
LOPSTR 2005

Declarative Programming
with

Function Patterns

Michael Hanus

Christian-Albrechts-Universität Kiel

(joint work with Sergio Antoy, Portland State University)



FUNCTIONAL LOGIC LANGUAGES

Approach to amalgamate ideas of declarative programming

• efficient execution principles of functional languages
(determinism, laziness)

• flexibility of logic languages
(constraints, built-in search)

• avoid non-declarative features of Prolog
(arithmetic, I/O, cut)

• combine best of both worlds in a single model
(higher-order functions, declarative I/O, concurrent constraints)

• Advantages:
➜ optimal evaluation strategies [JACM’00,ALP’97]
➜ new design patterns [FLOPS’02]
➜ better abstractions for application programming

(GUI programming [PADL’00], web programming [PADL’01])

CAU Kiel Michael Hanus 2



FUNCTIONAL LOGIC PROGRAMS: CURRY [POPL’97]

Datatypes (≈ admissible values): enumerate all data constructors

®

­

©

ª
data Bool = True | False

data List a = [] | a : List a -- [a]

Functions: operations on values defined by equations (or rules)

f t1 . . . tn | c = r

defined
operation patterns condition

(optional) expression

Pattern: linear data term
¶

µ

³

´

(++) :: [a] -> [a] -> [a] head :: [a] -> a

[] ++ ys = ys head (x:xs) = x

(x:xs) ++ ys = x : xs ++ ys

CAU Kiel Michael Hanus 3



FUNCTIONAL LOGIC PROGRAMS: CURRY [POPL’97]

Datatypes (≈ admissible values): enumerate all data constructors

®

­

©

ª
data Bool = True | False

data List a = [] | a : List a -- [a]

Functions: operations on values defined by equations (or rules)

f t1 . . . tn | c = r

defined
operation patterns condition

(optional) expression

Pattern: linear data term
¶

µ

³

´

(++) :: [a] -> [a] -> [a] head :: [a] -> a

[] ++ ys = ys head (x:xs) = x

(x:xs) ++ ys = x : xs ++ ys

CAU Kiel Michael Hanus 3



FUNCTIONAL LOGIC PROGRAMS: CURRY [POPL’97]

Datatypes (≈ admissible values): enumerate all data constructors

®

­

©

ª
data Bool = True | False

data List a = [] | a : List a -- [a]

Functions: operations on values defined by equations (or rules)

f t1 . . . tn | c = r

defined
operation patterns condition

(optional) expression

Pattern: linear data term
¶

µ

³

´

(++) :: [a] -> [a] -> [a] head :: [a] -> a

[] ++ ys = ys head (x:xs) = x

(x:xs) ++ ys = x : xs ++ ys

CAU Kiel Michael Hanus 3



FUNCTIONAL LOGIC PROGRAMS

Functional evaluation: (lazy) rewriting

[1,2]++[3] → 1:([2]++[3]) → 1:(2:([]++[3])) → [1,2,3]

Functional logic evaluation: equation solving, guess values for unknowns

xs++[x] =:= [1,2,3] ; {xs7→[1,2], x7→3}

Define functions by conditional equations:

®

­

©

ª
last :: [a] -> a

last xs | ys ++ [x] =:= xs = x where x,ys free

last [1,2] ; 2

CAU Kiel Michael Hanus 4



FUNCTIONAL LOGIC PROGRAMS

Functional evaluation: (lazy) rewriting

[1,2]++[3] → 1:([2]++[3]) → 1:(2:([]++[3])) → [1,2,3]

Functional logic evaluation: equation solving, guess values for unknowns

xs++[x] =:= [1,2,3] ; {xs7→[1,2], x7→3}

Define functions by conditional equations:

®

­

©

ª
last :: [a] -> a

last xs | ys ++ [x] =:= xs = x where x,ys free

last [1,2] ; 2

CAU Kiel Michael Hanus 4



MEANING OF “=:=”

Modern functional logic languages (Curry, Toy): non-strict semantics
➜ lazy evaluation

➜ computing with infinite structures

➜ comparison of arbitrary infinite objects?

