Declarative Multi-paradigm Programming

Michael Hanus (CAU Kiel)

Michael Hanus

Christian-Albrechts-University of Kiel
Programming Languages and Compiler Construction

WFLP/WLP 2014

Declarative Multi-paradigm Programming

WFLP/WLP 2014

Declarative Programming: The General Idea

Do not no code algorithms and stepwise execution

Describe logical relationships

~+ powerful abstractions
e domain specific languages

~ higher programming level

~ reliable and maintainable programs
@ pointer structures = algebraic data types
e complex procedures = comprehensible parts
(pattern matching, local definitions)

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Declarative Languages: Current Situation

Declarative languages based on different formalisms, e.g.,

Functional Languages Logic Languages
@ lambda calculus @ predicate logic
@ functions @ predicates
@ directed equations @ definite clauses
@ reduction of expressions @ goal solving by resolution

Constraint Languages

@ constraint structures
@ constraints
@ specific constraint solvers

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Declarative Languages: Features

Functional Languages

Logic Languages

@ higher-order functions @ compute with partial

@ expressive type systems information

@ demand-driven evaluation @ non-deterministic search
@ optimality, modularity @ unification

Constraint Languages

@ specific domains
@ efficient constraint solving

All features are useful ~» declarative multi-paradigm languages

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Declarative Multi-paradigm Languages

Goal: combine best of declarative paradigms in a single model

e efficient execution principles of functional languages
(determinism, laziness)

e flexibility of logic languages
(computation with partial information, built-in search)

e application-domains of constraint languages
(constraint solvers for specific domains)

e avoid non-declarative features of Prolog
(arithmetic, cut, I/O, side-effects)

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Declarative Multi-paradigm Languages: Approaches

Extend logic languages

@ add functional notation as syntactic sugar
(Ciao-Prolog, Mercury, HAL, Oz,...)

@ equational definitions, nested functional expressions
@ translation into logic kernel
@ don’t exploit functional information for execution

Extend functional languages

@ add logic features (logic variables, non-determinism)
(Escher, TOY, Curry,...)

@ functional syntax, logic programming use
@ retain efficient (demand-driven) evaluation whenever possible
@ additional mechanism for logic-oriented computations

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

As a language for concrete examples, we use

@ multi-paradigm declarative language

@ extension of Haskell (non-strict functional language)
@ developed by an international initiative

@ provide a standard for functional logic languages
(research, teaching, application)

@ several implementations and various tools available

~» http://www.curry—-language.org

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

http://www.curry-language.org

Basic Concept: Functional Computation

Functional program: set of functions defined by equations/rules

double x = x + x

Functional computation: replace subterms by equal subterms

double (1+2) = (1+2)+(1+2) = 3+(1l+2) = 3+3 = 6

Another computation:
double (1+42) = (1+2)+(1+2) = (1+2)+3 = 343 = 6

And another computation:
double (1+2) = double 3 = 343 = 6

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Functional Computation

double x = x + x

double (1+2) = (1+2)+(1+2) = 3+ (1+2) = 3+3 =
double (1+2) = (1+2)+(1+2) = (1+2)+3 = 3+3 =
double (1+2) = double 3 = 3+3 = 6

All derivations ~~ same result: referential transparency
@ computed result independent of evaluation order
@ no side effects
@ simplifies reasoning and maintenance

Several strategies: what are good strategies?

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming

WFLP/WLP 2014

Basic Concept: Algebraic Data Types

Values in declarative languages: terms

data Bool = True | False

Definition by pattern matching:

not True = False

not False True

Replacing equals by equals still valid:

not (not False) = not True = False J

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Algebraic Data Types: Lists

List of elements of type a

data List a = [] | a : List a

Some notation: [a] ~ List a
[e1,€0,...,6nh] = €1:€2:...:€6ph:[]

List concatenation “++”

(++) :: [a] — [a] — [a]

[] ++ ys = ys
(x:xs8) ++ ys = x : xs++ys
[1,2,3] ++ [4] =" [1,2,3,4] J

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

From Functional to Functional Logic Programming

List concatenation “++”

(++) :: [a] — [a] — [a]
[1] ++ ys = ys
(x:xs) ++ ys = x : xst+tys

Use “++” to specify other list functions:

Last element of alist: last xs = e iff Jys: ys ++ [e] = xs

Direct implementation in a functional logic language:
@ search for solutions w.r.t. existentially quantified variables
@ solve equations over nested functional expressions

Definition of 1ast in Curry

last xs | ys++[e] =:=xs
= e where ys,e free

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Functional Logic Programs

Set of functions defined by equations (or rules)

f : function name

ty ... 1, : data terms (constructors, variables)
¢ : condition (optional)
r : expression

