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FUNCTIONAL LOGIC LANGUAGES

Approach to amalgamate ideas of declarative programming

• efficient execution principles of functional languages
(determinism, laziness)

• flexibility of logic languages
(constraints, built-in search)

• avoid non-declarative features of Prolog
(arithmetic, I/O, cut)

• combine best of both worlds in a single model
(higher-order functions, declarative I/O, concurrent constraints)

• Advantages:
➜ optimal evaluation strategies [JACM’00,ALP’97]
➜ new design patterns [FLOPS’02]
➜ better abstractions for application programming

(GUI programming [PADL’00], web programming [PADL’01])
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FUNCTIONAL LOGIC PROGRAMS: CURRY [POPL’97]

Datatypes (≈ admissible values): enumerate all data constructors

®

­

©

ª
data Bool = True | False

data List a = [] | a : List a -- [a]

Functions: operations on values defined by equations (or rules)

f t1 . . . tn | c = r

defined
operation patterns condition

(optional) expression

Pattern: linear data term
¶

µ

³

´

(++) :: [a] -> [a] -> [a] head :: [a] -> a

[] ++ ys = ys head (x:xs) = x

(x:xs) ++ ys = x : xs ++ ys
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FUNCTIONAL LOGIC PROGRAMS

Functional evaluation: (lazy) rewriting

[1,2]++[3] → 1:([2]++[3]) → 1:(2:([]++[3])) → [1,2,3]

Functional logic evaluation: equation solving, guess values for unknowns

xs++[x] =:= [1,2,3] ; {xs7→[1,2], x7→3}

Define functions by conditional equations:

®

­

©

ª
last :: [a] -> a

last xs | ys ++ [x] =:= xs = x where x,ys free

last [1,2] ; 2
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MEANING OF “=:=”

Modern functional logic languages (Curry, Toy): non-strict semantics
➜ lazy evaluation

➜ computing with infinite structures

➜ comparison of arbitrary infinite objects?

Strict equality (K-LEAF [Giovannetti et al. ’91])
➜ identity on finite data terms (;not reflexive)

➜ e1 =:= e2 satisfied iff e1 and e2 reducible to same (unifiable) constructor term

➜ “x =:= head []” does not hold

Disadvantage: strict equality evaluates more than necessary

last [failed,2] ; no result!
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STRICT EQUALITY: MOTIVATION

Difficulty: comparison of infinite structures

²

±

¯

°
from x = x : from (x+1) ⇒ from 0 ; 0:1:2:3:4:5:...

rtail (x:xs) = rtail xs

rtail (from 0) =:= rtail (from 5) : should hold with reflexivity

¨
§

¥
¦from2 x = x : x+1 : from2 (x+2)

from 0 =:= from2 0 : should hold with reflexivity, generally undecidable

=⇒ strict equality is not reflexive

head [] =:= head [] ; no solution

(not specific to FLP, e.g., Haskell, Java,. . . )
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RELAXING STRICT EQUALITY?

Is evaluation always necessary?

x =:= head [] ; no solution

Why not: solve x =:= t by binding x to t (without evaluating t)?

Desirable in some cases (e.g., last), non-intuitive in other cases:
¨
§

¥
¦f x | x =:= from 0 = 99

f x ; 99

(f x, 99) ; (99, 99)

(f x, f x) ; no termination

Solution: Distinguish between
➜ logic variables: bind only to finite constructor terms

➜ pattern variables: bind to arbitrary (unevaluated) terms

; function patterns
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FUNCTION PATTERNS: SYNTAX

Function pattern: pattern containing
➜ variables

➜ constructors

➜ defined operation symbols

®

­

©

ª
last :: [a] -> a

last (xs ++ [x]) = x

Advantages:
➜ concise definition

➜ xs and x pattern variables ; can be bound to unevaluated expressions

➜ last [failed,2] ; 2 (with {xs7→[failed], x7→2})
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FUNCTION PATTERNS: TRANSFORMATIONAL SEMANTICS

➜ Reuse existing semantics and models of functional logic programs
➜ Transform programs with function patterns into standard programs

Basic idea: rule with function patterns 7→ set of rules where each function
pattern is replaced by its evaluation to some data term

Example: Evaluations of xs++[x]:

xs++[x]
∗

;xs7→[] [x]

xs++[x]
∗

;xs7→[x1] [x1,x]

xs++[x]
∗

;xs7→[x1,x2] [x1,x2,x]

. . .

⇒ last (xs ++ [x]) = x abbreviates the set of rules

last [x] = x

last [x1,x] = x

last [x1,x2,x] = x

...
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SEMANTICS OF FUNCTION PATTERNS

Potential problems of this approach:

1. infinite set of transformed rules ; perform transformation at run time

2. circular definition, e.g.,
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

; avoid circular definitions by restriction to stratified programs

3. non-left-linear transformed rules
idpair x = (x,x)

f (idpair x) = 0

Transformation into: f (x,x) = 0

Not allowed in standard FLP ; linearization of left-hand sides:
f (x,y) | x=:=y = 0

Details ; paper
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EXAMPLE: PROBLEM SOLVING

Dutch National Flag (Dijkstra’76): arrange a sequence of objects colored
by red, white or blue so that they appear in the order of the Dutch flag

data Color = Red | White | Blue

solve (x++[White]++y++[ Red ]++z) = solve (x++[ Red ]++y++[White]++z)

solve (x++[Blue ]++y++[ Red ]++z) = solve (x++[ Red ]++y++[Blue ]++z)

solve (x++[Blue ]++y++[White]++z) = solve (x++[White]++y++[Blue ]++z)

solve flag | isDutchFlag flag = flag

where isDutchFlag (uni Red ++ uni White ++ uni Blue) = success

uni color = []

uni color = color : uni color
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EXAMPLE: TESTING INFINITE STRUCTURES