Strict equality (K-LEAF [Giovannetti et al. ’91])
➜ identity on finite data terms (;not reflexive)

➜ e1 =:= e2 satisfied iff e1 and e2 reducible to same (unifiable) constructor term

➜ “x =:= head []” does not hold

Disadvantage: strict equality evaluates more than necessary

last [failed,2] ; no result!

CAU Kiel Michael Hanus 5



MEANING OF “=:=”

Modern functional logic languages (Curry, Toy): non-strict semantics
➜ lazy evaluation

➜ computing with infinite structures

➜ comparison of arbitrary infinite objects?

Strict equality (K-LEAF [Giovannetti et al. ’91])
➜ identity on finite data terms (;not reflexive)

➜ e1 =:= e2 satisfied iff e1 and e2 reducible to same (unifiable) constructor term

➜ “x =:= head []” does not hold

Disadvantage: strict equality evaluates more than necessary

last [failed,2] ; no result!

CAU Kiel Michael Hanus 5



MEANING OF “=:=”

Modern functional logic languages (Curry, Toy): non-strict semantics
➜ lazy evaluation

➜ computing with infinite structures

➜ comparison of arbitrary infinite objects?

Strict equality (K-LEAF [Giovannetti et al. ’91])
➜ identity on finite data terms (;not reflexive)

➜ e1 =:= e2 satisfied iff e1 and e2 reducible to same (unifiable) constructor term

➜ “x =:= head []” does not hold

Disadvantage: strict equality evaluates more than necessary

last [failed,2] ; no result!

CAU Kiel Michael Hanus 5



STRICT EQUALITY: MOTIVATION

Difficulty: comparison of infinite structures

²

±

¯

°
from x = x : from (x+1) ⇒ from 0 ; 0:1:2:3:4:5:...

rtail (x:xs) = rtail xs

rtail (from 0) =:= rtail (from 5) : should hold with reflexivity

¨
§

¥
¦from2 x = x : x+1 : from2 (x+2)

from 0 =:= from2 0 : should hold with reflexivity, generally undecidable

=⇒ strict equality is not reflexive

head [] =:= head [] ; no solution

(not specific to FLP, e.g., Haskell, Java,. . . )

CAU Kiel Michael Hanus 6



STRICT EQUALITY: MOTIVATION

Difficulty: comparison of infinite structures

²

±

¯

°
from x = x : from (x+1) ⇒ from 0 ; 0:1:2:3:4:5:...

rtail (x:xs) = rtail xs

rtail (from 0) =:= rtail (from 5) : should hold with reflexivity

¨
§

¥
¦from2 x = x : x+1 : from2 (x+2)

from 0 =:= from2 0 : should hold with reflexivity, generally undecidable

=⇒ strict equality is not reflexive

head [] =:= head [] ; no solution

(not specific to FLP, e.g., Haskell, Java,. . . )

CAU Kiel Michael Hanus 6



STRICT EQUALITY: MOTIVATION

Difficulty: comparison of infinite structures

²

±

¯

°
from x = x : from (x+1) ⇒ from 0 ; 0:1:2:3:4:5:...

rtail (x:xs) = rtail xs

rtail (from 0) =:= rtail (from 5) : should hold with reflexivity

¨
§

¥
¦from2 x = x : x+1 : from2 (x+2)

from 0 =:= from2 0 : should hold with reflexivity, generally undecidable

=⇒ strict equality is not reflexive

head [] =:= head [] ; no solution

(not specific to FLP, e.g., Haskell, Java,. . . )

CAU Kiel Michael Hanus 6



RELAXING STRICT EQUALITY?

Is evaluation always necessary?

x =:= head [] ; no solution

Why not: solve x =:= t by binding x to t (without evaluating t)?

Desirable in some cases (e.g., last), non-intuitive in other cases:
¨
§

¥
¦f x | x =:= from 0 = 99

f x ; 99

(f x, 99) ; (99, 99)

(f x, f x) ; no termination

Solution: Distinguish between
➜ logic variables: bind only to finite constructor terms

➜ pattern variables: bind to arbitrary (unevaluated) terms

; function patterns

CAU Kiel Michael Hanus 7



RELAXING STRICT EQUALITY?

Is evaluation always necessary?

x =:= head [] ; no solution

Why not: solve x =:= t by binding x to t (without evaluating t)?