Constructor-based term rewriting system

L I B R L SR | - -

Rules with extra variables

last xs | yst+[e] =:=xs
=e where ys,e free

Nor-curisuucuve, 101vIyuelr | lUé)lUVIU.b' EIICIENL evdiudLvll stidleyy
allowed in contrast to traditional rewrite systems

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Functional Logic Computations: Narrowing

Rewriting not sufficient in the presence of logic variables ~~

Narrowing = variable instantiation + rewriting

Narrowing step: t~p /ot

p : non-variable position in ¢
I — r : program rule (variant)
o : unifier for t|, and /

t' 2 o(t[rlp)

Why not most general unifiers?

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Functional Logic Computations: Narrowing

Narrowing with mgu’s is not optimal
data Nat = Z | S Nat

leqg Z o = True
add Z y =V leq (S _) 2 = False
add (S x) y = S(add x y) leg (S x) (S y) = leg x vy

legv (add w Z)leqv (add w Z) ~»(yg) True

Another narrowing computation:

legv (add w Z) ~(wszy leqv Zleqv Z ~iy,s52) False

And another narrowing computation:

legv (add w Z) ~(wsz} leqv Z ~yy,7) True superfluous!

Avoid last derivation by non-mgu in first step:

legv (add w Z) ~(visz,wez) leqg (Sz) Z

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Needed Narrowing [JACM’00]

@ constructive method to compute positions and unifiers

@ defined on inductively sequential rewrite systems:
there is always a discriminating argument

@ formal definition: organize rules in definitional trees [Antoy’92]
@ here: transform rules into case expressions

add Z y =y add x y = case x of
add (S x) vy S(add x y) = Z — v
S z — S(add z vy)

legq Z _ = True = leg x y = case x of
leg (S) Z = False Z — True
leg (S x) (Sy) =legxy S a — case y of

7 — False
Sb =+ legab

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Needed Narrowing

case expressions

@ standard compile-time transformation to implement pattern matching
@ guide lazy evaluation strategy

leg x y = case x of Z — True
S a — case y of Z — False
Sb = legab

Evaluate function call 1eq t; &

@ Evaluate t; to head normal form hy

Q If hy = z: return True

Q If hy = (s...): evaluate t, to head normal form
© |If hy variable: bind hy to z or (S_) and proceed

legv (add w Z) ~(vissa,wez) leqg (Sa) 2z J

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Strict Equality

Needed narrowing solves equations t; =:= £

Interpretation of “=: ="
@ strict equality on terms

@ty =:= 1 satisfied if both sides reducible to same value
(finite data term)

@ undefined on infinite terms

f=0:f ~+ f=:=g does not hold
g=0:g

@ constructive form of equality (definable by standard rewrite rules)

@ used in current functional and logic languages

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Needed Narrowing: Properties

Sound and complete (w.r.t. strict equality)

Optimal strategy:

@ No unnecessary steps:
Each step is needed, i.e., unavoidable to compute a solution.

@ Shortest derivations:
If common subterms are shared, derivations have minimal length.

@ Minimal set of computed solutions:
Solutions computed by two distinct derivations are independent.
© Determinism:
No non-deterministic step during evaluation of ground expressions
(= functional programming)

Note: similar results unknown for purely logic programming!

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Non-Deterministic Operations

Non-deterministic choice

X ?2y =X
y

X ?y

@ 0?1 (don’tknow) evaluatesto 0 or 1
@ case expressions not sufficient (no discriminating argument)
@ weakly needed narrowing = needed narrowing + choice

Non-deterministic operations/functions
@ interpretation: mapping from values into sets of values
@ declarative semantics [Gonzalez-Moreno et al., JLP’99]
@ supported in modern functional logic languages
@ advantage compared to predicates: demand-driven evaluation

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Programming with Non-Deterministic Operations

Non-deterministic list insertion

insert e [] = [e]
insert e (x:xXs) = (e : x : xs) ? (x : insert e xs)

Permutations of a list

| \

permute [] = [1
permute (x:xs) = insert x (permute xs)

Permutation sort

| \

sorted [] =[]
sorted [x] = [x]
sorted (x1:x2:xs) | x1 < x2 = x1 : sorted (x2:xs)

psort xs = sorted (permute xs)

G

Reduced search space due to demand-driven evaluation of (permute xs)

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Programming with Non-Deterministic Operations

Advantages of non-deterministic operations as generators:
@ demand-driven generation of solutions
@ modular program structure, no floundering
psort [5,4,3,2,1] ~» sorted (permute [5,4,3,2,11)
~~* sorted (5:4 :permute [3,2,1])

undefined: discard this alternative

Effect: Permutations of [3, 2, 1] are not enumerated!

