs++[e]) = e -- not allowed

Eliminate non-constructor pattern:

last xs | ys++[e]=:=xs = e where ys,e free

Disadvantage: strict equality evaluates all arguments

last[failed,3] ∗ failure (instead of 3)

Solution: allow function patterns (patterns with defined functions)
Possible due to functional logic kernel!

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 34

Function Patterns: Transformational Semantics

Function pattern ≈ set of patterns where functions are evaluated

Evaluations of xs++[e]
xs++[e] ∗

xs 7→[e] [e]
xs++[e] ∗

xs 7→[x1] [x1,e]
xs++[e] ∗

xs 7→[x1,x2] [x1,x2,e]
...

Interpretation of last (xs++[e]) = e

last [e] = e
last [x1,e] = e
last [x1,x2,e] = e
...

last [failed,3] ∗ 3

implementation: demand-driven function pattern unification
powerful concept to express transformation problems

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 35

Encapsulated Search

Encapsulating nondeterministic search is important

declarative I/O ≈ transformation on the outside world

“can’t clone the outside world”

nondeterministic search between I/O must be encapsulated

complication: demand-driven evaluation + sharing + “findall”

let y=coin in findall(...y...)

evaluate coin inside or outside the capsule?
order of solutions might depend on evaluation time

Better: encapsulate search on I/O (top) level

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 36

Encapsulated Search

Search primitive on I/O level
getSearchTree :: a -> IO (SearchTree a)

data SearchTree a = Or [SearchTree a]
| Val a
| Fail

strong encapsulation (clone search expression):
avoid sharing problems

compute search tree demand-driven

define concrete search strategies as tree traversals

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 37

Applications

Application areas: areas of individual paradigms +

Functional logic design patterns
constraint constructor: generate only valid data
(functions, constraints, programming with failure)
locally defined global identifier: structures with unique references
(functions, logic variables)
. . .

General advantage: high-level interfaces for application libraries
GUIs
web programming
databases
distributed programming
. . .

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 38

Applications: GUI Programming

Graphical User Interfaces (GUIs)

layout structure: hierarchical structure algebraic data type

logical structure: dependencies in structure logic variables

event handlers functions associated to layout structures

advantages: compositional, less error prone

Specification of a counter GUI
Col[Entry [WRef val, Text "0", Background "yellow"],

Row[Button (updateValue incr val) [Text "Increment"],
Button (setValue val "0") [Text "Reset"],
Button exitGUI [Text "Stop"]]]

where val free

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 39

Conclusions

Combining declarative paradigms is possible and useful

functional notation: more than syntactic sugar

exploit functions: better strategies without loosing generality

needed narrowing: sound, complete, optimal

demand-driven search search space reduction

residuation concurrency, clean connection to external functions

more declarative style of programming: no cuts, no side effects,. . .

appropriate abstractions for high-level software development

One paradigm: Declarative Programming

Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 40