Task: compute length of a stream up to the first repeated element
(part of an ACM programming contest)

Implementation with function patterns:

lengthUpToRepeat (p++[r]++q)

| nub p == p && elem r p

= length p + 1

➜ (nub xs): list without duplicates

➜ function pattern + condition: break input list into part without repeated
elements and first repeated element

➜ with strict equality (i.e., xs =:= p++[r]++q): works only for finite lists and
evaluates also elements after first repeated element
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EXAMPLE: TRANSFORMATION OF EXPRESSIONS

Task: simplify symbolic arithmetic expressions, e.g., 1 ∗ (x + 0) ; x

data Exp = Lit Int | Var [Char] | Add Exp Exp | Mul Exp Exp

(evalTo e): expressions that simplify to e

evalTo e = Add (Lit 0) e evalTo e = Mul (Lit 1) e

evalTo e = Add e (Lit 0) evalTo e = Mul e (Lit 1)
...

(replace c p e): term replacement c[e]p
replace _ [] x = x

replace (Add l r) (1:p) x = Add (replace l p x) r

replace (Add l r) (2:p) x = Add l (replace r p x)
...

simplify (replace c p (evalTo x)) = replace c p x

Two applications of function patterns:
➜ define abstractions for complex collections of patterns (evalTo)

➜ specify transformations at arbitrary positions inside an argument (replace)
e.g., variable in expression: varInExp (replace c p (Var v)) = v
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EXAMPLE: XML QUERIES AND TRANSFORMATIONS

data XmlExp = XText String

| XElem String [(String,String)] [XmlExp]

Some useful abstractions:

xtxt s = XText s -- basic text element

xml t c = XElem t [] c -- XML element without attributes

; xml "program" [xml "language" [xtxt "Curry"],...]

(replace xe c s): XML term replacement xs[s]p
replace _ [] s = s

replace (XElem tag atts xes) (i:p) s =

XElem tag atts (replaceElem i (\x -> replace x p s) xes)
where

replaceElem O f (x:xs) = f x : xs

replaceElem (S n) f (x:xs) = x : replaceElem n f xs

Example: Find element <city>...</city> in XML expression:

cityOf (replace _ _ (xml "city" [xtxt c])) = c
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IMPLEMENTATION

Basic idea: perform transformation of rules containing function patterns
demand-driven at run time

Integration of function patterns into existing implementations:
➀ Preprocessor eliminates function patterns:

replace by new variable and introduce specific unification “=:<=” in condition

➁ Provide implementation of “=:<=”

Example:

last (xs++[x]) = x

is transformed into

last ys | xs++[x] =:<= ys = x where xs,x free
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FUNCTION PATTERN UNIFICATION

To evaluate e1 =:<= e2: (e1: function pattern)
➀ Evaluate e1 to a head normal form h1

➁ If h1 is a variable: bind it to e2

➂ If h1 = c t1 . . . tn (where c is a constructor):

(a) Evaluate e2 to a head normal form h2

(b) If h2 is a variable: instantiate h2 to c x1 . . . xn (x1, . . . , xn are fresh
variables) and evaluate t1 =:<=x1 & . . . & tn =:<=xn

(c) If h2 = c s1 . . . sn: evaluate t1 =:<= s1 & . . . & tn =:<= sn

(d) Otherwise: fail

➜ finite search space for xs++[x] =:<= [failed,2]

➜ missing: linearization of transformed left-hand sides
; mark pattern variables that occur in step (2) and generate strict equalities
for multiple marked variables

➜ useful: more efficient function pattern unification “=:<<=” for linear function
patterns (; compiler optimization)
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➀ Evaluate e1 to a head normal form h1

➁ If h1 is a variable: bind it to e2

➂ If h1 = c t1 . . . tn (where c is a constructor):

(a) Evaluate e2 to a head normal form h2

(b) If h2 is a variable: instantiate h2 to c x1 . . . xn (x1, . . . , xn are fresh
variables) and evaluate t1 =:<=x1 & . . . & tn =:<=xn

(c) If h2 = c s1 . . . sn: evaluate t1 =:<= s1 & . . . & tn =:<= sn

(d) Otherwise: fail

➜ finite search space for xs++[x] =:<= [failed,2]

➜ missing: linearization of transformed left-hand sides
; mark pattern variables that occur in step (2) and generate strict equalities
for multiple marked variables

➜ useful: more efficient function pattern unification “=:<<=” for linear function
patterns (; compiler optimization)
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BENCHMARKS

Implementation of function patterns provided in Curry programming
environment PAKCS

Function pattern increases expressiveness, but they can also increase
efficiency in comparison to strict equality:

Expression: =:= =:<= =:<<=

last (take 10000 (repeat failed) ++ [1]) no solution 380 250

last (map (inc 0) [1..2000]) 20900 90 60

lengthUpToRepeat ([1..50]++[1]++[51..]) ∞ 200 200

simplify* 1200 1080 690

varsInExp 2240 1040 100

Further optimization:
compile-time specialization of function patterns (; paper)
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CONCLUSIONS

Declarative programs with function patterns:

• concise definitions, problems with strict equality avoided

• executable high-level definitions of complex transformation tasks and
queries on tree-like structures

• semantics defined by transformation into standard programs

• implementation by specific function pattern unification

• extension specific to integrated functional logic languages
(LP: lack of evaluable functions, FP: lack of nondeterminism)

• functional logic languages:
ideal environments for building high-level abstractions

Prototype implementation available in recent releases of PAKCS:
http://www.informatik.uni-kiel.de/~pakcs/

CAU Kiel Michael Hanus 18