Desirable in some cases (e.g., last), non-intuitive in other cases:
¨
§

¥
¦f x | x =:= from 0 = 99

f x ; 99

(f x, 99) ; (99, 99)

(f x, f x) ; no termination

Solution: Distinguish between
➜ logic variables: bind only to finite constructor terms

➜ pattern variables: bind to arbitrary (unevaluated) terms

; function patterns

CAU Kiel Michael Hanus 7



RELAXING STRICT EQUALITY?

Is evaluation always necessary?

x =:= head [] ; no solution

Why not: solve x =:= t by binding x to t (without evaluating t)?

Desirable in some cases (e.g., last), non-intuitive in other cases:
¨
§

¥
¦f x | x =:= from 0 = 99

f x ; 99

(f x, 99) ; (99, 99)

(f x, f x) ; no termination

Solution: Distinguish between
➜ logic variables: bind only to finite constructor terms

➜ pattern variables: bind to arbitrary (unevaluated) terms

; function patterns

CAU Kiel Michael Hanus 7



FUNCTION PATTERNS: SYNTAX

Function pattern: pattern containing
➜ variables

➜ constructors

➜ defined operation symbols

®

­

©

ª
last :: [a] -> a

last (xs ++ [x]) = x

Advantages:
➜ concise definition

➜ xs and x pattern variables ; can be bound to unevaluated expressions

➜ last [failed,2] ; 2 (with {xs7→[failed], x7→2})

CAU Kiel Michael Hanus 8



FUNCTION PATTERNS: TRANSFORMATIONAL SEMANTICS

➜ Reuse existing semantics and models of functional logic programs
➜ Transform programs with function patterns into standard programs

Basic idea: rule with function patterns 7→ set of rules where each function
pattern is replaced by its evaluation to some data term

Example: Evaluations of xs++[x]:

xs++[x]
∗

;xs7→[] [x]

xs++[x]
∗

;xs7→[x1] [x1,x]

xs++[x]
∗

;xs7→[x1,x2] [x1,x2,x]

. . .

⇒ last (xs ++ [x]) = x abbreviates the set of rules

last [x] = x

last [x1,x] = x

last [x1,x2,x] = x

...

CAU Kiel Michael Hanus 9



FUNCTION PATTERNS: TRANSFORMATIONAL SEMANTICS

➜ Reuse existing semantics and models of functional logic programs
➜ Transform programs with function patterns into standard programs

Basic idea: rule with function patterns 7→ set of rules where each function
pattern is replaced by its evaluation to some data term

Example: Evaluations of xs++[x]:

xs++[x]
∗

;xs7→[] [x]

xs++[x]
∗

;xs7→[x1] [x1,x]

xs++[x]
∗

;xs7→[x1,x2] [x1,x2,x]

. . .

⇒ last (xs ++ [x]) = x abbreviates the set of rules

last [x] = x

last [x1,x] = x

last [x1,x2,x] = x

...

CAU Kiel Michael Hanus 9



SEMANTICS OF FUNCTION PATTERNS

Potential problems of this approach:

1. infinite set of transformed rules ; perform transformation at run time

2. circular definition, e.g.,
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

; avoid circular definitions by restriction to stratified programs

3. non-left-linear transformed rules
idpair x = (x,x)

f (idpair x) = 0

Transformation into: f (x,x) = 0

Not allowed in standard FLP ; linearization of left-hand sides:
f (x,y) | x=:=y = 0

Details ; paper

CAU Kiel Michael Hanus 10



SEMANTICS OF FUNCTION PATTERNS

Potential problems of this approach:

1. infinite set of transformed rules ; perform transformation at run time

2. circular definition, e.g.,
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

; avoid circular definitions by restriction to stratified programs

3. non-left-linear transformed rules
idpair x = (x,x)

f (idpair x) = 0

Transformation into: f (x,x) = 0

Not allowed in standard FLP ; linearization of left-hand sides:
f (x,y) | x=:=y = 0

Details ; paper

CAU Kiel Michael Hanus 10



SEMANTICS OF FUNCTION PATTERNS

Potential problems of this approach:

1. infinite set of transformed rules ; perform transformation at run time

2. circular definition, e.g.,
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