Permutation sort for [n, n—1,...,2, 11: #or-branches/disjunctions

Length of the list: | 4 5 6 8 10
generate-and-test | 24 120 720 40320 3628800
test-of-generate 19 59 180 1637 14758

Michael Hanus (CAU Kiel)

Declarative Multi-paradigm Programming WFLP/WLP 2014

Call-Time vs. Need-Time Choice

Subtle aspect of non-deterministic operations: treatment of arguments

coin =0 2?2 1 double x = x+x J

double coin
~» coln+coin s 0| 1 | 1 | 2 need-time choice

~» double 0 | double 1 ~* 0 | 2 call-time choice

Call-time choice

@ semantics with “least astonishment”

@ declarative foundation: CRWL calculus [Gonzalez-Moreno et al., JLP'99]
@ implementation: demand-driven + sharing

@ used in current functional logic languages

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Residuation

@ resolution extended to functional logic programming
@ sound, complete
o efficient (optimal) by exploiting functional information

Alternative principle:

Residuation (Escher, Life, NUE-Prolog, Oz,...)

@ evaluate functions only deterministically

suspend function calls if necessary
encode non-determinism in predicates or disjunctions

concurrency primitive required:
“cl & c2”evaluates constraints c1 and c2 concurrently

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Residuation: Example

add Z y y nat Z
add (S x) y = S(add x y) nat (S x)

= Success

nat x

Evaluate function add by residuation:

add y 2 =:= S 2 & nat ynat y
—(ysx} add (S x) Z =:=S Z & nat x
—{} S (add x Z) =:= S Z & nat x
—{} add x Z =:= 7Z & nat x
—ixoz) 2add 72 72 =:= Z & success

0 Z =:= 7 & success

-0 success & success

—{} success

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming

WFLP/WLP 2014

Narrowing vs. Residuation

Residuation
@ sound and complete @ incomplete (floundering)
@ possible non-deterministic @ deterministic evaluation of
evaluation of functions functions
@ optimal for particular classes @ supports concurrency
of programs (declarative concurrency)
@ method to connect external
functions

No clear winner ~» combine narrowing + residuation

Possible by adding flexible/rigid tags in case expressions
o flexible case: instantiate free argument variable (narrowing)
@ rigid case: suspend on free argument variable (residuation)

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

External Operations

Narrowing not applicable (no explicit defining rules available)
Appropriate model: residuation

Declarative interpretation: defined by infinite set of rules

External arithmetic operations

0+0=020 0~ 0=0
0+1=1 1 «1=1
1+1=2 2 x 2 =14

Implemented in some other language:
@ rules not accessible
@ can't deal with unevaluated/free arguments
@ reduce arguments to ground values before the call
@ suspend in case of free variable (residuation)

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Higher-order Operations

Important technique for generic programming and code reuse

Map a function on all list elements

map :: (a —-b) — [a] — [b]
map _ [] []
map £ (x:xs) = £ x : map £ xs

map double [1,2,3] ~* [2,4,6]
map (\x —x*x) [2,3,4] ~* [4,9,16]

Implementation:

@ primitive operation apply: apply fe ~ fe

@ sufficient to support higher-order functional programming
Problem: application of unknown functions?

@ instantiate function variable: costly

@ pragmatic solution: function application is rigid (i.e., no guessing)

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Constraints

@ occur in conditions of conditional rules
@ restrict applicability: solve constraints before applying rule

@ no syntactic extension necessary:
constraint ~ expression of type Success

Basic constraints

—— strict equality
(=:=) :: a — a — Success

—— concurrenct conjunction
(&) :: Success — Success — Success

-— always satisfied
success :: Success

last xs | ys++[e] =:=xs = e where ys,e free J

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Constraints

Constraints are ordinary expressions ~» pass as arguments or results

Constraint combinator

allvalid :: [Success] — Success
allvalid [] = success
allvalid (c:cs) = ¢ & allValid cs

Constraint programming: add constraints to deal with specific domains

Finite domain constraints

domain :: [Int] — Int — Int — Success
allDifferent :: [Int] — Success
labeling :: [LabelingOption] — [Int] — Success

Integration of constraint programming as in CLP
Combined with lazy higher-order programming