; avoid circular definitions by restriction to stratified programs

3. non-left-linear transformed rules
idpair x = (x,x)

f (idpair x) = 0

Transformation into: f (x,x) = 0

Not allowed in standard FLP ; linearization of left-hand sides:
f (x,y) | x=:=y = 0

Details ; paper

CAU Kiel Michael Hanus 10



SEMANTICS OF FUNCTION PATTERNS

Potential problems of this approach:

1. infinite set of transformed rules ; perform transformation at run time

2. circular definition, e.g.,
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

; avoid circular definitions by restriction to stratified programs

3. non-left-linear transformed rules
idpair x = (x,x)

f (idpair x) = 0

Transformation into: f (x,x) = 0

Not allowed in standard FLP ; linearization of left-hand sides:
f (x,y) | x=:=y = 0

Details ; paper

CAU Kiel Michael Hanus 10



EXAMPLE: PROBLEM SOLVING

Dutch National Flag (Dijkstra’76): arrange a sequence of objects colored
by red, white or blue so that they appear in the order of the Dutch flag

data Color = Red | White | Blue

solve (x++[White]++y++[ Red ]++z) = solve (x++[ Red ]++y++[White]++z)

solve (x++[Blue ]++y++[ Red ]++z) = solve (x++[ Red ]++y++[Blue ]++z)

solve (x++[Blue ]++y++[White]++z) = solve (x++[White]++y++[Blue ]++z)

solve flag | isDutchFlag flag = flag

where isDutchFlag (uni Red ++ uni White ++ uni Blue) = success

uni color = []

uni color = color : uni color

CAU Kiel Michael Hanus 11



EXAMPLE: PROBLEM SOLVING

Dutch National Flag (Dijkstra’76): arrange a sequence of objects colored
by red, white or blue so that they appear in the order of the Dutch flag

data Color = Red | White | Blue

solve (x++[White]++y++[ Red ]++z) = solve (x++[ Red ]++y++[White]++z)

solve (x++[Blue ]++y++[ Red ]++z) = solve (x++[ Red ]++y++[Blue ]++z)

solve (x++[Blue ]++y++[White]++z) = solve (x++[White]++y++[Blue ]++z)

solve flag | isDutchFlag flag = flag

where isDutchFlag (uni Red ++ uni White ++ uni Blue) = success

uni color = []

uni color = color : uni color

CAU Kiel Michael Hanus 11



EXAMPLE: PROBLEM SOLVING

Dutch National Flag (Dijkstra’76): arrange a sequence of objects colored
by red, white or blue so that they appear in the order of the Dutch flag

data Color = Red | White | Blue

solve (x++[White]++y++[ Red ]++z) = solve (x++[ Red ]++y++[White]++z)

solve (x++[Blue ]++y++[ Red ]++z) = solve (x++[ Red ]++y++[Blue ]++z)

solve (x++[Blue ]++y++[White]++z) = solve (x++[White]++y++[Blue ]++z)

solve flag | isDutchFlag flag = flag

where isDutchFlag (uni Red ++ uni White ++ uni Blue) = success

uni color = []

uni color = color : uni color

CAU Kiel Michael Hanus 11



EXAMPLE: PROBLEM SOLVING

Dutch National Flag (Dijkstra’76): arrange a sequence of objects colored
by red, white or blue so that they appear in the order of the Dutch flag

data Color = Red | White | Blue

solve (x++[White]++y++[ Red ]++z) = solve (x++[ Red ]++y++[White]++z)

solve (x++[Blue ]++y++[ Red ]++z) = solve (x++[ Red ]++y++[Blue ]++z)

solve (x++[Blue ]++y++[White]++z) = solve (x++[White]++y++[Blue ]++z)

solve flag | isDutchFlag flag = flag

where isDutchFlag (uni Red ++ uni White ++ uni Blue) = success

uni color = []

uni color = color : uni color

CAU Kiel Michael Hanus 11



EXAMPLE: PROBLEM SOLVING

Dutch National Flag (Dijkstra’76): arrange a sequence of objects colored
by red, white or blue so that they appear in the order of the Dutch flag

data Color = Red | White | Blue

solve (x++[White]++y++[ Red ]++z) = solve (x++[ Red ]++y++[White]++z)

solve (x++[Blue ]++y++[ Red ]++z) = solve (x++[ Red ]++y++[Blue ]++z)

solve (x++[Blue ]++y++[White]++z) = solve (x++[White]++y++[Blue ]++z)

solve flag | isDutchFlag flag = flag

where isDutchFlag (uni Red ++ uni White ++ uni Blue) = success

uni color = []

uni color = color : uni color

CAU Kiel Michael Hanus 11



EXAMPLE: TESTING INFINITE STRUCTURES

Task: compute length of a stream up to the first repeated element
(part of an ACM programming contest)

Implementation with function patterns:

lengthUpToRepeat (p++[r]++q)

| nub p == p && elem r p

= length p + 1

➜ (nub xs): list without duplicates

➜ function pattern + condition: break input list into part without repeated
elements and first repeated element

➜ with strict equality (i.e., xs =:= p++[r]++q): works only for finite lists and
evaluates also elements after first repeated element

CAU Kiel Michael Hanus 12



EXAMPLE: TESTING INFINITE STRUCTURES

Task: compute length of a stream up to the first repeated element
(part of an ACM programming contest)

Implementation with function patterns:

lengthUpToRepeat (p++[r]++q)

| nub p == p && elem r p

= length p + 1

➜ (nub xs): list without duplicates

➜ function pattern + condition: break input list into part without repeated
elements and first repeated element

➜ with strict equality (i.e., xs =:= p++[r]++q): works only for finite lists and
evaluates also elements after first repeated element

CAU Kiel Michael Hanus 12



EXAMPLE: TRANSFORMATION OF EXPRESSIONS

Task: simplify symbolic arithmetic expressions, e.g., 1 ∗ (x + 0) ; x

data Exp = Lit Int | Var [Char] | Add Exp Exp | Mul Exp Exp

(evalTo e): expressions that simplify to e

evalTo e = Add (Lit 0) e evalTo e = Mul (Lit 1) e

evalTo e = Add e (Lit 0) evalTo e = Mul e (Lit 1)
...

(replace c p e): term replacement c[e]p
replace _ [] x = x

replace (Add l r) (1:p) x = Add (replace l p x) r

replace (Add l r) (2:p) x = Add l (replace r p x)
...

simplify (replace c p (evalTo x)) = replace c p x

Two applications of function patterns:
➜ define abstractions for complex collections of patterns (evalTo)

➜ specify transformations at arbitrary positions inside an argument (replace)
e.g., variable in expression: varInExp (replace c p (Var v)) = v

CAU Kiel Michael Hanus 13



EXAMPLE: TRANSFORMATION OF EXPRESSIONS

Task: simplify symbolic arithmetic expressions, e.g., 1 ∗ (x + 0) ; x

data Exp = Lit Int | Var [Char] | Add Exp Exp | Mul Exp Exp

(evalTo e): expressions that simplify to e

evalTo e = Add (Lit 0) e evalTo e = Mul (Lit 1) e

evalTo e = Add e (Lit 0) evalTo e = Mul e (Lit 1)
...

(replace c p e): term replacement c[e]p
replace _ [] x = x

replace (Add l r) (1:p) x = Add (replace l p x) r

replace (Add l r) (2:p) x = Add l (replace r p x)
...

simplify (replace c p (evalTo x)) = replace c p x

Two applications of function patterns:
➜ define abstractions for complex collections of patterns (evalTo)

➜ specify transformations at arbitrary positions inside an argument (replace)
e.g., variable in expression: varInExp (replace c p (Var v)) = v

CAU Kiel Michael Hanus 13



EXAMPLE: TRANSFORMATION OF EXPRESSIONS

Task: simplify symbolic arithmetic expressions, e.g., 1 ∗ (x + 0) ; x

data Exp = Lit Int | Var [Char] | Add Exp Exp | Mul Exp Exp

(evalTo e): expressions that simplify to e

evalTo e = Add (Lit 0) e evalTo e = Mul (Lit 1) e

evalTo e = Add e (Lit 0) evalTo e = Mul e (Lit 1)
...