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Constraints: SuDoku Solver

S [P [15
a6 [3
SuDoku puzzle: 9 x 9 matrix of digits K] 6
([2
58
Representation: matrix m (list of lists of FD variables) T3
7 1
5 2 4
1 6 9
SuDoku Solver with FD Constraints

sudoku :: [[Int]] — Success
sudoku m = domain (concat m) 1 9
& allvalid (map allDifferent m)
& allvalid (map allDifferent (transpose m))
& allvalid (map allDifferent (squaresOfNine m))
& [FirstFailConstrained] (concat m)

labeling

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Functional Patterns

Requirement on programs: constructor-based rules

Last element of a list

last (xst+[e]) = e —— not allowed

Eliminate non-constructor pattern with extra-variables:

last xs | ys++[e]=:=xs = e where ys,e free

Disadvantage: strict equality evaluates all arguments

last [failed,3] ~»* failure (instead of 3)

Solution: allow functional patterns (patterns with defined functions)
Possible due to functional logic kernel!

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Functional Patterns: Transformational Semantics

Functional pattern ~ set of patterns where functions are evaluated

Evaluations of xs++[e]

xsttle]l ~lq el [e]

s [54L] [x1,e]
xs++[e] ~w;$%[xllxz] [x1,x2,e]

xst++[e] ~

Interpretation of last (xs++[e]) = e

last [e] = e
last [x1,e] = e
last [x1,x2,e] e

@ last [failed,3] ~* 3
@ implementation: demand-driven functional pattern unification
@ powerful concept to express transformation problems

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Application: XML Processing

<contacts>
<entry>
<name>Hanus</name>
<first>Michael</first>
<phone>0431/8807271</phone>
<email>mh@Rinformatik.uni-kiel.de</email>
<email>hanus@acm.org</email>
</entry>
<entry>
<name>Smith</name>
<first>William</first>
<nickname>Bill</nickname>
<phone>+1-987-742-9388</phone>
</entry>
</contacts>

@ processing: matching, querying, transformation

@ basically term structures, declarative languages seem appropriate
@ problems: structure often incompletely specified, evolves over time
@ specialized languages: XPath, XQuery, XSLT, Xcerpt [Bry et al. '02]

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

An eDSL for XML Processing

XML documents are term structures:

data XmlExp = XText String
| XElem String [(String,String)] [XmlExp]

v

Useful abstractions

xml t ¢ = XElem t [] c
xtxt s XText s

xml "entry" [xml "name" [xtxt "Hanus"],
xml "first" [xtxt "Michael"],
xml "phone" [xtxt "0431/8807271"]]
pretty printing =
<entry>
<name>Hanus</name>
<first>Michael</first>
<phone>0431/8807271</phone>
</entry>

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Matching in XML Documents

Extract name and phone number by pattern matching:

getNamePhone
(xml "entry"
[xm]l "name" [xtxt name],
—
xml "phone" [xtxt phone]]) = name++": "++phone

Functional patterns improves readability, but still problematic:

@ exact XML structure must be known
@ many details of large structures often irrelevant

@ change in structure ~» update all patterns

Better: define appropriate abstractions and use them in functional patterns

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Feature: Partial Patterns

@ do no enumerate all children of a structure
@ provide flexibility for future structure extensions

getNamePhone
(xml "entry"
(with [xml "name" [xtxt name],

xml "phone" [xtxt phone]])) = namet+":

"++phone

with :: [a] — [a] —— return some list containing elements

with [] =
with (x:xs)

_ ++ x : with xs

Example: with [1,2] s Xq e XLy

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming

WFLP/WLP 2014

Feature: Unordered Patterns

@ order of children unspecified
@ provide flexibility for future structural changes

getNamePhone
(xml "entry"
(with
(anyorder [xml "phone" [xtxt phone],
xml "name" [xtxt name]]))) =namet+": "++phone

—— Return a permutation of the input list:

anyorder :: [a] — [al]
anyorder [] =[]
anyorder (xst+[x]++ys) = x : anyorder (xst++ys)

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Feature: Patterns at Arbitrary Depth

Deep pattern

@ structure at the root or at a descendant (at arbitrary depth) of the root
@ ease queries in complex structures
@ provide flexibility for future structural changes

getNamePhone
(deepXml "entry"
(with [xml "name" [xXtxt name],
xml "phone" [xtxt phone]])) = namet+": "++phone

deepXml :: String — [XmlExp] — XmlExp
deepXml tag elems = xml tag elems
deepXml tag elems xml _ (_ ++ [deepXml tag elems] ++ _)

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Example: XML Pattern Matching at Arbitr

getPhone (deepXml "phone" [xtxt num]) = num J

getPhone (<contacts>

<entry>
<name>Hanus</name>
<first>Michael</first>
<phone>0431/8807271</phone>
<email>mh@informatik.uni-kiel.de</email>
<email>hanus@acm.org</email>

</entry>

<entry>
<name>Smith</name>
<first>William</first>
<nickname>Bill</nickname>
<phone>+1-987-742-9388</phone>

</entry>

</contacts>)

~» "0431-8807271"
~» "+1-987-742-9388"

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

More XML Processing

Transformation of Documents

@ transform XML documents into other XML or HTML documents
@ transformation task almost trivial in pattern-based languages, e.qg.:
transform pattern = newdoc

(deepXml "entry" (with [xml "name" [xtxt n],
xml "first" [xtxt f],

xml "phone" phone])) =

transPhone

xml "phonename" [xml "phone" phone,
xml "fullname" [xtxt (f++’ " :n)]]

Accumulate Results
@ accumulation of global or intermediate results
@ requires “findall” (encapsulated search)

WFLP/WLP 2014

Declarative Multi-paradigm Programming

Michael Hanus (CAU Kiel)

Encapsulated Search

Encapsulating non-deterministic search is important
@ accumulate intermediate results
@ select optimal/best solutions

@ non-deterministic search between I/O must be encapsulated

@ complication: demand-driven evaluation + sharing + “findall”

let y=0?1 in findall (...y...) J

@ evaluate “021” inside or outside the capsule?
@ order of solutions might depend on evaluation time ’

Declarative capsule: set functions)

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Set Functions

Associate to any operation f a new operation fs (set function)

@ fs computes set of all values computed by f

@ (fs e) =~ sets of all non-deterministic values of (f v) if vis a value of e
@ capture non-determinism of f

@ exclude non-determinism originating from arguments

@ order-independent encapsulation of non-determinism

coin = 0 2 1 ~» coing ={0,1}
id x = x ~+ 1dg v ={v} for all values v

bigCoin = 2 ? 4
f x = coin + x

fs bigCoin ~» {2,3} or {4,5}

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Programming with Set Functions

n-queens puzzle

Place n queens on an n x n board without capturing:
@ represent placement by a permutation (row of each queen)
@ choose a safe permutation

A permutation is not safe if some queens are in the same diagonal:

unsafe (_++[x]++y++[z]++_) = abs (x-z) =:= length y + 1

queens n | isEmpty (unsafes p) = p
where p = permute [1..n]

Note: use of set function is important here
(all occurrences of p must denote the same permutation!)

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Applications

Application areas: areas of individual paradigms +

Functional logic design patterns

@ constraint constructor: generate only valid data
(functions, constraints, programming with failure)

@ locally defined global identifier: structures with unique references
(functions, logic variables)

High-level interfaces for application libraries

@ GUIs

@ (type-safe) web programming
@ databases

@ string parsing

@ testing

o ...

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Applications: GUI Programming

Demo AIFY

Increment | Reset J Stop |

|
|z

Graphical User Interfaces (GUIs)
@ layout structure: hierarchical structure ~~ algebraic data type
@ logical structure: dependencies in structure ~ logic variables
@ event handlers ~~ functions associated to layout structures

@ advantages: compositional, less error prone

Specification of a counter GUI

Col [Entry [WRef val, Text "0O", Background "yellow"],
Row [Button (updateValue incr val) [Text "Increment"],
Button (setValue val "0O") [Text "Reset"],
Button {exitGUI [Text "Stop"]]]
where val free

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

Implementations

MCC (Munster Curry Compiler)
@ compiles to C
@ supports programmable search, real arithmetic constraints

PAKCS (Portland Aachen Kiel Curry System)
@ compiles to Prolog
@ non-determinism by backtracking, various constraint solvers

KiCS2 (Kiel Curry Compiler Vers. 2)

@ compiles to Haskell (fastest for deterministic programs)

@ various search strategies
(depth-first, breadth-first, iterative deepening, parallel)

@ programmable encapsulated (demand-driven) search

...(ortry http://www—-ps.informatik.uni-kiel.de/smap/)

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

http://www-ps.informatik.uni-kiel.de/smap/

Conclusions

Combining declarative paradigms is possible and useful

@ functional notation: more than syntactic sugar

exploit functions: better strategies without loosing generality

@ needed narrowing: sound, complete, optimal

demand-driven search ~» search space reduction

@ residuation ~» concurrency, clean connection to external functions

more declarative style of programming: no cuts, no side effects,. ..

@ appropriate abstractions for high-level software development

OLENEIECIIM Declarative Programming

Michael Hanus (CAU Kiel) Declarative Multi-paradigm Programming WFLP/WLP 2014