(replace c p e): term replacement c[e]p
replace _ [] x = x

replace (Add l r) (1:p) x = Add (replace l p x) r

replace (Add l r) (2:p) x = Add l (replace r p x)
...

simplify (replace c p (evalTo x)) = replace c p x

Two applications of function patterns:
➜ define abstractions for complex collections of patterns (evalTo)

➜ specify transformations at arbitrary positions inside an argument (replace)
e.g., variable in expression: varInExp (replace c p (Var v)) = v

CAU Kiel Michael Hanus 13



EXAMPLE: TRANSFORMATION OF EXPRESSIONS

Task: simplify symbolic arithmetic expressions, e.g., 1 ∗ (x + 0) ; x

data Exp = Lit Int | Var [Char] | Add Exp Exp | Mul Exp Exp

(evalTo e): expressions that simplify to e

evalTo e = Add (Lit 0) e evalTo e = Mul (Lit 1) e

evalTo e = Add e (Lit 0) evalTo e = Mul e (Lit 1)
...

(replace c p e): term replacement c[e]p
replace _ [] x = x

replace (Add l r) (1:p) x = Add (replace l p x) r

replace (Add l r) (2:p) x = Add l (replace r p x)
...

simplify (replace c p (evalTo x)) = replace c p x

Two applications of function patterns:
➜ define abstractions for complex collections of patterns (evalTo)

➜ specify transformations at arbitrary positions inside an argument (replace)
e.g., variable in expression: varInExp (replace c p (Var v)) = v

CAU Kiel Michael Hanus 13



EXAMPLE: XML QUERIES AND TRANSFORMATIONS

data XmlExp = XText String

| XElem String [(String,String)] [XmlExp]

Some useful abstractions:

xtxt s = XText s -- basic text element

xml t c = XElem t [] c -- XML element without attributes

; xml "program" [xml "language" [xtxt "Curry"],...]

(replace xe c s): XML term replacement xs[s]p
replace _ [] s = s

replace (XElem tag atts xes) (i:p) s =

XElem tag atts (replaceElem i (\x -> replace x p s) xes)
where

replaceElem O f (x:xs) = f x : xs

replaceElem (S n) f (x:xs) = x : replaceElem n f xs

Example: Find element <city>...</city> in XML expression:

cityOf (replace _ _ (xml "city" [xtxt c])) = c

CAU Kiel Michael Hanus 14



EXAMPLE: XML QUERIES AND TRANSFORMATIONS

data XmlExp = XText String

| XElem String [(String,String)] [XmlExp]

Some useful abstractions:

xtxt s = XText s -- basic text element

xml t c = XElem t [] c -- XML element without attributes

; xml "program" [xml "language" [xtxt "Curry"],...]

(replace xe c s): XML term replacement xs[s]p
replace _ [] s = s

replace (XElem tag atts xes) (i:p) s =

XElem tag atts (replaceElem i (\x -> replace x p s) xes)
where

replaceElem O f (x:xs) = f x : xs

replaceElem (S n) f (x:xs) = x : replaceElem n f xs

Example: Find element <city>...</city> in XML expression:

cityOf (replace _ _ (xml "city" [xtxt c])) = c

CAU Kiel Michael Hanus 14



EXAMPLE: XML QUERIES AND TRANSFORMATIONS

data XmlExp = XText String

| XElem String [(String,String)] [XmlExp]

Some useful abstractions:

xtxt s = XText s -- basic text element

xml t c = XElem t [] c -- XML element without attributes

; xml "program" [xml "language" [xtxt "Curry"],...]

(replace xe c s): XML term replacement xs[s]p
replace _ [] s = s

replace (XElem tag atts xes) (i:p) s =

XElem tag atts (replaceElem i (\x -> replace x p s) xes)
where

replaceElem O f (x:xs) = f x : xs

replaceElem (S n) f (x:xs) = x : replaceElem n f xs

Example: Find element <city>...</city> in XML expression:

cityOf (replace _ _ (xml "city" [xtxt c])) = c

CAU Kiel Michael Hanus 14



EXAMPLE: XML QUERIES AND TRANSFORMATIONS

data XmlExp = XText String

| XElem String [(String,String)] [XmlExp]

Some useful abstractions:

xtxt s = XText s -- basic text element

xml t c = XElem t [] c -- XML element without attributes

; xml "program" [xml "language" [xtxt "Curry"],...]

(replace xe c s): XML term replacement xs[s]p
replace _ [] s = s

replace (XElem tag atts xes) (i:p) s =

XElem tag atts (replaceElem i (\x -> replace x p s) xes)
where

replaceElem O f (x:xs) = f x : xs

replaceElem (S n) f (x:xs) = x : replaceElem n f xs

Example: Find element <city>...</city> in XML expression:

cityOf (replace _ _ (xml "city" [xtxt c])) = c

CAU Kiel Michael Hanus 14



IMPLEMENTATION

Basic idea: perform transformation of rules containing function patterns
demand-driven at run time

Integration of function patterns into existing implementations:
➀ Preprocessor eliminates function patterns:

replace by new variable and introduce specific unification “=:<=” in condition

➁ Provide implementation of “=:<=”

Example:

last (xs++[x]) = x

is transformed into

last ys | xs++[x] =:<= ys = x where xs,x free

CAU Kiel Michael Hanus 15



FUNCTION PATTERN UNIFICATION

To evaluate e1 =:<= e2: (e1: function pattern)
➀ Evaluate e1 to a head normal form h1

➁ If h1 is a variable: bind it to e2

➂ If h1 = c t1 . . . tn (where c is a constructor):

(a) Evaluate e2 to a head normal form h2

(b) If h2 is a variable: instantiate h2 to c x1 . . . xn (x1, . . . , xn are fresh
variables) and evaluate t1 =:<=x1 & . . . & tn =:<=xn

(c) If h2 = c s1 . . . sn: evaluate t1 =:<= s1 & . . . & tn =:<= sn

(d) Otherwise: fail

➜ finite search space for xs++[x] =:<= [failed,2]

➜ missing: linearization of transformed left-hand sides
; mark pattern variables that occur in step (2) and generate strict equalities
for multiple marked variables

➜ useful: more efficient function pattern unification “=:<<=” for linear function
patterns (; compiler optimization)

CAU Kiel Michael Hanus 16



FUNCTION PATTERN UNIFICATION

To evaluate e1 =:<= e2: (e1: function pattern)
➀ Evaluate e1 to a head normal form h1

➁ If h1 is a variable: bind it to e2

➂ If h1 = c t1 . . . tn (where c is a constructor):

(a) Evaluate e2 to a head normal form h2

(b) If h2 is a variable: instantiate h2 to c x1 . . . xn (x1, . . . , xn are fresh
variables) and evaluate t1 =:<=x1 & . . . & tn =:<=xn

(c) If h2 = c s1 . . . sn: evaluate t1 =:<= s1 & . . . & tn =:<= sn

(d) Otherwise: fail

➜ finite search space for xs++[x] =:<= [failed,2]

➜ missing: linearization of transformed left-hand sides
; mark pattern variables that occur in step (2) and generate strict equalities
for multiple marked variables

➜ useful: more efficient function pattern unification “=:<<=” for linear function
patterns (; compiler optimization)

CAU Kiel Michael Hanus 16



BENCHMARKS

Implementation of function patterns provided in Curry programming
environment PAKCS

Function pattern increases expressiveness, but they can also increase
efficiency in comparison to strict equality:

Expression: =:= =:<= =:<<=

last (take 10000 (repeat failed) ++ [1]) no solution 380 250

last (map (inc 0) [1..2000]) 20900 90 60

lengthUpToRepeat ([1..50]++[1]++[51..]) ∞ 200 200

simplify* 1200 1080 690

varsInExp 2240 1040 100

Further optimization:
compile-time specialization of function patterns (; paper)

CAU Kiel Michael Hanus 17



CONCLUSIONS

Declarative programs with function patterns:

• concise definitions, problems with strict equality avoided

• executable high-level definitions of complex transformation tasks and
queries on tree-like structures

• semantics defined by transformation into standard programs

• implementation by specific function pattern unification

• extension specific to integrated functional logic languages
(LP: lack of evaluable functions, FP: lack of nondeterminism)

• functional logic languages:
ideal environments for building high-level abstractions

Prototype implementation available in recent releases of PAKCS:
http://www.informatik.uni-kiel.de/~pakcs/

CAU Kiel Michael Hanus 18


